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Abstract. Anesthesia is produced by drugs or other methods, 
and refers to the attenuation of pain via reversible suppression 
of neuronal transmission in the central and peripheral nervous 
systems, during surgery. Clinical investigations have indicated 
that the anesthetic action of isoflurane is efficient to alleviate 
pain during tumor resection clinical trials. In addition, it has 
been reported that isoflurane can induce caspase‑3 activation 
and is associated with apoptosis of tumor cells. The present 
study investigated the anesthetic effects and molecular mecha-
nisms underlying isoflurane-induced apoptosis in patients 
with hepatic carcinoma. Furthermore, the pain of patients 
with hepatic carcinoma was evaluated during the periopera-
tive period according to the pain index. The apoptotic rate of 
hepatic carcinoma cells was analyzed in tumor tissues using 
TUNEL assay. The expression levels of apoptosis-associated 
proteins were detected in liver cancer cells following anes-
thesia in patients. Phosphoinositide 3‑kinase/protein kinase B 
(PI3K/AKT) and nuclear factor (NF)‑κB signaling pathways 
were also analyzed in liver cancer cells following treatment 
with isoflurane. The results demonstrated that isoflurane 
inhibited growth and decreased viability of liver cancer 
cells in vitro and in vivo. In addition, the apoptotic rate was 
increased in cells obtained from isoflurane‑treated patients. 
The results also demonstrated that isoflurane upregulated the 
expression levels of proapoptotic genes and downregulated 
anti-apoptotic mRNA expression. In addition, a molecular 
mechanism analysis indicated that isoflurane inhibited PI3K 
and AKT expression in liver cancer cells. Isoflurane also 
induced caspase‑3 activation in liver cancer cells. Furthermore, 
isoflurane treatment attenuated NF‑κB activity and inhibited 
migration and invasion of liver cancer cells. In conclusion, 

these findings indicated that isoflurane treatment efficiently 
attenuated surgical pain and inhibited tumor aggressiveness 
via regulation of NF-κB activity and the PI3K/AKT signaling 
pathway, thus suggesting that isoflurane is an efficient anes-
thetic drug that induces pain remission and promotes apoptosis 
of liver cancer cells.

Introduction

Hepatic carcinoma is associated with high levels of morbidity 
and mortality (1). In addition, hepatocellular carcinoma is the 
second most common type of cancer, the incidence of which 
is increasing worldwide, which accounts for >90% of primary 
liver cancer cases (2,3). At present, the common clinical 
therapeutic strategies for hepatic carcinoma include surgery, 
chemotherapy and radiotherapy; however, these treatments 
present only modest efficacy and often induce side effects in 
patients (4,5). In addition, the efficacy of these conventional 
therapeutic strategies remain limited, particularly for patients 
with late stage, advanced hepatic carcinoma (6). Although 
the efficacy of aggressive surgery is limited for patients with 
cancer, tumor resection is the most common clinical strategy 
used to treat patients with hepatic carcinoma. Therefore, 
various anesthetics have been developed and applied in 
tumor resection to attenuate surgical pain for patients with 
hepatic carcinoma during the perioperative period. Additional 
functions of anesthetics have also been reported and further 
analyzed in hepatic carcinoma cells and tissues.

Isoflurane is a volatile general anesthetic that can be applied 
for the induction and maintenance of general anesthesia, in 
order to abolish the behavioral responsiveness of patients 
during tumor resection (7). It has previously been reported that 
pretreatment with isoflurane influences the cytokine response 
to cancer surgery during the perioperative period (�). In addi‑ (�). In addi‑(�). In addi-
tion, research has indicated that the effects of isoflurane may 
activate the caspase-induced apoptotic signaling pathway; this 
cellular response is consistent with the neuropathogenesis of 
senile dementia (9). In addition, Liu revealed that isoflurane can 
increase serum levels of interleukin (IL)‑� and IL‑10 in patients 
with cancer (10). Furthermore, emulsified isoflurane treatment 
can inhibit the cell cycle and respiration of human bronchial 
epithelial 16HBE cells in a p53‑independent manner (11). The 
anesthetic efficacy of isoflurane has also been investigated 
in patients undergoing craniotomy for primary brain tumor 
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excision (12). These data suggest that is of lurane may regulate 
various signaling pathway in tumor cells during the periopera-
tive period. Therefore, it may be hypothesized that isoflurane 
inhibits hepatic carcinoma growth and aggressiveness, and 
promotes apoptosis via the phosphoinositide 3‑kinase/protein 
kinase B (PI3K/AKT)‑mediated nuclear factor (NF)‑κB signal 
pathway.

Oncogenic Ras signaling, resulting in activation of the 
PI3K/AKT pathway, has been analyzed during tumor main-
tenance (13). The PI3K/AKT signaling pathway serves an 
essential role in cell growth, proliferation and survival under 
physiological conditions (14). A previous study suggested that 
inhibition of PI3K/AKT signaling could induce apoptosis, and 
impair mammary tumor outgrowth and metastasis (15). In 
addition, isoflurane‑induced neuroapoptosis via the PI3K/AKT 
pathway has been investigated in vivo and the expression of 
PI3K and AKT has been reported to affect neuroapoptosis (16). 
Furthermore, the PI3K/AKT‑induced NF‑κB signaling pathway 
is associated with tumor angiogenesis and provides a novel 
insight into the mechanisms underlying cancer cell growth and 
aggressiveness (17). In addition, Miao and Zhao indicated that 
inhibition of the PI3K/AKT/NF‑κB signaling pathway could 
suppress tumor invasion in follicular thyroid carcinoma (1�). 
These reports suggest that the PI3K/AKT‑mediated NF‑κB 
signal pathway may serve an essential role in the initiation 
and progression of carcinoma growth and aggressiveness. 
Therefore, the present study investigated the expression and 
activity of the PI3K/AKT‑mediated NF‑κB signaling pathway 
in hepatic carcinoma cells following treatment with isoflurane.

In the present study, the anesthetic and cellular effects of 
isoflurane on hepatic carcinoma cell biology were investigated, 
in order to better understand the mechanisms underlying 
isoflurane‑mediated tumor suppression in patients with hepatic 
carcinoma. The present study also evaluated the molecular 
mechanism underlying isoflurane-induced apoptosis and 
tumor therapy for patients with hepatic carcinoma.

Materials and methods

Ethics statement. The present study was directed according 
to the Guide for the Care and Use of Clinical Investigation 
of Anesthesiology of Linyi Cancer Hospital (Linyi, China). 
The present study was approved by the ethics committee of 
Linyi Cancer Hospital. All patients provided written informed 
consent.

Patients. A total of 10 patients with hepatic carcinoma 
were recruited in Linyi Cancer Hospital between June 2013 
and May 2014. The mean age was 46.7 years old (range, 
3�.5‑62.5 years old). Patients with a history of cancer were 
excluded from this study. None of the patients had received 
anti-cancer treatments before tumorectomy. Patients were 
treated with total intravenous anesthesia isoflurane (n=5, 
10 mg/kg) or propofol (n=5, 2 mg/kg).

Pharmacodynamics analysis. Serum concentrations of isoflu-
rane and Cmax concentrations of isoflurane were analyzed 
in patients with hepatic carcinoma after anesthesia. Serum 
concentrations of isoflurane were recorded at 0-120 min 
(15 min interval). Cmax concentrations of isoflurane were 

evaluated at 0-25 mg/kg (5 mg/kg interval). Concentrations 
of isoflurane (Cmax) were determined by High Performance 
Liquid Chromatography as described previously (19).

Cell culture. Hepatic carcinoma cells were isolated from patients 
with hepatic carcinoma and were cultured in Dulbecco's modi-
fied Eagle's medium (DMEM; Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) supplemented with 5% fetal bovine 
serum (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA). Tumor cells were cultured at 37˚C in a humidified atmo-
sphere containing 5% CO2. Cells were treated with isoflurane 
(2 mg/ml) and/or PI3K inhibitor (2 mg/ml) for 12 h at 37˚C for 
further analysis.

MTT assay. Hepatic carcinoma cells (1x103 cells/well) were 
incubated in 96-well plates for 72 h at 37˚C in triplicate. Cells 
were then treated with isoflurane (2 mg/ml) or isoflurane 
(2 mg/ml) for 4� h at 37˚C. Subsequently, 20 µl MTT solution 
(5 mg/ml) was added to the cells and the plates were incubated 
for 2 h at 37˚C. The medium was then removed and 100 µl 
dimethyl sulfoxide was added to the wells to solubilize the 
crystals. Absorbance was measured using an ELISA reader at 
a wavelength of 450 nm.

Cell viability assay. Hepatic carcinoma cells (1x103 cells/well) 
were seeded in 96-well plates and cultured for 12 h at 37˚C. 
Cells were then treated with isoflurane (2 mg/ml) or isoflu-
rane (2 mg/ml) for 4� h at 37˚C. The CCK‑� detection kit 
(Sigma‑Aldrich; Merck KGaA) was used to measure cell 
viability according to the manufacturer's instructions.

RNA isolation and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
extracted from hepatic carcinoma cells using RNAeasy Mini 
kit (Qiagen, Inc., Gaithersburg, MD, USA). mRNA expres-
sion levels were measured by RT-qPCR using an RT-qPCR 
kit (A15300; Thermo Fisher Scientific, Inc.). All the forward 
and reverse primers were synthesized by Invitrogen (Thermo 
Fisher Scientific, Inc., Table I). Thermocycling conditions 
included 45 amplification cycles, denaturation at 95˚C for 
45 sec, primer annealing at 62.5˚C for 30 sec with touchdown 
to 54˚C for 45 sec and applicant extension at 72˚C for 60 sec. 
The relative mRNA expression levels of B‑cell lymphoma 2 
(Bcl‑2), Bcl‑2‑associated X protein (Bax), caspase‑3 and 
caspase-8 were calculated according to the 2-ΔΔCq method (20). 
The results were analyzed in triplicate according to the 2-ΔΔCq 

method, and were normalized to β-actin.

Western blot analysis. Hepatic carcinoma cells (1x105 cells/well) 
were seeded in 6-well plates and cultured for 12 h at 37˚C. 
Cells were then treated with isoflurane (2 mg/ml) or isoflurane 
(2 mg/ml) for 4� h at 37˚C. Hepatic carcinoma cells isolated 
from patients with hepatic cancer were homogenized in lysis 
buffer containing protease inhibitor (P34�0; Sigma‑Aldrich; 
Merck KGaA), and were centrifuged at �,000 x g for 10 min 
at 4˚C. The supernatant was used to analyze the expression 
of target proteins. Protein concentration was measured by 
a BCA protein assay kit (Thermo Fisher Scientific, Inc.). 
Protein samples (20 µg) were resolved by 15% SDS‑PAGE 
and then transferred onto polyvinylidene fluoride membranes 
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(EMD Millipore, Billerica, MA, USA). For western blot-
ting, primary mouse anti-human antibodies against p65 
(ab16502; 1:2,000), PI3K and (ab40776; 1:2,000), AKT 
(ab��05; 1:1,000), tumor necrosis factor (TNF)‑α (ab6671; 
1:2,000), IL‑2 (cat. no. ab923�1; 1:2,000), IκB kinase (IKK)‑β 
(ab7547; 1:2,000), NF‑κB inhibitor α (IκBα; ab13347�; 
1:2,000), pAKT (ab3�449; 1:12,000) and β-actin (ab8827; 
1:2,000; all from Abcam, Cambridge, UK) were added to the 
membranes after blocking with 5% skimmed milk for 2 h 
at 37˚C. Following washing three times with PBS, membranes 
were incubated with secondary rabbit anti-mouse antibodies 
(PV‑6001; 1:2,000; OriGene Technologies, Inc., Beijing, 
China) for 2 h at 37˚C, in order to detect target proteins. The 
results were visualized using a chemiluminescence detection 
system (GE Healthcare Life Sciences, Little Chalfont, UK) 
according to the manufacturer's protocol.

Cells migration and invasion assays. Hepatic carcinoma 
cells were cultured in DMEM for 48 h at 37˚C. Cells were 
suspended at a density of 1x105 in 500 µl serum-free DMEM. 
Hepatic carcinoma cells were then plated in the upper cham-
bers of a chamber inserts (BD Biosciences, San Jose, CA, 
USA) with only DMEM and DMEM with 5% FBS in the 
lower chambers according to the manufacturer's protocol. In 
addition, hepatic carcinoma cells (1x106) were incubated with 
isoflurane (2 mg/kg) or PBS (2 mg/kg) for 72 h at 37˚C in a 
Matrigel‑coated membrane (BD Biosciences). The cells were 
fixed and stained for 30 min in a 0.1% crystal violet solution 
in PBS. The tumor cell invasion and migration was counted 
in at least three random fields/membrane, by light microscopy 
(Olympus Corporation, Tokyo, Japan) at magnification, x40.

Pain assessment. To determine the efficacy of isoflurane for 
postoperative pain remission in patients (the same patients 
used for cell collection) with hepatic carcinoma who had 
undergone tumor resection, general appearance parameter 
(GAP) scores were used to calculate the pain score 4 h post 
operation. GAP scoring was conducted according to previously 
published parameters regarding posture, activity and breathing 
pattern (21).

Apoptosis assay. TUNEL assays were used to analyze the 
apoptotic rate of hepatic carcinoma cells from patients with 
hepatic carcinoma who had undergone tumor resection 

following pretreatment with isoflurane. The TUNEL assay 
was performed according to a previous study (22).

NF‑κB activity. Hepatic carcinoma cells were cultured and 
treated with isoflurane (2 mg/kg) or PBS (2 mg/kg) for 12 h 
at 37˚C. Subsequently, NF‑κB activity was analyzed according 
a method described in a previous study (23).

Statistical analysis. All data are presented as the 
mean ± standard error of the mean. Unpaired data were 
analyzed by Student's t-test. Data were analyzed using 
GraphPad Prism version 5.0 software (GraphPad Software, 
Inc., La Jolla, CA, USA). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Analysis of the efficacy of isoflurane on pain remission and 
biochemical indexes in patients with hepatic carcinoma. 
In order to analyze the anesthetic effects of isoflurane, 
156 patients with hepatic carcinoma were recruited, who 
had undergone tumor resection following pretreatment with 
isoflurane. As presented in Fig. 1A, pretreatment with isoflu-
rane significantly attenuated pain in patients following tumor 
resection compared with in patients pretreated with propofol. 
Heart rate and mean blood pressure of patients were recorded 
from baseline to the 24-h anesthesia (24 h; Fig. 1B and C). 
Pretreatment with isoflurane reduced heart rate and mean arte-
rial blood pressure in patients that underwent tumor resection. 
Measurement of biochemical indexes indicated that isoflurane 
pretreatment decreased creatinine and blood urea nitrogen 
levels in patients prior to anesthesia and at 24 h after anesthesia 
(Fig. 1D and E). Taken together, these findings suggested that 
pretreatment with isoflurane may efficiently attenuate pain 
remission for patients undergoing tumor resection.

Effects of isoflurane on proliferation, growth, migration and 
invasion of hepatic carcinoma cells. The present study inves-
tigated the efficacy of pretreatment of isoflurane on hepatic 
tumor cells. The results demonstrated that isoflurane signifi-
cantly inhibited growth of hepatic carcinoma cells isolated 
from patients with cancer that had undergone tumor resec-
tion compared with propofol (Fig. 2A). Viability of hepatic 
carcinoma cells was also decreased following treatment with 

Table I. Sequences of primers used in the present study.

 Sequence
 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gene name Forward Reverse

Bax 5'‑TGGCAGCTGACATGTTTTCTGAC‑3' 5'‑TCACCCAACCACCCTGGTCTT‑3'
Bcl‑2 5'‑CGTCATAACTAAAGACACCCC‑3' 5'‑TTCATCTCCAGTATCCGACT‑3'
Caspase‑3 5'‑ATGGAGAACAACAAAACCTCAGT‑3' 5'‑TTGCTCCCATGTATGGTCTTTAC‑3'
Caspase‑� 5'‑CACTAGAAAGGAGGAGATGGAAAG‑3' 5'‑CTATCCTGTTCTCTTGGAGAGTCC‑3'
β‑actin 5'‑ACGGTCAGGTCATCACTATCG‑3' 5'‑GGCATAGAGGTCTTTACGGATG‑3'

Bax, Bcl‑2‑associated X protein; Bcl‑2, B cell lymphoma‑2.
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Figure 2. Effects of isoflurane on growth and aggressiveness of hepatic carcinoma cells. (A) Growth, (B) viability, (C) migration and (D) invasion of 
hepatic carcinoma cells from patients that underwent tumor resection following pretreatment with isoflurane (magnification, x40). Data are presented as the 
mean ± standard error of the mean of three independent experiments. **P<0.01 vs. the control group.

Figure 1. Effects of isoflurane on pain remission and biochemical indexes in patients with hepatic carcinoma. (A) Pain remission, (B) heart rate and (C) mean 
blood pressure of patients that underwent tumor resection following pretreatment with isoflurane. (D and E) Cr and BuN levels of patients during the periopera-
tive period. Data are presented as the mean ± standard error of the mean of three independent experiments. *P<0.05, **P<0.01 vs. the control group. BuN, blood 
urea nitrogen; Cr, creatinine.
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isoflurane compared with propofol (Fig. 2B). The results of 
migration and invasion assays demonstrated that the metastatic 
potential of hepatic carcinoma cells was reduced following 
isoflurane pretreatment compared with propofol (Fig. 2C 
and D). These observations suggested that isoflurane may 
inhibit growth, migration and invasion of hepatic carcinoma 
cells.

Effects of isoflurane on apoptosis and the expression levels 
of apoptotic genes in hepatic carcinoma cells. In order to 
investigate the anti‑apoptotic effects of isoflurane on hepatic 
carcinoma cells, the apoptosis and survival rate of tumor 
cells isolated from patients were analyzed. As presented 
in Fig. 3A, isoflurane pretreatment increased the apoptosis 
of hepatic carcinoma cells. In addition, the apoptotic rate 
of hepatic carcinoma cells was increased in response to the 
anticancer chemotherapeutic agent Taxol, as determined by 
TUNEL assay (Fig. 3B). In addition, the expression levels of 
Bcl‑2, Bax, caspase‑3 and caspase‑� were detected in hepatic 
carcinoma cells. Data demonstrated that the mRNA expres-
sion levels of Bcl‑2 and Bax were downregulated in hepatic 
carcinoma cells following isoflurane treatment compared 
with control (Fig. 3C) Furthermore, the mRNA expression 
levels of caspase‑3 and caspase‑� were upregulated in hepatic 
carcinoma cells following treatment with isoflurane compared 
with control (Fig. 3D). Collectively, these results indicated 
that isoflurane may decrease the survival rate and promote 

the apoptosis of hepatic carcinoma cells isolated from patients 
with hepatic carcinoma.

Isoflurane regulates aggressiveness of hepatic carcinoma 
cells via the PI3K/AKT signaling pathway. To investigate 
the molecular mechanism underlying isoflurane-mediated 
inhibition of aggressiveness of hepatic carcinoma cells, 
the PI3K/AKT signaling pathway was analyzed in hepatic 
carcinoma cells. The results demonstrated that the expression 
levels of PI3K and AKT were decreased in isoflurane‑treated 
hepatic carcinoma cells compared with in propofol-treated 
cells (Fig. 4A). In addition, phosphorylation levels of AKT 
were downregulated in hepatic carcinoma cells following 
pretreatment with isof lurane compared with propofol 
(Fig. 4B). Furthermore, treatment with PI3KIR abolished 
isoflurane-induced apoptosis of hepatic carcinoma cells 
compared with propofol (Fig. 4C). Furthermore, PI3KIR 
treatment abolished Taxol-inhibited survival of hepatic 
carcinoma cells compared with propofol (Fig. 4D). Taken 
together, these results suggested that isof lurane may 
significantly regulate growth and apoptosis of hepatic 
carcinoma cells via the PI3K/AKT signaling pathway.

Isof lurane inhibits migration and invasion via the 
PI3K/AKT‑mediated NF‑κB signaling pathway. The present 
study further analyzed the expression levels of inflammatory 
factors and NF-κB in hepatic carcinoma cells. Clinical data 

Figure 3. Effects of isoflurane on apoptosis of hepatic carcinoma cells isolated from patients with cancer. (A) Apoptosis of hepatic carcinoma cells from 
patients that underwent tumor resection following pretreatment with isoflurane (magnification, x40). (B) Apoptotic resistance of hepatic carcinoma cells 
treated with the anticancer chemotherapeutic agent Taxol. Expression levels of (C) Bcl‑2 and Bax, and (D) caspase‑3 and caspase‑� in hepatic carcinoma cells 
from patients that underwent tumor resection following pretreatment with isoflurane. Data are presented as the mean ± standard error of the mean of three 
independent experiments. **P<0.01 vs. the control group. Bax, Bcl‑2‑associated X protein; Bcl‑2, B cell lymphoma‑2.
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revealed that NF-κB activity was downregulated in hepatic 
carcinoma cells isolated from patients that underwent 
isoflurane pretreatment compared with propofol (Fig. 5A). 
NF-κB (p65, IKK‑β and IκBα) expression levels were also 
downregulated in hepatic carcinoma cells isolated from 
clinical patients with isoflurane pretreatment compared 
with propofol (Fig. 5B). In addition, PI3KIR downregulated 
NF-κB activity in hepatic carcinoma cells in vitro. PI3KIR 
also suppressed isoflurane‑inhibited migration and invasion 
of hepatic carcinoma cells in vitro (Fig. 5D). Taken together, 
these results suggested that isoflurane may markedly inhibit 
migration and invasion via the PI3K/AKT‑mediated NF‑κB 
signaling pathway.

Pharmacodynamics of isoflurane in patients with hepatic 
carcinoma during the perioperative period. Inflammatory 
factor levels and pharmacodynamics of isoflurane were 
investigated in patients with hepatic carcinoma during the 
perioperative period. The expression levels of the inflam-
matory factors, TNF-α and IL-2, were upregulated in the 
serum of patients with hepatic carcinoma pretreated with 
isoflurane during the perioperative period (Fig. 6A and B). 
Isoflurane was rapidly absorbed at a clinical dose (10 mg/kg) 
within 30 min. In addition, serum concentrations of isoflu-
rane reached a maximum 45 min after injection (Fig. 6C). 
Furthermore, Cmax concentrations of isoflurane (5‑25 mg/kg) 

increased linearly with increasing dose (Fig. 6D). There was 
no drug accumulation after patients received 10 mg/kg body 
weight and it was observed that Cmax values were at a steady 
state following tumor resection. Collectively, these results 
suggested that isoflurane pretreatment can be preserved at an 
efficient concentration and may increase the expression levels 
of TNF-α and IL-2 in patients with hepatic carcinoma during 
the perioperative period.

Discussion

Previous studies have indicated that hepatic carcinoma is 
associated with genetically complex, multifactorial and 
heterogeneous tumors (24,25). Although various novel cancer 
therapeutic strategies have been proposed and have presented 
potential curative effects for the treatment of patients with 
hepatic carcinoma, tumor resection is still the most common 
treatment (26,27). In order to attenuate the pain of patients 
during tumor resection, anesthesia is used. In the present 
study, the anesthetic effects of isoflurane were investigated 
on patients with hepatic carcinoma during the perioperative 
period. In addition, the biological effects of isoflurane on 
hepatic carcinoma were determined in patients with hepatic 
carcinoma who had undergone tumor resection. The molecular 
mechanism underlying isoflurane‑induced apoptosis of hepatic 
carcinoma cells isolated from patients with hepatic carcinoma 

Figure 4. Isoflurane inhibits aggressiveness of hepatic carcinoma cells via the PI3K/AKT signaling pathway. (A) Expression levels of PI3K and AKT in 
isoflurane‑treated hepatic carcinoma cells. (B) Phosphorylation levels of AKT in isoflurane‑treated hepatic carcinoma cells. (C) Effects of PI3KIR on 
isoflurane‑promoted apoptosis of hepatic carcinoma cells. Control, non‑treated cells. (D) Effects of PI3KIR on survival of hepatic carcinoma cells. Control, 
non-treated cells. Data are presented as the mean ± standard error of the mean of three independent experiments. **P<0.01 vs. the control group. AKT, protein 
kinase B; pAKT, phosphorylated‑AKT; PI3K, phosphoinositide 3‑kinase; PI3KIR, PI3K inhibitor.
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Figure 6. Pharmacodynamics of isoflurane in patients with hepatic carcinoma during the perioperative period. Expression levels of (A) TNF‑α and (B) IL‑2 in 
patients that underwent tumor resection following pretreatment with isoflurane. (C) Serum concentration of isoflurane in patients with hepatic carcinoma that 
underwent tumor resection following pretreatment with isoflurane. (D) Cmax concentrations of isoflurane (0‑0.40 mg/kg) in patients with hepatic carcinoma 
that underwent tumor resection following pretreatment with isoflurane. Data are presented as the mean ± standard error of the mean of three independent 
experiments. **P<0.01 vs. the control group. IL‑2, interleukin‑2; TNF‑α, tumor necrosis factor-α.

Figure 5. Isoflurane regulates aggressiveness via the PI3K/protein kinase B‑mediated NF‑κB signaling pathway. (A) NF‑κB activity in isoflurane‑pretreated 
hepatic carcinoma cells. (B) Expression levels of p65, IKK‑β and IκBα in isoflurane‑pretreated hepatic carcinoma cells. (C) Effects of PI3KIR on NF‑κB 
activity in hepatic carcinoma cells. (D) Effects of PI3KIR on migration and invasion of hepatic carcinoma cells. Control, non‑treated cells. Data are presented 
as the mean ± standard error of the mean of three independent experiments. **P<0.01 vs. the control group. IκBα, NF-κB inhibitor α; IKK‑β, IκB kinase‑β; 
NF-κB, nuclear factor‑κB; PI3K, phosphoinositide 3‑kinase; PI3KIR, PI3K inhibitor.
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following surgery was also analyzed. The results indicated 
that isoflurane not only significantly attenuated postoperative 
pain, but also inhibited hepatic carcinoma growth and aggres-
siveness, and promoted apoptosis via the PI3K/AKT‑mediated 
NF-κB signaling pathway.

Clinically, isoflurane is one of the most commonly used 
volatile anesthetic agents, which is used extensively in surgical 
procedures. However, the role of isoflurane in tumor suppression 
is seldom reported. In the present study, the clinical outcomes 
suggested that isoflurane may exert inhibitory effects on hepatic 
carcinoma cells. A previous study indicated that isoflurane can 
increase the expression levels of the proinflammatory cytokine 
IL-6 in serum from patients with neuroglioma, resulting in 
anticancer potential via the NF-κB signaling pathway. In addi‑ signaling pathway. In addi-
tion, isoflurane suppresses prostate cancer cell malignancy via 
modulation of the hypoxia-inducible factor-1α signaling pathway 
to regulate cancer recurrence (2�). However, Luo et al (29) 
concluded that isoflurane can promote the malignant potential 
of ovarian cancer cells through the upregulation of markers 
associated with the cell cycle, growth, aggressiveness and angio-
genesis. Furthermore, isoflurane has the potential to induce 
cancer cell apoptosis and inhibit apoptotic resistance (30). The 
results of the present study confirmed that isoflurane serves an 
inhibitory role in the growth, migration and invasion of hepatic 
carcinoma cells. In addition, it was suggested that isoflurane 
regulates aggressiveness of hepatic carcinoma cells via the 
PI3K/AKT‑mediated NF‑κB signaling pathway.

Previous studies have reported the association between 
the PI3K/AKT signaling pathway and progression of human 
cancer (31‑33). Kang et al (34) suggested that the expression 
of proteins associated with the PI3K/AKT pathway may 
be considered indictors of the hepatic‑metastasis risk of 
colorectal cancer. In addition, the effects of interferon-α on 
hepatic cancer via the PI3K/AKT signaling pathway have been 
identified and clearly elaborated in a previous mechanistic 
study (35). Furthermore, PI3K/AKT‑mediated cancer cell 
growth and aggression via the NF-κB signaling pathway has 
been investigated in breast and gastric cancer cells (36,37). 
Li et al (3�) also analyzed the association between invasion 
of cancer cells and the PI3K/AKT/NF‑κB signaling pathway. 
In the present study, the effects of isoflurane were investigated 
on the PI3K/AKT and NF‑κB signaling pathways. The results 
indicated that isoflurane inhibited growth and aggressive-
ness of hepatic carcinoma cells through downregulation of 
PI3K/AKT‑induced NF‑κB signaling pathways. These findings 
provide novel evidence and a potential molecular mechanism 
underlying the anticancer effects of isoflurane.

Notably, the present findings demonstrated that apoptosis 
of hepatic carcinoma cells was enhanced by isoflurane. 
Clinically, apoptosis of tumors cells serves a crucial role in 
tumor suppression and the treatment of human cancer (39,40). 
The present study demonstrated that the mRNA expres-
sion levels of caspase‑3 and caspase‑� were upregulated in 
hepatic carcinoma cells treated with isoflurane. Caspase‑3 
and caspase-8 upregulation contributes to apoptosis of hepatic 
carcinoma cells, and decreases apoptotic resistance (41,42). In 
addition, a previous study suggested that apoptosis and cell 
proliferation are correlated with Bcl‑2 expression in human 
hepatocellular carcinoma (43). Bax‑induced apoptosis, has 
been investigated in numerous tumor cells (44). In the present 

study, isoflurane was revealed to reduce apoptotic resistance 
via the upregulation of caspase‑3 and caspase‑� expression, 
and the downregulation of Bcl‑2 and Bax expression. The 
downregulation of Bax induced by isoflurane should be 
investigated in future studies.

In conclusion, the present study identified the benefits of 
isoflurane pretreatment for patients with hepatic carcinoma. 
This study indicated that the inhibitory effects of isoflurane 
on hepatic cancer aggressiveness may be mediated by regula-
tion of the PI3K/AKT‑induced NF‑κB signaling pathway. In 
addition, the results suggested that isoflurane may suppress 
apoptotic resistance via activation of caspase‑3 and caspase‑�, 
and suppression of Bcl‑2 and Bax. These findings indicated 
that isoflurane may be regarded as a preferable anesthetic and 
additional antitumor agent for the clinical treatment of patients 
with hepatic carcinoma.
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