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The neurovascular unit in leukodystrophies: 
towards solving the puzzle
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Abstract 

The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, 
glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood–
brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood 
from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer’s 
disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regard-
ing the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. 
Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models 
that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent 
stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologi-
cally relevant human context and safeguarding the genetic background of the patient. This review aims to provide 
further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can 
be used to dissect neurovascular pathophysiology in these diseases.

Keyword: Neurovascular unit, Blood–brain barrier, Leukodystrophies, In vitro models, Induced pluripotent stem cells, 
Endothelium, Astrocyte, Pericyte, Microglia

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The neurovascular unit (NVU) is a complex dynamic 
structure present in the microvasculature of the central 
nervous system (CNS). It is comprised of brain endothe-
lial cells (BECs), pericytes, astrocytes, microglia, and 
neurons. Its proper function is key for the maintenance 
of brain homeostasis by separating the blood from the 
CNS [1]. Also, the NVU is responsible for neurovascu-
lar coupling (NVC), which is the mechanism that adjusts 
local blood supply to neuronal demand through changes 
in vascular intraluminal diameter [1].

At the capillaries, the first line of defence is a layer of 
specialized polarized BECs, which are sealed together 
by protein complexes that form adherens junctions (AJs) 
comprised of VE-Cadherin, and tight junctions (TJs), 
formed by claudins, occludin and other cytoplasmic 
plaque proteins. This endothelial structure is referred to 
as the blood–brain barrier (BBB). BECs lack fenestrae 
and have low rates of transcytosis, thereby disabling tran-
scellular and paracellular routing of molecules into the 
CNS. Metabolites, nutrients, and  (large) essential mol-
ecules are actively transported across the BECs into the 
CNS by specific polarized transporters. In turn, toxins, 
xenobiotics, and waste products are actively removed 
from the CNS by another class of polarized transporters, 
i.e. ATP binding cassette (ABC) transporters. Addition-
ally, BECs physical barrier properties regulate infiltration 
of peripheral immune cells into the CNS to modulate the 
adaptive neuroinflammatory response [2–9].
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The second cell type involved in the regulation of the 
NVU is the pericyte. These cells share the inner base-
ment membrane with BECs and are directly connected to 
the endothelial cells via peg-socket junctions, which are 
composed of connexins and N-cadherin [10]. Via these 
peg-socket junctions, there is a direct exchange of ions, 
metabolites, and other small molecules. Another impor-
tant function of pericytes is the regulation of the vessel 
diameter, which in its turn regulates the cerebral blood 
flow (CBF) [11, 12]. Subsequently, the CBF rate can influ-
ence the rate of exchange of molecules crossing the BBB.

The next cellular component of the NVU is the astro-
cyte. Within the CNS, astrocytes have multiple functions, 
including maintenance of ion-water homeostasis, support 
of myelination, regulation of glutamate transport and 
synthesis, enabling synaptic plasticity, control of immune 
reactions, and promotion of neurite outgrowth [13–16]. 
At the NVU, perivascular astrocytes are connected with 
their endfeet to the outer (glial) basement membrane. 
These endfeet are specialized and polarized structures 
containing orthogonal arrays of intramembranous parti-
cles (OAPs), which display clusters of the selective water 
channel aquaporin-4 (AQP4) and the ATP-sensitive 
potassium channel Kir 4.1. [17]. Under physiological con-
ditions, AQP4 is mainly localized at astrocyte endfeet, 
regulating water uptake and clearance of the brain paren-
chyma [16]. Dystrophin-associated proteins, e.g. dystro-
glycans, and extracellular matrix (ECM) molecules, i.e. 
laminin and agrin, are crucial in anchoring AQP4 at the 
astrocytic endfeet [18–22]. Upon traumatic brain injury 
and/or oedema, astrocytes become reactive and redis-
tribute AQP4 away from astrocytic endfeet [23]. These 
AQP4 water channels facilitate ion-water homeostasis at 
the NVU [2, 23–25]. Furthermore, astrocyte-derived sol-
uble factors control the TJ and transporter expression in 
BECs and therefore regulate NVU function [24].

Additionally, the basement membrane is a highly 
organized structure within the NVU. It is comprised 
of ECM molecules as integrins, laminins, collagen and 
fibronectin. These are expressed and secreted by the vari-
ous NVU cellular compartments dependent on the cues 
from the microenvironment [26]. Finally, microglia also 
participate in the NVU [27, 28]. In the developing CNS, 
microglia regulate the formation of CNS vasculature and 
the control the neuronal progenitor cell niche [29–31].

Not only is the NVU is a complex structure by itself, 
but it is also heterogeneous throughout brain regions. 
Each component of the NVU itself has a unique tran-
scriptome, proteome and epigenetic profile depending 
on the developmental origin and brain region where it 
is situated [32–37]. Another important aspect regard-
ing the heterogeneity throughout the human brain is 
that the capillary density is higher in grey matter (GM) 

compared to white matter (WM). This finding correlates 
with energy demand [38].

A large part of the human brain consists of WM and 
is responsible for establishing the neuroconnectivity 
that underlies the highly complex and unique behav-
ioral capacities of humans [39, 40]. The WM comprises 
myelinated axons, diverse types of glial cells, and blood 
vessels. The WM is selectively affected in the class of leu-
kodystrophies. Leukodystrophies are characterized by 
primarily affected WM regardless of the molecular pro-
cesses involved and the disease course [41]. Before this 
new definition, leukodystrophies were seen as progres-
sive WM disorders caused by a genetic defect, where 
myelin was the primary affected structure. The myelin 
defect observed was either a direct effect on myelin or 
indirect on oligodendrocytes, the myelin forming cells 
[42]. Later, magnetic resonance imaging (MRI) pattern 
recognition paved the way for stratifying patients and 
subsequent genetic explorations [43]. In the following 
decades, sequencing techniques also evolved, pathologi-
cal data became more available and new disease models 
emerged. These scientific developments have given an 
enormous boost to the field of leukodystrophies. Usu-
ally, the clinical course of leukodystrophies is progressive, 
and often eventually fatal. So far only symptomatic treat-
ments are available. Therefore, unravelling the underlying 
mechanisms of these diseases is a priority. As mentioned, 
the WM comprises different cell types that create a com-
plex network of signalling in synergy, yet each leukodys-
trophy is caused by a different genetic deficit that results 
in a distinct WM pathology. Notably, the genetic deficits 
underlying these diseases are not restricted to myelin- or 
oligodendrocyte-specific genes. Recent next-generation 
sequencing studies combined with MRI pattern recogni-
tion have shown that a predominant dysfunction of cell 
types other than oligodendrocytes may drive the WM 
pathology in leukodystrophies. To distinguish the under-
lying mechanisms, it is essential to identify distinct path-
ological hallmarks and the specific cell types affected in 
this heterogeneous group of diseases. Therefore, a new 
classification system for leukodystrophies has recently 
been proposed based on cellular pathology and patho-
genic mechanisms [44].

Strikingly, some cellular components that are primar-
ily affected, such as astrocytes, are part of the NVU. The 
function of the NVU, however, has been overlooked in 
these diseases. The problem in the diagnosis of leukod-
ystrophies is that MRI with contrast agents is not always 
common practice in the clinic. Additionally, leakage of 
contrast agents in MR imaging only highlights gross 
abnormalities of the BBB. Especially when looking at 
heterogeneous diseases, such as leukodystrophies, cer-
tain features, such as BBB leakage of smaller molecules/
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ions and structural changes in the brain vasculature, 
can be overlooked. We recent showed that there is NVU 
involvement in different leukodystrophies regardless of 
MRI contrast enhancement or the main cellular compo-
nent involved in the disease [45]. Furthermore, the tools 
to study these rare diseases are limited and rely mostly on 
clinical studies and post-mortem brain tissue. Nowadays, 
alternative techniques are available with the emerging 
field of human induced pluripotent stem cells (hiPSCs). 
Using hiPSCs, complex human neural cell models can 
be built, such as organs-on-chips and organoids, which 
better recapitulate the in vivo biology compared to other 
disease models.

The first aim of this review is to outline the implications 
for the dysfunction of NVU components in leukodystro-
phies following the leukodystrophy classification system 
and how these could be important for disease mecha-
nisms. The second aim is to address the current tools to 
study NVU mechanisms in leukodystrophies and outline 
future directions.

Leukodystrophies
Leukodystrophies are classified into several categories 
depending on the main cellular mechanism of WM injury 
and other pathological mechanisms that contribute to 
the disease progression [44]. In this section, we describe 
the different leukodystrophy classes, and the key compo-
nents driving the pathology, and we review the knowl-
edge on how the NVU can contribute to disease. The 
common denominator in leukodystrophies is selectively 
affected WM, ranging from lack of myelin to complete 
WM atrophy. Clinically and pathologically, leukodystro-
phies are highly heterogeneous, therefore the main MRI 
characteristics, clinical phenotype, and pathological hall-
marks are summarized in Table 1.

Hypomyelinating leukodystrophies are characterized 
by an impaired developmental myelination in the CNS 
and possibly also the peripheral nervous system (PNS). 
Leukodystrophies in this category are both clinically and 
genetically heterogeneous, yet show similarities [46]. The 
prototypical hypomyelinating leukodystrophy is Peli-
zaeus-Merzbacher disease (PMD). PMD is an X-linked 
disorder caused by changes in PLP1, encoding prote-
olipid protein 1 (PLP1) and the alternative spliced variant 
DM20 [47]. PLP1 and DM20 are solely expressed by oli-
godendrocytes in the CNS and Schwann cells in the PNS 
and are crucial components of the myelin sheath [48]. 
Therefore, a disruption in PLP1/DM20 has detrimen-
tal effects on the structure and functioning of myelin. 
Depending on the type of PLP1 mutation, histopathol-
ogy varies, yet some features overlap. There is a signifi-
cant decrease in the number of mature oligodendrocytes, 
resulting in a lack of myelin. Altered levels of PLP1 

in PMD induce the activation of the unfolded protein 
response (UPR), which causes apoptosis of oligodendro-
cytes and neurons [49–51]. The UPR in oligodendro-
cytes, however, may not be the only neurodegenerative 
mechanism underlying PMD. Increased astrogliosis and 
microgliosis have also been observed in brain tissue from 
patients with different PMD mutations [52]. An astro-
cytic pathogenetic role is supported by AQP4 redistribu-
tion from the perivascular endfeet [45]. Increased levels 
of AQP4 and its redistribution facilitate oedema forma-
tion, as a result of compromised ion-water homeostasis 
[53, 54]. Neuroinflammation, marked by activated micro-
glia, may also play an important role in the pathophysi-
ology of PMD. The role of inflammation and the NVU, 
however, has not been further investigated in PMD.

In demyelinating leukodystrophies, the development 
of myelin is supposedly largely unaffected, yet later in life 
loss of myelin (demyelination) occurs. Metachromatic 
leukodystrophy (MLD) is a lysosomal sphingolipid stor-
age disorder inherited in an autosomal recessive man-
ner and caused by genetic mutations in the ARSA gene. 
These result in a deficiency of the enzyme arylsulfatase A 
(ASA), which is responsible for breaking down sulfatides 
in the CNS and PNS. Under normal conditions, sulfatides 
are essential components of myelin, their proper expres-
sion being essential for the differentiation of myelinating 
cells and myelin maintenance. In MLD, accumulation 
of sulfatides is toxic and results in demyelination. MLD 
is classified into late-infantile, juvenile, and adult-onset, 
with disease severity co-varying with age at onset, lev-
els of ASA activity, and type of ARSA mutation [55–58]. 
Microscopy shows demyelination accompanied by accu-
mulation of sulfatides in the glial cells, neurons, and 
macrophages. There is a negative correlation between 
increased demyelination and reactive gliosis in the CNS. 
The involvement of astrocytes has not been investigated 
extensively, however, one study has demonstrated AQP4 
redistribution [45], hinting towards astrocyte dysfunc-
tion. Interestingly, in the perivascular space of especially 
the WM there is accumulation of lipid-laden mac-
rophages, which may release inflammatory mediators 
that can affect the BBB function [58]. The NVU of MLD 
patients, however, has not been investigated to such an 
extent. In other demyelinating neurodegenerative dis-
eases, such as multiple sclerosis (MS), infiltration of leu-
kocytes has detrimental effects on disease progression as 
the neuroinflammatory cascade worsens and leads to fur-
ther neurodegeneration together with further BBB break-
down [59].

Another category of leukodystrophies is characterized 
by myelin vacuolization. In the past years, due to whole-
exome and whole-genome sequencing, the number of 
unclassified leukodystrophies has decreased, resulting in 
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the discovery of a class of leukodystrophies that has defi-
cits in the mitochondrial protein translation [41]. These 
leukodystrophies are mostly mitochondrial diseases with 
leukoencephalopathy caused by different mutations in 
genes related to mitochondrial functioning. Recently, bi-
allelic mutations in LARS2 and KARS, which encode for 
aminoacyl tRNA synthases (aaRSs), were identified as a 
cause of mitochondrial leukodystrophy [41]. Post-mor-
tem pathological examination of a LARS2-related leu-
kodystrophy patient showed loss of myelin, with U-fibres 
relatively spared. Observation of reactive astrocytes was 
mostly restricted to the blood vessels, yet reactive glio-
sis was relatively scarce compared to the degree of WM 
damage [60]. Pathological investigation of the NVU 
revealed redistribution of the TJ protein zona occludens 
1 (ZO-1) and of AQP4 [45], demonstrating respectively 
BEC and astrocytic dysfunction.

Astrocytophathies are leukodystrophies caused by 
mutations in astrocyte-specific genes or in which astro-
cytes significantly contribute to the disease mechanisms. 
Alexander disease (AxD) is the prototypic astrocytopa-
thy. It is due to mutations in GFAP, which is a cytoskel-
etal intermediate filament protein that in the CNS is 
specifically expressed in astrocytes [61–63]. Gain-of-
function mutations in GFAP cause overexpression of 
GFAP [64]. Overexpression of GFAP in AxD astrocytes 
results in the formation of Rosenthal fibres (RFs), which 
are intracellular protein aggregates that also contain heat 
shock proteins [65]. RFs cause different cellular dysfunc-
tions, including activation of cellular stress pathways [66], 
inhibition of proteasome activity [67], and changes in the 
regulation of autophagy [68, 69]. Not only are the RFs 
observed in cell bodies, but also in the endfeet and pro-
cesses of astrocytes, in subpial zones, and around blood 
vessels where they correlate with BBB dysfunction and 
contrast enhancement on MRI. A recent study has shown 
that in AxD, there is astrocytic redistribution of AQP4 
and low expression of α-dystroglycan around affected 
blood vessels [45]. This astrocytic endfeet pathology 
could mechanically contribute to NVU dysfunction. 
Besides the formation of RFs, morphology of WM astro-
cytes is also altered and the astrocytes are enlarged. Also, 
redistribution of ZO-1 indicates that BECs are dysfunc-
tional. Whether this is a direct consequence of astrocytic 
dysfunction is still unclear [45]. Neuroinflammation con-
ceivably also plays an important role in the pathology of 
AxD as perivascular lymphocytic infiltrates have been 
reported [70–73]. In fact, downstream effectors of the 
NF-kB inflammatory signalling pathway are significantly 
upregulated and accompanied by an amount of acti-
vated microglia and infiltrated monocyte-derived mac-
rophages in the brains of an AxD mouse model. The same 
study also confirmed the activation of microglia and 

macrophages in the brains of AxD patients together with 
perivascular and intraparenchymal infiltrating T-cells 
[71]. Yet, the exact role of T-cell infiltration and neuro-
inflammation in AxD remains an enigma. As mentioned, 
perivascular accumulation of RFs is a hallmark of AxD 
pathology, therefore neuroinflammation could be caused 
by a disruption of the NVU.

Aicardi-Goutières syndrome (AGS) is an autoim-
mune astrocytopathy characterized by overproduc-
tion of interferon alpha (IFN-α), a cytokine activator of 
the innate immune response. AGS is caused by loss of 
function mutations in seven genes, including TREX1, 
RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, 
ADAR1 and IFIH1/MDA, the inheritance pattern of 
which is mostly autosomal recessive. Mutations in all 
these genes result in upregulation of IFN-α [74, 75]. 
Astrocytes are the main cells that produce IFN-α in 
the CNS and examination of post-mortem brains from 
AGS patients revealed co-localization of IFN-α and 
C-X-C motif ligand (CXCL) 10 with GFAP [76]. A study 
using an in  vitro setup with human neural stem cell-
derived astrocytes showed that chronic IFN-α expo-
sure reduces cell proliferation while it simultaneously 
promotes astrocyte reactivity. Correspondingly, genes 
that are important in the maintenance of WM integrity 
were altered after exposure to IFN-α [77]. A transgenic 
mouse model that solely produces IFN-α in astrocytes 
shows a similar clinical phenotype as AGS patients, 
including calcium depositions in the basal ganglia, neu-
rodegeneration, seizures, and encephalopathy [78, 79]. 
Not only does the release of IFN-α in the CNS play an 
important role in AGS, but also the peripheral inflam-
mation can cross-talk with the CNS. One study indi-
cated an increase of dendritic cells (DCs) in the CSF 
of AGS patients, more specifically plasmacytoid DCs, 
which are known to produce large amounts of IFN-α 
compared to other cell types [80]. Moreover, neuropa-
thology revealed infiltrating T-cells and blood vessel 
calcifications. More specifically, microangiopathy in the 
AGS cerebral WM, cerebellum and striatum is accom-
panied by a thickened tunica media and adventitia in 
the arterioles and precapillary vessels. Calcification of 
these cell types can impede vascular constriction and 
therefore impair CBF, which is crucial for brain func-
tioning [81]. Furthermore, astrocytes have redistributed 
AQP4 channels, indicating an alteration in ion-water 
homeostasis, and redistributed ZO-1 proteins, indicat-
ing BEC dysfunction [45]. Both in vivo and in vitro data 
support the notion that astrocytes play a key role in 
the IFN-α signalling and its downstream pathways and 
there is strong evidence for a disrupted NVU and BBB 
in AGS, which could contribute to the pathology.
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Megalencephalic leukoencephalopathy with subcor-
tical cysts (MLC) is an infantile-onset leukodystrophy 
characterized by onset of macrocephaly in early infancy. 
Recessive mutations in the MLC1 and GLIALCAM 
genes, respectively encoding MLC1 and GlialCAM/
MLC2A, cause MLC [82, 83]. Pathological examination 
reveals astrocytosis in the molecular layer of the cortex. 
The amount of myelin within the WM is normal, yet the 
morphology of the myelin is altered by the presence of 
countless vacuoles. Also, the myelin sheaths are abnor-
mally thin. Intracytoplasmic vacuoles are also abundantly 
present in astrocytic endfeet connected to the capillaries. 
The WM exhibits fibrillary astrogliosis and scarce micro-
glia activation [84–87]. MLC1 expression in the CNS is 
restricted to the cell membrane of GM and WM astro-
cytes, ependymal cells, and cerebellar Bergmann glia. In 
astrocytes, MLC1 is specifically localized in the endfeet 
at the NVU and glia limitans. MLC1 is important for the 
regulation of CNS ion-water homeostasis, explaining the 
increased water content in the patient’s brains [83, 88–
90]. A mouse model of MLC revealed that other ion and 
water channels important at the NVU, including Kir4.1, 
CLC-2, and AQP4, are also redistributed or altered in 
expression, indicating that MLC1 regulates the expres-
sion of other proteins at the BBB [91]. Not only a defect 
in MLC1 but also in GLIALCAM can result in MLC. 
GlialCAM is a chaperone protein for MLC1 and colo-
calizes with MLC1 in astrocytes. It is also found in oligo-
dendrocytes and axons. As MLC1 proper localization is 
dependent on GlialCAM, disruption of GlialCAM func-
tioning results in MLC1 dysfunction causing a clinically 
similar phenotype [82, 92]. Interestingly, a recent study 
investigated the expression of MLC1 across diseases 
with a strong neuroinflammatory component: Alzhei-
mer’s disease (AD), MS, and Creutzfeldt-Jacob disease. 
Here MLC1 upregulation was shown across regions with 
strong neuroinflammation and increased astrocytosis. 
Also, the authors demonstrated that MLC1 protein reacts 
to inflammatory signals, in particular IL-1β, through 
downregulation of signalling involved in astrocyte acti-
vation [93]. Considering that these neuroinflammatory 
diseases [93] have a disrupted BBB and that MLC1 locali-
zation is mainly at the vasculature, it is highly likely that 
the BBB and the NVU are also disrupted in MLC. Yet, to 
what extent has to be investigated.

Microgliopathies are leukodystrophies caused by muta-
tions in microglia-specific genes or in which microglia 
significantly contribute to the disease process. In different 
neuroinflammatory conditions, microglia secrete inflam-
matory cytokines that contribute to disease severity. Also, 
they play a crucial role in (re)modelling synaptic circuits, 
myelin maintenance, myelin debris clearance, and neu-
ronal reaction upon injury. Adult-onset leukodystrophy 

with spheroids and pigmented glia (ALSP) is caused by 
mutations in CSF1R encoding colony-stimulating fac-
tor (CSF) 1 receptor [94, 95]. Microscopy reveals WM 
vacuolization and myelin loss. Additionally, there are 
swollen axons and axonal spheroids present in the WM 
lesions. These spheroids are immunopositive for amyloid 
precursor proteins and phosphorylated neurofilaments 
[96]. Microglia depletion is also seen, together with lipid-
laden macrophages and pigmented glia [97–99]. Reac-
tive gliosis is observed in the WM together with AQP4 
redistribution, indicating astrocytic involvement in the 
pathology [45]. CSF1R is a tyrosine kinase receptor cru-
cial for the functioning of microglia. Together with its 
ligands, CSF1 and IL-34, it regulates production, differ-
entiation, activation, and chemotaxis of microglia and 
macrophages [100, 101]. IL-34 is an important controller 
of BBB maintenance and TJ regulation [102], yet whether 
this pathway is disrupted in ALSP is not known. Oxida-
tive stress also plays a role in ALSP, since high levels of 
ceroid and iron are found in the macrophages [103–105]. 
Reactive oxygen species (ROS) indeed induce damage to 
the BBB in the context of other neurodegenerative disor-
ders and thereby worsen the pathology, yet how this pro-
cess is regulated in ALSP is unknown.

Leuko-vasculopathies are characterized by involve-
ment of the small blood vessels. These small blood ves-
sels can be at all levels of the CNS vascular tree from the 
penetrating arteries to the capillary bed. Cerebral small 
vessel diseases (CSVDs) cause neurofunctional loss and 
severe cognitive decline usually later in life. CSVDs display 
a dysfunctional BBB with pericyte degeneration and swell-
ing of the astrocytic endfeet [106–108]. Cerebral autoso-
mal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) is the most common 
CSVD and is caused by mutations in NOTCH3, which 
encodes a transmembrane receptor that is predominantly 
expressed by vascular smooth muscle cells (VSMCs) and 
pericytes [109]. The NOTCH family consists of proteins 
involved in cell cycle regulation, migration, differentia-
tion, proliferation, and synaptic plasticity throughout the 
brain [110]. NOTCH3 signalling is in particular important 
for cell fate specification during embryonic development 
[111] together with several vascular-related processes in 
both development and adulthood [112–114]. Mutations 
of NOTCH3 in CADASIL change the number of cysteine 
residues in the extracellular domain of NOTCH3, which 
then accumulates at the blood vessels. These protein 
aggregates form, together with other proteins and ECM 
components, granular osmiophilic material (GOM) that 
deposits extracellularly in the brain and peripheral organ 
vasculature, occluding the blood vessels [115]. Indeed, 
studies have shown a decreased CBF in both patients and 
animal models accompanied by BBB leakage [116, 117]. 
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Moreover, extensive WM astrocytopathy with AQP4 redis-
tribution is observed together with loss of VSMCsindicat-
ing further NVU involvement in CADASIL [115, 118]. The 
exact underlying mechanism of NOTCH3 dysfunction in 
CADASIL, however, is still under debate, since some stud-
ies using NOTCH3 knockout mice show that GOMs are 
not necessary to develop the disease [119–121]. There-
fore, more innovative models are needed to study the 
pathophysiology.

Cathepsin A-related arteriopathy with strokes and leu-
koencephalopathy (CARASAL) is a recently identified 
adult-onset leukodystrophy caused by a dominant muta-
tion in the CTSA gene encoding for cathepsin A (CathA). 
CathA is expressed in all tissues throughout the mamma-
lian body but is enriched in the endothelium [122]. CathA 
is a lysosomal serine protease that degrades intracellular 
and extracellular substrates and protects β-galactosidase 
and neuraminidase-1 from intralysosomal proteoly-
sis, thereby stabilizing lysosomal activity. CathA is also 
involved in ECM formation and stabilization [123, 124]. 
Axons appear preserved, and loss of myelin, astrogliosis, 
and preservation of oligodendrocyte density are observed 
[125]. At the arteriolar branches throughout the cerebral 
WM and basal nuclei, the vessel walls display asymmetrical 
fibrous thickening and loss of smooth muscle cells accom-
panied by occlusion of the lumen. There is a prominent loss 
of expression of smooth muscle actin (SMA). In some ves-
sels, there is also thickening of the basal lamina [125]. SMA 
is also a marker for pericytes, pointing towards pericyte 
dysfunction in this disease. Pericytes might need SMA to 
contract properly [126–128], thereby regulating the CBF. 
Changes in the CBF rate could induce dysfunction of the 
BBB and decrease the quantity of nutrients entering the 
brain parenchyma [128, 129]. One of the many functions 
of CathA is the degradation of Endothelin-1 (ET-1), a small 
signalling peptide regulating vasoconstriction. ET-1 also 
regulates multiple facets of oligodendrocyte development 
and response to injury [130, 131]. ET-1 is upregulated in 
the WM astrocytes of CARASAL patients and results in 
dysregulation of the developmental programming of oligo-
dendrocyte progenitor cells (OPCs) in the subventricular 
zone (SVZ) [132]. Further astrocytic involvement has been 
shown in a recent study that demonstrates the redistribu-
tion of AQP4 [45]. This indicates that also ion-water home-
ostasis in CARASAL could be disrupted. The exact role of 
CathA dysregulation in the context of NVU functioning, 
however, remains an enigma.

In vitro models to study the NVU contribution 
in physiology and disease
The brain is arguably the most complex organ of the 
human body, and due to that, there is still much to unveil 
about the molecular mechanisms and cellular interac-
tions that occur both in homeostasis and disease. Much 
of what is known about neural development and degener-
ation has been derived from human post-mortem mate-
rial and animal models of neurological diseases, such as 
AD [133], Parkinson’s Disease (PD) [134], and MS [135]. 
Yet, differences in gene expression, signalling pathways, 
protein homology, brain architecture, and neuronal cir-
cuit complexity between animals and humans reduce the 
predictive capacity of in vivo models [136–139]. The ratio 
of WM to GM is also considerably lower in rodents than 
in humans, a feature that naturally hinders the study of 
leukodystrophies in these models [140]. These limitations 
encouraged the development of in  vitro strategies that 
exploit human source material to directly model human 
physiology.

Leukodystrophies have been studied for over a 
150 years, yet the NVU in these diseases has been over-
looked. The first step in the study of leukodystrophies 
is a proper diagnosis. Nowadays, with the help of MR 
pattern recognition, new imaging tools, next-genera-
tion sequencing, and availability from data worldwide, 
this process is more rapid and precise. The next impor-
tant tool in studying leukodystrophies is a pathological 
examination of human post-mortem tissue. Pathologi-
cal findings are crucial in determining what underlying 
mechanisms contribute to disease causation and progres-
sion. There are some issues, however, with using human 
post-mortem tissue. The most important one is that only 
the end-stage of the disease can be studied. Since leukod-
ystrophies are highly heterogeneous in disease progres-
sion and age of onset, crucial disease hallmarks in disease 
development can be overlooked, especially in the context 
of NVU dysfunction, which is a process that occurs over 
time. To overcome these hurdles, proper disease model-
ling comes into play. In the next sections, we will discuss 
the current human in vitro models that are used to study 
the NVU, particularly in the context of leukodystrophies, 
addressing their advantages and disadvantages and iden-
tifying emergent models that better recapitulate the NVU 
and BBB in physiology and disease. An overview of the 
in  vitro models that will be discussed is displayed in 
Fig. 1.

Primary cells and cell lines
Cultures of human primary cells isolated from post-
mortem tissues or biopsy samples provided a primary 
solution for studying the diseases in a human genetic 
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background [141]. However, the limited access, scarce 
availability, especially in rare disorders as leukodys-
trophies, and reduced capacity for in  vitro expansion, 
together with phenotypical changes when cultured 
in vitro, triggered the search for new solutions [142, 143]. 
Immortalized cell lines, including tumor cell lines [144], 
overcome the expansion problem but fail to adequately 
mimic the in  vivo cellular behaviour [145]. Even so, all 
these approaches are still used to investigate BBB physiol-
ogy and dysfunction [146, 147], angiogenesis in the CNS 
[148], and the molecular cues exchanged by endothelial 
and neural cells [149]. The Transwell assay is the most 
frequently used in vitro assay for replicating the BBB. In 
this co-culture system, a BEC monolayer is cultured on 
the apical side of a membrane insert, while supporting 
cell types, such as pericytes and astrocytes, are cultured 

on the basal side of the same membrane and also on 
the bottom of the well. Although this system is ideal for 
investigating paracrine and autocrine factors secreted by 
the involved cell types, it fails to model proper hetero-
typic cell–cell contacts, as well as shear stress and cylin-
drical geometry, characteristics of blood vessels in  vivo 
[150].

Organotypic slice cultures
Organotypic slice cultures are an extensively used 
ex vivo strategy to study the brain, and specifically neuro-
vascular crosstalk [151, 152]. Their main advantage is the 
ability to preserve structural and synaptic organization 
[153] in a biologically relevant 3D environment. Numer-
ous applications have been reported, including long-term 

Fig. 1 Schematic representation of models to study the NVU in leukodystrophies in humans. The first step of studying leukodystrophies is in a 
clinical setting, using MRI and next-generation sequencing for initial diagnosis, monitoring disease progression and treatment of patients. Since 
most leukodystrophies are fatal, post-mortem analysis and post-mortem tissue-derived primary cells, immortalized cell lines, and organotypic slice 
cultures are valuable tools to distinguish primary cellular processes involved in the pathogenesis. Finally, hiPSC-based models can contribute to 
investigating the molecular pathways and dynamics at the NVU during disease development and test therapeutic interventions. Together, clinical 
and basic research can contribute to understanding disease mechanisms in leukodystrophies
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live imaging, multi-electrophysiological stimulations and 
recordings, and neurotoxicity assays [153]. It was dem-
onstrated that brain capillaries can survive in organo-
typic brain slices and, even though they do not present 
blood flow and are no longer functional, they might still 
secrete a number or molecules that may influence other 
cell types in the culture [153]. In an attempt to model 
the BBB, researchers have cultured brain slices on top 
of a monolayer of BECs and reported some BBB charac-
teristics in  situ [154]. Others tried to understand if the 
functional and structural properties of the NVU and BBB 
were preserved in slice cultures [155]. Although immu-
nostainings revealed the maintenance of NVC and vaso-
motion, BBB intactness can hardly be studied in slices, 
since the preparation opens up and damages the vessels, 
eliminating their barrier functionality. Moreover, these 
slices usually come from animal models, which are not 
the most reliable replica of human biology [156], while 
sample scarcity imposes a considerable limitation when 
studying rare diseases.

Human induced pluripotent stem cells
The advent of hiPSCs revolutionized biomedical research 
and became a major tool for studying brain diseases. hiP-
SCs can differentiate into any cell type and self-renew 
indefinitely. Due to this, they overcome the expansion 
and availability limitations of primary cells while main-
taining the biologically relevant human context and safe-
guarding the genetic background of the patient. hiPSCs 
are induced by over-expressing four genes (Yamanaka’s 
factors) in easily accessible cells, such as skin fibroblasts 
[157, 158]. This technology opens up new possibilities to 
study rare diseases, such as leukodystrophies, for which 
research is often hampered due to scarcity of biological 
material.

One of the biggest limitations of hiPSCs is the diffi-
culty to generate fully mature and specific cell types, like 
excitatory and inhibitory neurons [159] or white and grey 
matter astrocytes [160]. However, researchers are work-
ing hard to tackle this problem and protocols have been 
developed for the production and maturation of many 
cell types [161, 162].

Another main limitation of hiPSCs is the resetting of 
the epigenetic memory. hiPSCs harbour residual epige-
netic information specific to their original somatic tissue, 
which favours their differentiation along lineages associ-
ated with the donor cell, while inhibiting alternative cell 
fates [163]. Nevertheless, several studies have reported 
the generation of hiPSCs in a more primitive develop-
mental stage, named naïve pluripotency, where the global 
genome hypomethylation is similar to an early human 
embryo [164].

In regards to the NVU recapitulation using hiPSCs, it 
is crucial to acknowledge the heterogeneity of the brain 
vasculature and surrounding parenchyma, for example in 
grey and white matter. Regional differences exist in vas-
cular density and function, orientation and permeability, 
phenotype and function of astrocytes, the ratio of neu-
ronal to non-neuronal cells, and BEC gene expression 
[165]. Ideally, these distinct aspects must be reflected in 
the in  vitro BBB/NVU model that is used or developed 
according to the targeted disease, meaning that there 
is no accurate “one size fits all” BBB model and that the 
region where the disorder takes place should be taken 
into account. In the context of leukodystrophies, there 
is a current need for protocols to generate white matter-
specific cell populations, which are already acknowledged 
as being functionally and phenotypically different from 
their grey matter counterparts [165].

Organoids
Using hiPSCs, it is possible to engineer several different 
strategies to explore brain homeostasis and disorders. A 
major breakthrough is the technique to culture cerebral 
organoids [166, 167]. The definition of organoid is still 
quite controversial, and some researchers struggle with 
the line between a spheroid and an organoid. Even so, it 
is generally agreed that, while spheroids are 3D cultures 
consisting of cell aggregates established from primary 
cells or immortalized cell lines, organoids are stem cell-
derived 3D cell aggregates that self-organize to recapitu-
late some of the endogenous tissue characteristics [168]. 
These 3D structures constitute a physiologically relevant 
tool for drug screening, developmental biology, and 
pathology, by allowing for cell–cell and cell–matrix inter-
actions in an in vivo-like organization, in contrast to 2D 
systems [169, 170].

Organ‑on‑a‑chip
Microfluidic cell culture devices, also known as organs-
on-chips (OOCs), have emerged as a system capable of 
reliably replicating the complex three-dimensional archi-
tectures of tissues and organs, including cell–cell inter-
actions and mechanical cues to which the tissues are 
subject [171]. OOCs are microfluidic systems for cell cul-
ture in micrometer-sized perfusable channels, intended 
to model biological functions and events happening in 
the different tissues and organs [172]. These chips are 
usually divided into chambers that are interconnected 
by microgrooves, allowing for axonal alignment, interac-
tions between different cell types cultured on each of the 
chambers, or the establishment of molecular spatiotem-
poral gradients.



Page 13 of 19Zarekiani et al. Fluids and Barriers of the CNS           (2022) 19:18  

OOCs have a substantial number of favourable char-
acteristics as an in  vitro model of human physiology or 
pathologies. One of the most important is the possibility 
to design culture strategies in which a variety of param-
eters (cell types and relative positioning; transcellular 
gradients; cellular alignment; mechanical forces; flow lev-
els and patterns) can be controlled independently while 
running real-time high-resolution imaging of molecular 
phenomena in a physiologically relevant microenviron-
ment [172]. The experimental and design flexibility [173] 
allows precise cell positioning to promote interactions 
between different cell types while integrating live analyti-
cal and microscopical assays.

The ability to perform perfusion cultures with con-
trolled laminar flow in OOCs is especially important for 
studying the NVU since it can be used to mimic blood 
flow in microvessels. Besides being directly related to the 
vasculature, blood flow boosts the function, survival, and 
differentiation of several NVU-related cell types [174–
176]. The inclusion of flow also enables testing of molec-
ular signals and gradients, as well as paracrine/angiocrine 
cues, which are critical players in BBB maintenance and 
dysfunction. On the other side, the low number of cells 
necessary for the culture and the reduced reagent con-
sumption [173] improve the cost efficiency of the sys-
tem. This feature, allied to the scalability towards parallel 
automated large-scale platforms [177], provides the basis 
for the valuable high-throughput characteristic of micro-
fluidics approaches. The smaller relative volume also 
minimizes dilution of secreted factors that may be criti-
cal in the communication between neural and endothe-
lial cells. Moreover, cell phenotypes are more likely to be 
preserved, since sizes and cell confinement are similar to 
the in vivo NVU microenvironment [178].

Thus, OOCs represent compelling biological models 
for studying the underlying pathological mechanisms of 
several diseases and investigating the function and opera-
tion of human tissue structures, including the BBB and 
the NVU. By combining OOCs with hiPSC technology, it 
is possible to create a patient-specific tool for precision 
medicine or to establish a disease model for drug screen-
ing or fundamental research. It has already been reported 
in-chip co-cultures of iPSC-derived BECs with isogenic 
neural cells (neurons, astrocytes, and neural progenitor 
cells) [179], astrocytes [180], or pericytes [181], which 
gradually gets the ultimate goal of building an in  vitro 
human NVU closer to reality.

3D bioprinting
3D bioprinting has been appointed as a promising area 
to produce a complex three-dimensional in vitro NVU in 
which the contribution of each cell type can be studied 

at the cellular and molecular levels. Different cell types 
can be embedded in bioinks—cell-supportive hydrogels 
with shear-thinning properties—and bioprinted to pro-
duce NVU models with various components. Bioprinting 
enables accurate placing of the vascular and neural cells 
to establish proper interactive interfaces that recreate the 
in vivo condition [182].

One of the biggest challenges of 3D printing is the 
development of bioinks. These hydrogel matrices must 
have mechanical properties capable of being 3D printed 
and mimicking the ECM and, at the same time, be suit-
able for cell viability and growth, while allowing the 
synthesis and deposition of their own native ECM, to 
properly replicate the natural microenvironment [183]. 
For an NVU model specifically, the bioink must enable 
cellular adhesion and migration, neurogenesis, and vas-
cularization, as well as interactions between vascular 
and neural components. Besides this complicated bioink 
formulation, biomimetic 3D bioprinting also poses other 
challenges, namely the biological complexity of all physi-
cal and chemical factors that need to be reproduced and 
the extensive amount of time needed, since some period 
of maturation is typically required following tissue print-
ing [184].

Vascularized organoids and organoid‑on‑a‑chip
Vascularized brain organoids are arising as an inter-
esting approach to assess the cerebral neurovascular 
crosstalk and mimic the NVU. Different strategies are 
being  developed to produce this kind of organoids. In 
a pioneer study, whole-brain organoids were generated 
using patient-derived hiPSCs and then embedded in 
Matrigel containing isogenic iPSC-derived ECs [185]. 
In a similar rationale, human umbilical vein endothelial 
cells (HUVECs) were co-cultured with human embry-
onic stem cells (hESCs) that were further differentiated 
into cortical neurons [186]. Using a different approach, 
researchers induced ETV2 expression on hESCs to 
guide their differentiation towards the endothelial 
phenotype and formation of vascular-like structures 
in human cortical organoids [187]. Recently, a perfus-
able platform was developed to generate neurovascular 
organoids from brain organoids surrounded by hiPSC-
derived ECs and pericytes [188]. Nevertheless, to date, 
none of the strategies formed robust lumenized and 
perfusable capillary-like structures inside the brain 
organoid nor demonstrated BBB hallmarks such as 
high TEER, low permeability and expression of BBB 
markers.

Another strategy that has been recently explored is the 
integration of organoids in OOC technology. In these 
organoids-on-a-chip, the advantages of both systems 
come together in a synergistic model that recapitulates 
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the human body to the fullest. This has been recently 
done with different organoids, including the brain, for 
toxicity assessment [189], organoid maturation [190] 
and vascularization [188]. By constructing a chip with an 
appropriate design and integrating the right cell types, it 
is possible, now more than ever, to recapitulate the com-
plexity of the NVU in vitro.

Future perspectives and challenges 
in leukodystrophies
There is currently a lack in the availability of advanced 
human in  vitro NVU models for leukodystrophies and 
other rare diseases, which hinders the development of 
efficient treatments. Researchers have already reported 
the generation of region-specific brain organoids—cor-
tex [191], forebrain [192], midbrain [192], hypothala-
mus [192] and cerebellum [193]—which led to a major 
improvement on the readout for some region-specific 
disorders. However, no successful generation of white 
matter-only organoids was reported so far, which could 
widely improve the study of and drug development for 
leukodystrophies. In a different approach, due to their 
monogenic nature, it would be straightforward to create 
iPSC lines for the different leukodystrophies by targeting 
the single disease-causing gene. After this, one should be 
able to engineer reliable in vitro models of leukodystro-
phies to further explore the contribution of the NVU and 
the BBB in these diseases.

By unravelling the cellular and molecular mechanisms 
behind this intricate crosstalk, new drug candidates may 
arise, which can then be screened using the same model 
and tested in a patient-specific manner. A systematic 
analysis over time can also clarify whether changes in the 
NVU are a result of the disease, a cause of injury, or an 
exacerbatory factor of the primary dysfunction, which is 
not possible to assess in post-mortem studies.

Naturally, optimizing the experimental conditions for 
such complex models may take time and requires know-
how from different fields of research. Therefore, it is cru-
cial to have an interdisciplinary approach to the issue and 
to establish collaborations with colleagues from distinct 
backgrounds, to wisely design a robust and reliable model 
that can effectively replicate human nature.
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