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Systems analysis of intracellular pH vulnerabilities
for cancer therapy
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Robert J. Gillies 4 & Eytan Ruppin9

A reverse pH gradient is a hallmark of cancer metabolism, manifested by extracellular

acidosis and intracellular alkalization. While consequences of extracellular acidosis are

known, the roles of intracellular alkalization are incompletely understood. By reconstructing

and integrating enzymatic pH-dependent activity profiles into cell-specific genome-scale

metabolic models, we develop a computational methodology that explores how intracellular

pH (pHi) can modulate metabolism. We show that in silico, alkaline pHi maximizes cancer

cell proliferation coupled to increased glycolysis and adaptation to hypoxia (i.e., the Warburg

effect), whereas acidic pHi disables these adaptations and compromises tumor cell growth.

We then systematically identify metabolic targets (GAPDH and GPI) with predicted amplified

anti-cancer effects at acidic pHi, forming a novel therapeutic strategy. Experimental testing

of this strategy in breast cancer cells reveals that it is particularly effective against aggressive

phenotypes. Hence, this study suggests essential roles of pHi in cancer metabolism and

provides a conceptual and computational framework for exploring pHi roles in other bio-

medical domains.
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Most cancer cells manifest metabolic adaptations in
accord with the Warburg effect1–3, including increased
glucose and nutrient uptake and lactic acid production,

even under aerobic conditions, as well as an adaptation to
hypoxic and low-nutrient microenvironments4,5. Acidification of
the extracellular milieu (low pHe) and concomitant intracellular
alkalization of the cytoplasm (high pHi) are other hallmarks of
cancer, leading to a reverse pH gradient in cancer cells (pHi > 7.2,
pHe ~ 6.7–7.1) vs. normal cells (pHi ~ 7.2, pHe ~ 7.4)6. This
reverse pH gradient relies on increased expression and/or activity
of various plasma membrane transporters and acid efflux proteins
that control pH homeostasis7, including monocarboxylate
transporters (MCTs), Na+–H+ exchangers (NHEs), and carbonic
anhydrases (CAs). Although locally highly diverse, the mean pHe,
and oxygen pressure (pO2) both decrease in a highly correlated
manner with distance from nearest blood vessels in tumors8. This
evokes changes in the activity of various transporters promoting
intracellular alkalization9, with an overall significant correlation,
yet a non-linear relationship, between the reverse pH gradient
and oxygen availability10.

Notably, the reverse pH gradient is associated with tumor
proliferation, invasion, metastasis, aggressiveness, and treatment
resistance5,6,11–14. Mechanistically, these phenotypes have been
ascribed to effects of extracellular acidosis on several processes,
including the induction of growth factors (e.g., VEGF via HIF1α),
using secreted lactic acid as a nutrient source15, suppression of
immune surveillance16–18, and evolutionary selection for acid-
resistant malignant cells in the tumor microenvironment19–21.
Disrupting pH control by inhibiting membrane transporters has
been suggested as a therapeutic strategy22,23, and indeed some
membrane transport inhibitors are now in clinical trials10,24,25.
Moreover, it has been suggested that inhibiting these transporters
induces toxic intracellular acidosis9, and that an alkaline intra-
cellular environment is required for cancer cell survival26. How-
ever, it is unclear how pHi is coupled to cancer cell growth and
metabolism, and if disrupting pHi control could be exploited for
therapeutics.

Given the advent of omics-driven personalized metabolic
models27,28 and robust biochemical data of enzyme kinetics, we
sought to fill a computational gap and developed a rigorous
methodology that infers the pH-dependent activity profiles of
metabolic enzymes, and then integrates them into genome-scale
metabolic models (GSMMs) of cancer and normal cells. This in
silico systems approach allowed us to assess the effects of inter-
fering with pHi on the intracellular metabolic state, and to suggest
and experimentally validate a clinically relevant and novel ther-
apeutic strategy to selectively target cancer.

Results
Computational pipeline. Intracellular pH fluctuations affect
enzyme activity by modifying protonation states of key catalytic
residues and compromising stability of structural folds29. Thus, to
model the effects of pHi on the metabolic state of cells, it is
essential to know the pH-dependent activity profile of each
enzyme. Fortunately, elucidating enzymatic pH-activity profiles is
a classical task of enzymologists, who need this to optimize the
experimental conditions of their assays. This knowledge has been
accumulated in the scientific literature over the years and data-
bases like BRENDA30 are devoted to cataloging it.

To develop a computational pipeline, we first generated pH-
activity profiles for metabolic enzymes by extracting from
BRENDA the complete record of experimental measurements
of the activity of all enzymes at different pH across all taxa. We
then defined a pH-activity profile for each enzyme at six critical
points corresponding to 0%, 50%, and 100% of maximal

enzymatic activity at the acidic and basic sides, respectively
(Fig. 1a). To increase coverage of enzymes with missing
experimental data, we inferred missing critical pH values based
on available data of close homologs, exploiting the fact that pH-
activity profiles of enzymes belonging to the same EC category are
highly similar between close homologs (Supplementary Figures 1
and 2). This knowledge-based approach was superior to more
classical physics-based methods that are focused on predicting
pH stability (Supplementary Figure 3). We further predicted any
unassigned pH point using linear regression (Supplementary
Figure 4), and verified the performance of our predictors using
cross validation, as exemplified by the high correlation between
the predicted and the experimental pH values across all six critical
pH points (Fig. 1b, and Supplementary Figures 5–7). This
procedure generated a complete database of pH-activity profiles
that can query the profile of any metabolic enzyme using a
homology-based search that is readily applicable to any species
(Methods and Supplementary Methods). Using this approach, we
obtained pH profiles for 76% of the metabolic enzymes in the
human proteome. Importantly, the predicted pH optima of
enzymes were concordant with the measured pHi of the cellular
compartments in which they reside7,31 (Fig. 1c), where lysosomal
and Golgi apparatus enzymes have relatively acidic pH optima
(pHi < 7), while mitochondrial and peroxisomal enzymes have
relatively alkaline pH optima (pHi > 7.2).

To model the effects of pHi on cell metabolism, we next
integrated the inferred pH activity profiles into cell-specific
GSMMs of cancer (NCI-60) and normal (HapMap cell line panel)
cells, which we recently validated and used to predict anti-
migratory and selective cytotoxic cancer targets27,28. pH-
dependent activity was modeled by modifying the bounds of
the permissible flux range of each reaction as a function of the
activity of metabolic enzymes catalyzing the reaction at a given
pHi according to the inferred pH-activity profiles, such that
enzymes with predicted lowered activity have lower bounds
(Methods). Using standard constraint-based modeling (CBM)
approaches, this allowed us to compute the cellular proliferation
rate and uptake/secretion rates of key metabolites as a function of
pHi. Cellular organelles were assumed to be well buffered, and
thus constraint modeling was only applied to cytosolic metabolic
enzymes; nonetheless, the analysis verified this choice as robust
(Methods).

In silico analysis of pH-dependent metabolism. Applying the
pipeline described above, an in-silico analysis of pH-dependent
metabolism of cancer and normal cells was performed (Fig. 2).
These analyses indicated that at acidic (low) pHi, cancer cell
growth rate is reduced vs. that of normal cells, whereas the
situation markedly reverses at an alkaline (high) pHi, where
growth of cancer cells is augmented (Fig. 2a). Notably, in contrast
to normal cells, cancer cell proliferation is predicted to be sus-
tained at alkaline pHi. This behavior is robust to significant
perturbations in the reconstructed pH-activity profiles and,
importantly, vanishes under random (i.e., wrong) assignment of
pH profiles to enzymes (Supplementary Figure 8).

These analyses also predict that the effect of pHi on
proliferation is coupled to the metabolic state of cells, whereby
lower oxygen consumption and increased glucose uptake rates are
observed in cancer cells at high pHi, while at low pHi these
adaptations are reversed (Fig. 2b). As oxygen is available to all
cells ex vivo, this suggests a fundamental coupling between the
Warburg effect and intracellular alkalization in cancer cells,
consistent with the understanding that the Warburg effect
supports proliferation2. In contrast, in normal cells hypoxia and
glycolysis are predicted to be independent of pHi, coupled to the
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weak effect on their proliferation. Finally, in cancer cells these
phenotypes strongly correlate with ATP production rate, but not
with rates of NADPH production, which is tightly regulated in
both cell types. Hence, the sum of these effects predicts that
acidifying pHi will selectively impair cancer cell proliferation and
reverse the metabolic state of cancer cells to a less fermentative
and more oxidative state, presumably with a mild effect on redox.
These results are robust to the constraint imposed on prolifera-
tion rate (Methods and Supplementary Figure 9).

To identify the most critical targets needed for these metabolic
adaptations, a systematic standard divide and conquer search was
performed, where pH profiles were applied to increasingly smaller
subsets of genes. This analysis identified GAPDH (glyceraldehyde

3-phosphate dehydrogenase) and its paralog GAPDHS, which
catalyze the sixth step (and a principal junction) of glycolysis, as
strong modulators of cancer pH-dependent metabolism. Notably,
in silico analyses predict that their inhibition selectively augments
the effects of intracellular acidosis on cancer cell metabolism and
growth (Fig. 2a, b). Thus, the model predicts that inhibition of
specific metabolic targets may selectively amplify the anti-
proliferative effect of intracellular acidosis on cancer cells, and
moreover, that these perturbations may also amplify the anti-
Warburg effect of intracellular acidosis on the metabolic state of
cancer cells.

To systematically identify putative pH-dependent anti-cancer
targets (i.e., anti-proliferative and/or anti-Warburg), the
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Fig. 1 Reconstruction of enzymatic pH-dependent activity profiles. a Six critical pH points, corresponding to the 0%, 50%, and 100% of enzymatic activity
at the acidic and basic regimes were extracted from BRENDA from all taxa. Missing data was complemented with existing data from close homologs or
were predicted using linear regressors, generating an imputed database of pH-activity profiles, from which one infers the pH-profile of any enzyme
(Methods, Supplementary Methods and Supplementary Figures 1–7 for a complete description). b Predicted vs. experimental pH optima, defined as the
average of the critical points A100 and B100. The red line depicts linear regression. c Distributions of the pH optima of metabolic enzymes in each cellular
compartment. Box widths are proportional to the number of enzymes in each compartment. Each box delineates lower quartile, median, and upper quartile
values. Most extreme values (whiskers) are within 1.5 times the inter-quartile range from the ends of the box. Red dots depict the measured physiological
pHi range of the compartment. “Including experiments” boxes correspond to the pH optima that were used in the subsequent GSMM modeling. As a
validation, we include “Only predictions” boxplots, which are the result of the 10-fold cross-validation (Supplementary Figure 5)
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metabolic state of cells at physiological (pHi= 7.3) and low
(pHi= 6.7) pHi regimes was simulated, and the metabolic
consequences of inhibition (knockout (KO)) of each gene (Fig. 2c,
d) and each reaction (Supplementary Figure 10) were then
assessed. First, we evaluated the anti-proliferative potential of
putative targets, across all cancer–normal cell pairs, using two
measures (Methods): (i) selectivity, which measures the reduction
in proliferation of cancer cells vs. normal cells at low-pHi, where
a positive score denotes the selective impaired growth of cancer
cells; and (ii) pH-specificity, which measures proliferation rates of
cancer cells at low vs. physiological pHi, where a positive score
indicates larger inhibition of cancer cells at low pHi. Using these
measures 12 enzymes were identified as both selective and pH-
specific and 11 targets as selective but not pH-specific (Fig. 2c).
The vast majority of enzymes (n= 1882) have no predicted anti-
proliferative effect at low pHi (1780 enzymes have zero selectivity

score (SEL), 1839 have zero pH-specificity score (PHS), and the
rest have negative scores). The frequency of scores across all
examined cancer–normal cell pairs indicates their significance
(Methods and Fig. 2c). Interestingly, at the pathway level, we
found that targets in the pentose phosphate pathway, glycolysis,
and fatty acid metabolism are predicted selective and pH-specific,
while most targets involved in amino acid biosynthesis are
predicted selective but not pH-specific.

Second, we evaluated the effect of each KO on the production/
consumption rate of key-metabolites, and assessed their anti-
Warburg effect by determining the ratio of the oxygen
consumption rate (OCR) and the lactate production rate (Fig. 2d).
The latter serves as a proxy for the extracellular acidification rate
(ECAR). As expected from Fig. 2b, lowering pHi alone reverses
the glycolytic and hypoxic nature of wild-type (WT) cancer cells.
Relative to WT cancer cells, the additional inhibition of some
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Fig. 2 In silico pH-dependent metabolism of cancer and normal cell models. a Cellular proliferation (biomass yield) as a function of pHi, normalized by the
maximal value obtained across all pHi examined, of cancer (circles) and normal healthy (solid) cells, when GAPDH is at physiological levels (black) and
when it is inhibited (color), as depicted in the inset. b Uptake/production rates of oxygen, glucose, total ATP, and total NADPH. Uptake rates are
conventionally depicted with a negative sign (more negative values denote higher rates). Error bars depict the standard deviation of the mean values across
the populations of GSMMs at each pHi. c Anti-proliferative effects of gene inhibition (knockout), showing the classification of knockouts according to their
selectivity and pH-specificity scores (top). The predicted targets, ranked by their pH-specificity, with the average selectivity scores superimposed (middle),
as well as frequency of scores across all pair comparisons (≥12.5%) are shown (bottom). d The anti-Warburg scores (OCR/ECAR) of knockouts at low and
physiological pHi (top), and the changes in the uptake/production rates of key metabolites, relative to the wild type (WT) at low pHi (bottom), are shown
for each target. Pathways associated with each target are shown in color code. Results are robust with respect to choice of model parameters (Methods
and Supplementary Figures 8–12)
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identified targets increases the anti-Warburg effect on cancer
cells, and this was more significant at low pHi than at
physiological pHi (Fig. 2d). Of these, the inhibition of GPI has
the largest anti-Warburg effect, at both physiological and low
pHi. Moreover, the overall predicted mild effect of these KOs on
the production rate of reactive oxygen species (ROS) indicates
that they are not likely to induce risks associated with excess ROS
levels in cancer, namely ROS-induced hypermutation and
resistant phenotypes32. Interestingly, mitochondrial targets are
not prominent in the KO analysis, suggesting the predicted high
ATP production rate in cancer (Fig. 2b) is of cytosolic origin.

Complementing the analysis at the gene level with an in silico
KO analysis at the reaction level reveals additional targets and
confirmed the importance of the reaction catalyzed by GAPDH,
which is missed by the gene KO analysis due to the existence of
the paralog GAPDHS (Supplementary Figure 10 and Methods).
Lastly, these results were verified to be highly robust at the level of
gene inhibition, the exact choice of low pHi, the constraints
imposed on proliferation rates (Supplementary Figure 11), and
the buffering capacity of cellular compartments (Supplementary
Figure 12).

Experimental proof of concept. To test the strategy of ther-
apeutically targeting the alkaline pHi preference of cancer cells,
experiments were designed to first decrease the pHi by blocking
lactate transporters and then inhibit the leading selective and pH-
specific targets, GAPDH and GPI (Fig. 3, Methods, and Supple-
mentary Figures 13–16). This strategy was tested in three breast
cell lines, controlling for oxygen availability and pHe levels in the
microenvironment: (i) MCF10A normal breast epithelial cells; (ii)
naïve and acid-adapted (AA) MCF7 estrogen receptor-positive
(ER+) breast cancer cells; and (iii) naïve and AA triple-negative
MDA-MB-231 breast cancer cells. These specific AA phenotypes
are of particular clinical relevance, as these tumor cells are
aggressive in acidic and hypoxic microenvironments21,33,34 and
lack effective therapies. The pHi of cells was determined by
confocal microscopy at the single cell level using the emission
spectra of the pH-sensitive molecular fluorescent probe SNARF-1
succinimidyl ester (Supplementary Figure 13).

To manipulate pHi we tested the effect of a selective small
molecule inhibitor of the MCTs 1 and 2 (MCT1/2)35 in four
different conditions that represent extracellular states of the
tumor microenvironment, physiological pHe, low pHe, normoxia,
and hypoxia (Fig. 3a). Under normoxia and physiological pHe,
the pHi of MCF7 breast cancer cells is at physiological levels and
inhibition of MCT1/2 only slightly reduced pHi. Acute hypoxia
however significantly reduced pHi, where switching to glycolysis
as the only source of energy in the absence of oxygen produces
abundant protons as a byproduct, presumably imposing sig-
nificant stress on the cells. In contrast, chronic hypoxia did not
lead to acidic pHi levels; presumably imposing less stress on the
cells due to some adaptations, and under these conditions
inhibition of MCT1/2 significantly reduced the pHi. In AA MCF7
cancer cells chronic hypoxia plus MCT1/2 inhibition achieved a
reduction of pHi by over 0.3 pH units. These effects were weakly
dependent of pHe levels (Supplementary Figure 13).

To validate the anti-proliferative effects of the predicted
selective and pH-specific targets GAPDH and GPI, we knocked
down each gene using siRNAs (Fig. 3b) and their effects on both
cell proliferation (Fig. 3c) and survival (Fig. 3d) were assessed in
the four microenvironmental conditions. Consistent with model
predictions, reducing pHi via hypoxia and MCT1/2 inhibition
impaired the proliferation of both naïve and AA MCF7 cells, and
knockdown of GAPDH and GPI further reduced proliferation in
cells, and this was most profound at acidic pHi (Fig. 3c). The

inhibition of GAPDH elicited a larger detrimental effect than that
of GPI, and this was associated with the efficiency of knockdown
(Fig. 3b).

To test if the effects on cell proliferation translate into effective
killing of cancer cells, we assessed the survival of cells using
viability assays (Methods). Notably, reducing pHi via hypoxia
plus MCT1/2 inhibition compromised the survival of MCF7
breast cancer cells (Fig. 3d). Under normoxia, where pHi levels
remained at physiological levels, cell survival was weakly affected
by MCT1/2 inhibition, except for AA cells at low pHe. Further,
under acidic pHi conditions, provoked by hypoxia and MCT1/2
inhibition, the additional knockdown of GAPDH, and to a lesser
extent of GPI, triggered cell death, especially in more aggressive
AA MCF7 breast cancer cells (Fig. 3d). Extracellular acidosis
weakly affected the survival of cancer cells, as expected from the
measured weak coupling between pHe and pHi (Supplementary
Figure 13). Further, consistent with the model, the strategy is
selective for cancer cells, as there were only very modest effects of
hypoxia, MCT1/2 inhibition, and knockdown of GAPDH or GPI
on the survival of normal MCF10A breast epithelial cells
(Supplementary Figure 14). However, the strategy fails to kill
triple negative MDA-MB-231 breast cancer cells, where a
sufficiently low pHi was unattainable (Supplementary Figure 15),
presumably due to the elevated expression of the MCT4
transporter that is resistant to the effects of the selective MCT1/
2 inhibitor35,36.

To understand the differences between naïve and AA MCF7
breast cancer cells, we measured the expression of different lactate
transporters (Supplementary Figure 16). While naïve cells
expressed MCT2, only AA cells expressed MCT4, and to a lesser
extent MCT1, across all conditions. Moreover, the metabolic state
of AA cells is less fermentative and more oxidative than naïve
cells, as exemplified by their lower ECAR and higher OCR rates
(Supplementary Figure 16). Hence the successful application of
the strategy to these AA cells is likely due to the lowest pHi
obtained (~6.9), and possibly also due to their adaptation and
reliance on alkaline pHi that renders them more vulnerable to
these perturbations, despite the activity of additional transporters
and their shift towards oxidative metabolism.

As hypoxia may impose stress on cells and elicit network-wide
effects that are hard to control and measure, additional
experiments were performed to assess the robustness of the
results in naïve and AA MCF7 cells (Fig. 4). In these experiments
pHi under normoxia was reduced by inhibiting the function of
the Na+–H+ exchanger NHE1 via treatment with cariporide.
This strategy was most successful at low pHe (Fig. 4a). We then
inhibited the top targets (GAPDH and GPI), as well as three
additional targets identified from different metabolic pathways
(RPIA, ACAT2, and PFAS). The efficiency of siRNA-directed
knockdown of these targets was verified by qRT-PCR and western
blot analyses (Fig. 4b). Also in these experiments, knockdown of
these targets compromised the survival of MCF7 cancer cells at
low pHi, and again this was more significant at low pHe, where
the lowest pHi was achieved (Fig. 4c). Across the different
conditions and cells, the predicted selective and pH-specific
targets GAPDH, GPI, and ACAT2 achieved the largest detri-
mental effect on cancer cell survival. Relative to control, this was
more pronounced in AA cells, despite the smaller reduction in
pHi in these cells, suggesting these targets play important roles in
the aggressive phenotypes manifest in these cells. In contrast, the
predicted selective and pH-specific target RPIA displayed
inconsistent effects across cells, possibly because it requires larger
reduction in pHi to induce anti-proliferative effects in AA cells.
As an important control, knockdown of the predicted selective
but not pH-specific target PFAS did not amplify the anti-
proliferative effect relative to control cells at low pHi, and PFAS is
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the least pHi-sensitive metabolic target. Finally, we also tested the
effects of metabolic perturbations on normal MCF10A breast
epithelial cells, where NHE1 inhibition only mildly affected pHi
and the viability of cells (Supplementary Figure 17).

To validate the anti-Warburg effect of lowering pHi and of
inhibiting selected pHi-dependent targets, we performed Seahorse
XF assays and measured the anti-Warburg ratio (OCR/ECAR) in
MCF7 breast cancer cells (Fig. 5). These measurements were
performed in normal pHe, because of technical difficulties of
Seahorse assays to perform well in low pHe. Lowering pHi alone
was revealed to have an anti-Warburg effect on cancer cells,
consistent with our computational results (cf., Fig. 2b). Further,
the knockdown of each of the pHi-dependent targets amplified

the anti-Warburg effect on cancer cells at physiological pHi, and
this amplification was more significant at low pHi, following
NHE1 inhibition, also consistent with our model (cf., Fig. 2d).
These increased anti-Warburg effects at low pHi were not
observed in normal MCF10A cells, which overall have higher
OCR/ECAR ratio (Supplementary Figure 17).

Nonetheless, while the model predicted an amplified effect
relative to control cells for only a few targets, the experiments
show that all of the targets examined exhibited an amplified anti-
Warburg effect, across all conditions. Thus, intracellular acidosis
has a stronger anti-Warburg effect than that predicted by the
model. This discrepancy may be due to a number of differences
between the model and experiments, as discussed below.
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Discussion
Collectively, our findings suggest that cancer cells have superior
fitness at an alkaline pHi, and that their reliance on an alkaline
intracellular environment confers vulnerabilities that can be
exploited for therapeutics. In accord with previous studies9,26, our
findings clearly demonstrate that lowering pHi is a selective
vulnerability for cancer cells. Furthermore, here we have estab-
lished that, with the development of new computational techni-
ques, this vulnerability can be exploited to systematically identify
metabolic targets to attack cancer cells at acidic pHi, forming a
synthetic lethal therapeutic strategy comprised of targeting
transporters that lower the pHi in combination with disabling the
selected metabolic targets. Experimental testing of this strategy in
breast cancer cell lines indicated that it is particularly effective
against cancer cells that have adapted to hypoxia and extracellular
acidosis, and that display aggressive phenotypes21,33,34. None-
theless, further study is needed to establish the clinical applic-
ability of the proposed strategy to treat tumor cells, where
lowering pHi can require targeting several proton pumps and acid
transporters, as in the case of triple negative breast cancer
cells35,36.

Beyond proliferation, our systems analyses also indicated a
coupling between intracellular alkalization and the Warburg
effect, which is manifest as increased glucose consumption and
decreased oxygen uptake rates at high pHi. Accordingly, lowering
pHi was predicted by these analyses to reverse to some extent

these adaptations. Further, within the cohort of the identified
targets these analyses predicted that disabling GAPDH or GPI
amplifies the anti-Warburg effect of acidic pHi when they are
inhibited at acidic pHi, which was then tested experimentally.
Interestingly, in parallel to this study, GAPDH was recently
identified as an anti-Warburg target using other computational
and experimental techniques37, which independently verify the
power of integrating the computational analysis and experimental
studies reported herein. Nonetheless, GAPDH (and GPI) is more
than a metabolic regulator and has rich functionalities in
cancer38,39, indicating that the exact mechanisms responsible for
its potential therapeutic roles remain to be resolved. Our results
suggest that the knockdown of GPI may have similar if not
superior effects, once more potent and selective inhibitors are
developed. Other identified targets in our analysis, notably PGD
and G6PD from the pentose phosphate pathway, are also pre-
dicted to have both anti-proliferative and anti-Warburg effects on
cancer. Hence, in addition to their known anti-cancer roles40,41,
our findings suggest the therapeutic response of tumors to inhi-
bitors of PGD and G6PD will be amplified at acidic pHi.

Notwithstanding the power of our computational analyses to
predict robust network-wide effects of pHi on the metabolic state
of cells, some caveats and limitations should be addressed to
improve and expand the methodology. First, as biomass pro-
duction was used as an objective cellular function in optimizing
GSMM (Methods), the current analysis reflects only a fraction of
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all possible targets, where the formulation of additional objective
functions should lead to specific mechanistic insights, and targets
that may combat specific phenotypes. Second, to more fully
understand the mechanisms that direct metabolic adaptation
following perturbations (i.e., lowering pHi and/or gene KO) in a
specific cell type, the models should be refined by integration of
cell-specific and condition-specific “omics” data. Third, flux-
balance analysis (FBA) assumes a metabolic steady state, such
that metabolite concentrations are constant in time. However,
titrating metabolites is known to affect the pH-dependent beha-
vior of some enzymes42,43, adding complexity to the prediction
and integration of such pH-activity profiles. Thus, improvements
of the method should include more explicit considerations of
metabolite concentrations, along with the effects of allostery and
cooperativity, which require structural biology considerations44.
Fourth, our knowledge-driven, homology-based pipeline might be
improved by distinguishing enzyme isoforms having very differ-
ent pH-activity profiles45, and further refined by predicting cri-
tical points of half and none activity, where less experimental data
are available (Supplementary Figure 1).

Our analysis provides an additional insight into cancer evo-
lution. Ion gradients represent an ancient form of chemiosmotic
energy production, observed in hydrothermal vents46, as well as
in a wide range of life forms, from LUCA47 to bacteria48. Such
gradients are considered a primitive mechanism relative to
respiratory oxidative reactions46,49,50, and they allow cells to cope
with a variety of environmental extremes51. Hence, our findings,
indicating that intracellular alkalization is coupled to the War-
burg effect, may also reflect cancer’s general embracing of pri-
mitive unicellular strategies for proliferation2.

Importantly, the computational methodology presented herein
extends well beyond the realm of cancer. In particular, pH reg-
ulation plays crucial roles in immunity and bacterial antibiotic
resistance52,53, and affects the population diversity and functions

of unicellular communities54, as well as the function of nerve cells
and the brain55,56. Hence, this study also provides a computa-
tional and conceptual framework for exploring the consequences
of pH regulation, and its therapeutic potential across a broad
spectrum of biomedical domains.

Methods
Reconstruction of pH-activity profiles. A detailed description of the recon-
struction of pH-activity profiles is provided in Supplementary Methods. Briefly,
dependency of enzymatic activity on pH was obtained from experimental data in
BRENDA (brenda-enzymes.org)30. As shown in Fig. 1a, for each enzyme we
extracted six critical points, corresponding to the lower (acidic) and upper (alka-
line) limits of 0%, 50%, and 100% of activity. Experimental points of 100% activity
were mainly obtained from the ‘pH Optimum’ field in BRENDA. 0% and 50%
points were fetched from the ‘pH Range’ category, after manual curation: records
reporting activities up to 25% were approximated to 0%; activities from 25% to 75%
were set to 50%; and activities above 75% were set to 100%. When more than one
record was available, we extracted the median value.

The vast majority of experimental values corresponded to 100% of activity, i.e.,
the optimal pH (Supplementary Figure 1). To impute missing critical points, linear
regressors were built based on experimental data and values of close homologs. The
enzymes in the Recon1 GSMM were then screened against this pH-profile database
using JackHMMER57. These analyses provided the critical points of enzyme
activity for 1444 of the 1905 metabolic genes (76%). To control for over-fitting, our
predictions were then validated with three training/test split protocols of increasing
merit, i.e., first with a standard 10-fold cross-validation, then by removing all
human enzymes from the training sets, and finally by also removing EC
information (Supplementary Figures 5–7).

Given the 0%, 50%, and 100% critical pH points, the percentage of activity of an
enzyme at any given pH was linearly interpolated. Metabolic enzymes without a
predicted profile were conservatively given a constant activity of 100%, such that no
constraints were applied to them in the GSMMs.

Genome-scale metabolic modeling and application of pH-activity profiles. We
applied the pH-activity profiles into a panel of recently developed, data-driven and
extensively validated cell-specific GSMMs27,28, which are based on the human
GSMM58 that is comprised of the NCI-60 cell lines panel (n= 60) and the normal
healthy lymphoblastic cell lines from the HapMap project (n= 224). Briefly, these
models integrate gene expression and proliferation data of each cell line to adjust
the human metabolic model, by identifying the most significant reactions that
correlate with the corresponding phenotypic data of each cell. These panels of
models capture key differences between cancer and normal cells, including the
Warburg characteristics. Moreover, these models have identical network archi-
tecture, number of metabolites and reactions, and are modeled under identical
media composition (e.g., DMEM or RPMI-1640); hence, they are ideal for com-
parative analysis.

Given the need to solve the solution space in each model across a wide range of
pHi (6.5–8.5), we selected for analysis from the panels above: (i) a set of eight
cancer models, representative of the eight different cancer types that exist in the
NCI-60 panel: LE:CCRF-CEM, BR:BT-549, CNS:SF539, CO:HCC2998, RE:ACHN,
LC:NCI-H226, OV:OVCAR-5, and ME:SK-MEL-5. Cells were randomly selected
from the available subsets of each cancer type in the NCI60 panel; and (ii) a control
set of 12 normal cells from the HapMap project panel: 5 Americans with northern
and western Europe ancestry, 2 Han Chinese, 2 Japanese, and 3 Yoruba, such that
they represent the diversity of subjects in this panel. These sets were sufficient for
in silico analysis, as exemplified by the error bars of the simulated rates (Fig. 2, and
Supplementary Figures 8–12).

CBM of metabolic networks. The CBM approach imposes mass-balance, ther-
modynamic, and enzymatic capacities constraints to define the allowable functional
states of biochemical genome-scale model59. These constraints can be mathema-
tically represented as

dx
dt

¼ S � v ¼ 0 ð1Þ

vmin � v � vmax ð2Þ

where v is the network’s flux vector and S is the m × n stoichiometric matrix, and
where m and n are the number of metabolites and reactions, respectively. The
matrix specifies all biochemical reactions and metabolites in the network. Con-
straint (1) assures steady state, where the production and consumption rate is equal
for each metabolite in the network. Constraint (2) imposes thermodynamic and
enzymatic capacities by defining the bounds of the permissible flux of each reac-
tion. In a given metabolic state, the flux that a reaction can carry is then estimated
using FBA and flux-variability analysis (FVA)60, taking its maximal flux as a proxy
for its catalytic activity. Similarly, cell proliferation is estimated as the maximal flux
carried by the biomass reaction in the GSMM, which represents the cell growth
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yield. Since the cells we model are highly proliferative, we constrained cell pro-
liferation (i.e., the objective function) to be larger than 80% of its maximum to infer
the activity of all other reactions. The results reported here are robust with respect
to the choice of this threshold in the tested range of 70–90% (Supplementary
Figure 9).

Integration of pH-activity profiles into GSMM. The pH-profiles of Fig. 1 were
applied to adjust the bounds of each reaction in the GSMM, at a given pHi,
inspired by a similar approach to explore the effects of temperature within the
framework of GSMM61. This is accomplished in three steps. First, at a given pHi,
the activity of genes relative to their maximal activity defines a pH-specific activity
of each gene, WG= [0, 1]. Second, considering the WG of all genes, we infer the
activity of all reactions, based on the embedded genes-reactions logical rules that
are associated with each reaction. For an “AND” logic the minimal WG is assumed,
and for an “OR” logic the maximal WG is assumed. Hence, this generates a weight
factor, WR= [0, 1], for each reaction R. Third, the upper and lower bounds of
reaction R are scaled by WR. For a bi-directional reactions (vmax ≥ 0 and vmin ≤ 0)
the new lower bound is LB=WR × vmin and the new upper bound is UB=WR ×
vmax. To avoid invalid ranges of bounds, for a forward reaction (vmax > vmin ≥ 0)
only the upper bound is scaled by WR, ensuring that UB ≥ vmin. Similarly, for a
reverse reaction (vmin < vmax ≤ 0) only the lower bound is scaled by WR, ensuring
that LB ≤ vmax. We assume that cellular organelles are well buffered and therefore
applied these modifications only to cytosolic enzymes. Nonetheless, the results
reported here are only weakly insensitive to this choice (Supplementary Figure 12).

Gene KO simulation and analysis. The KO of a gene G is simulated by settingWG

to 0–0.1, representing an inhibition of activity of 100–90%, respectively (WG= 0 in
the main analysis). The effect of a gene KO on cell proliferation is estimated by
nBKO,pH= BKO,pH/BWT,pH, where BWT,pH is the biomass of the WT at a given pH,
and BKO,pH is the biomass of the cell following gene KO at this pH. To assess the
importance of a gene KO, two ranking measures were introduced:

(i) SEL, which measures the difference in cell proliferation between cancer and
normal cells following gene KO. Hence, SEL ¼ nBNormal

KO;pH � nBCancer
KO;pH. The

larger SEL the more selective is the gene KO.
(ii) PHS, which measures for a given cell (i.e., normal or cancer cell) how potent

the effects of a gene KO are at ‘low’ pH (pH= 6.7) when compared with
its effect at ‘physiological’ pH (pH= 7.3). Hence, PHS ¼ nBKO;pH¼7:3�
nBKO;pH¼6:7. The larger PHS value, the higher is the effect of the gene KO at
low pH compared with its effect at the higher pH.

The SEL is evaluated across all cancer–normal pairs (n=8 × 12= 96). The PHS
is evaluated across all cancer cells (n= 8). To avoid numerical precision effects we
set any measured flux in each cell and each reaction to zero, if following GSMM
optimization the flux rate was below a strict threshold of |1e−7|. That is, reported
identified targets are those with normalized average scores >|1e−7|. Further, a
minimal recurrence frequency of 12.5% was set as a minimal threshold, such that at
the extreme targets must have non-zero scores in at least one cancer cell type when
compared across all normal cells (12/96 for selectivity; 1/8 for pH specificity). The
ranking of genes by either SEL or PHS is highly robust within the gene inhibition
range tested, WG= [0, 0.1], and is insensitive to the exact choice of ‘low’ pH
(Supplementary Figure 11).

Measurement and manipulation of intracellular pH using SNARF-1. Forty-eight
hours before the experiments, 5000 cells were grown onto round-glass bottom 25
mm cell culture dishes in DMEM/F12 medium supplemented with 10% FBS. For
hypoxia experiments, culture dishes were transferred to hypoxia machine with
0.1% O2. The day of the experiment media was removed and replaced by fresh
DMEM serum-free medium with 5 µM SNARF-1, the pH fluoroprobe. Cellular
esterases cleave the succinimidyl ester groups leaving the charged free-acid form of
SNARF-1 in the cytosol. For loading of SNARF-1, cells were incubated for 30 min
at 37 °C followed by three washes of DPBS. Fluorescence images of cells were
obtained using 40× and 63× objective using oil immersion lenses. SNARF-1 was
excited at 534 nm, and emission signal was collected at 580 nm (long bandpass
filter) and 640 nm. For short-term hypoxia (1–30 min) pHi was measured before
hypoxia and every 5 min after hypoxia using a confocal microscope equipped with
a hypoxia chamber and CO2 supply at 37 °C. After background subtraction, the 640
and 580 nm channels are used to measure ratiometric pHi, as specified by the
manufacturer.

For in situ calibration, SNARF-1 loaded cancer cells were incubated with 10 μM
nigericin in the presence of 100 mM K+ to equilibrate the intracellular pH with the
controlled extracellular medium. Calibration in living cells removes light dispersion
side effects. Images were then collected as extracellular pH is varied with the same
instrument settings for all calibrations and experiments. To evaluate the effect of
long-term hypoxia and MCT1/2 inhibitor treatment on steady-state cytosolic pH,
cells growing on round-glass bottom culture plates were treated with or without
inhibitor under normoxic and hypoxic conditions (0.1% O2) for 48–72 h. To
measure the effects of acidosis on pHi, cells were incubated in low pH (6.7) media
for 72 h and pHi was measured using SNARF-1. Cells grown under physiological
pH (7.4) were used as a control. Intracellular pH was calculated by the formula pH

= pKa−log [(R−Rmax)/(Rmin−R)]; wherein R is the measured 580/640 fluorescence
ratios, and pKa, Rmin, and Rmax were determined to be respectively, 7.30, 2.54, and
0.56, from the in situ calibration curves for MCF7 breast cancer cells.

To evaluate the effect of MCT1/2 and NHE1 inhibitor treatment on steady-state
cytosolic pHi of naïve and AA MCF7 cells, and of naïve and AA MDA-MB-231
breast cancer cells, the cells were grown in glass bottom culture plates (25 mm) and
incubated for 24 h. Media was then replaced with fresh media containing 1 μM
MCT1/2 or 10 μM NHE1 inhibitor, and plates were placed in 37 °C incubator
under hypoxia (0.1% O2) and normoxia as control. The data were from three
independent experiments, each performed in triplicate and with at least 30 single
cells/plate. Data are shown as mean and the error of the mean (standard deviation).

siRNA transfection. Breast cancer cells were seeded at 5000 cells per well in 96-
well plates or 500,000 cells in a six-well plate 24 h before transfection. Two different
sets of siRNA from two different companies (validated siRNA from Thermofisher
and Dharmacon) were used to knockdown the targets. GAPDH, GPI, PFAS,
ACAT2, RPIA, or negative control siRNAs were transfected using Lipofectamine
RNAiMAX (Invitrogen) and a reverse transfection technique. In brief, in reverse
transfection siRNA/Lipofectamine complexes in serum-free media were loaded
into the wells and cells were then added to them to promote efficiency of trans-
fection. 4 h after transfection, media with 10% FBS was added. Following trans-
fection cells were incubated in 37 °C in normoxia (20% O2) or hypoxia (0.1% O2)
and normal pHe (7.4) or low pHe (6.5) while treated with MCT1/2 or NHE1
inhibitors to reduce the pHi.

Western blot analysis. To validate the efficiency of siRNA knockdown at the
protein level, and to assess the status of MCT1 and MCT4 expression in naïve and
acid adapted MCF7 breast cancer cells western blots were performed. Cells
transfected with siRNAs were harvested 48–72 h after transfection and lysed in
RIPA buffer containing 1× protease inhibitor cocktail (Sigma-Aldrich). 20 μg of
protein per sample was loaded on polyacrylamide–SDS gels that were then blotted
onto nitrocellulose. Membranes were incubated with primary antibodies against
GAPDH (Cat# 2118 Cell Signaling, 1:2000), GPI (ab68643, Abcam, 1:1000),
ACAT2 (Cat# 13294s Cell Signaling 1:1000), RPIA (ab181235, abcam, 1:500),
PFAS (PA554628, Thermofisher, 1:200), MCT1 (sc-365501, Santa Cruz Bio-
technology, 1:500), MCT4 (sc-376140, Santa Cruz Biotechnology, 1:500), and β-
Actin (A5441, Sigma, 1:6000). Odyssey fluorescence system and chemilumines-
cence were used for membrane development. Proteins detected ran at the expected
molecular weights, as verified using molecular weight standard markers. Uncrop-
ped western blots that were used for the data presented in Fig. 3b, Fig. 4b, Sup-
plementary Figure 15B, and Supplementary Figure 16B are provided in
Supplementary Figure 18. Western blot analyses were repeated at least twice.

qRT-PCR analysis. To confirm the efficiency and selectivity of siRNA-mediated
knockdown, cells were harvested 48 h post-transfection and RNA was extracted using
a RNA extraction kit (Qiagen). GAPDH-specific primer sets were as follows: forward,
5′-CTGGCATCATGTATTTAGGGGC-3′; and reverse, 5′-GAGTTGCGCCTGTCA
GAAAC-3′. GPI primer sets were as follows: forward, 5′- TCGCCCAACCAACTC
TATTG-3′; reverse, 5′-GATGATGCCCTGAACGAAGAT-3′. β-Actin was used for
normalization of PCR results. β-Actin primer sets were as follows; forward, 5′-CG
GCATCGTCACCAACTG-3′; reverse, 5′-GGCACACGCAGCTCATTG-3′. RPIA-
specific primer sets were as follows: forward, 5′-AGTGCTGGGAATTGGAAGT
GG-3′; reverse, 5′- GGGAATACAGACGAGGTTCAGA-3′. PFAS-specific primer
sets were as follows; forward, 5′-CCCAGTCCTTCACTTCTATGTTC-3′; reverse, 5′-
GTAGCACAGTTCAGTCTCGAC-3′. ACAT2-specific primer sets were as follows:
forward, 5′-GCGGACCATCATAGGTTCCTT-3′; reverse, 5′-ACTGGCTTGTCTA
ACAGGATTCT-3′. The qRT-PCR experiments were repeated twice with at least
three replicas each time.

Proliferation studies. Cells treated with siRNA were seeded at 1 × 105/ml in six-
well plates in triplicate and counted on an Invitrogen cell counter following trypan
blue dye staining to determine the number of living and dead (blue) cells. Briefly,
cells cultured for the indicated intervals under the four growth conditions (nor-
moxia, pH 7.4; normoxia, pH 6.7; hypoxia (0.1% Oxygen), pH 7.4; hypoxia (0.1%
oxygen), pH 6.7) were trypsinized and diluted in their growth media. A filtered
0.4% trypan blue dye solution was prepared and added 1:1 to count the cells with
an Invitrogen Cell Counter. siRNA treatment was renewed after each round of cell
counting (every 72 h). Proliferation experiments were repeated three times with at
least two replicates for each sample. The identity of the cancer cell lines used in
these studies was confirmed by STR analyses performed by the Molecular Geno-
mics Core of the Moffitt Cancer Center.

Viability assays. Cell viability was measured after 72 h post treatment with target
siRNAs using Cell Counting Kit-8 (CCK-8) under the four growth conditions and
following transfection with siRNAs for GPI, GAPDH, PFAS, RPIA, ACAT2, or
siCtrl and with and without treatment with the MCT1/2 inhibitor SR-1380035.
CCK8 is a sensitive colorimetric-based viability assay based on Dojindo’s highly
water-soluble tetrazolium salt, with WST-8 as its active agent. CCK8 was used to
measure viability as it is not pH sensitive and can be added to the cells directly in
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their niche, without fixation or change of media. For measuring viability, cells were
seeded in a 96-well plate (with triplicate of the same samples), and viability was
measured at the indicated intervals. The experiments were repeated three times.

Glycolytic and OCR measurements. Glycolytic rate of MCF7 and AA-MCF7
cancer cells treated with siRNAs and NHE1 inhibitor was measured using Seahorse
XF96 extracellular flux analyzer and a glycol-rate kit (Seahorse Biosciences). OCR
and ECAR of cancer cells were determined by seeding them on XF96 microplates
in their growth medium until they reached over 90% confluence. In these studies,
seeding started with 10,000 cells (50% of well area) and reverse transfection was
applied. Measurements were determined 48–72 h later when the cells reached the
90% confluence. 1 h before the seahorse measurements culture media were
removed and cells were washed three times with PBS following by addition of base
medium (non-buffered DMEM supplemented with 25 mM glucose). For glycolytic
rate measurements, mitochondria inhibitors including rotenone (1 μM) and anti-
mycin A (1 μM), were injected after basal measurements of ECAR and OCR of the
cells under treatment to stop the mitochondrial acidification. 2-deoxy-glucose (100
mM) was added next to bring down glycolysis to basal levels. Finally, data were
normalized for total protein content of each well using the Bradford protein assay
(Thermofisher). Seahorse measurements were performed with 4–6 technical
replicates and these experiments were repeated four times.

Code availability. All the analysis was done in MATLAB 2016b under academic
license to UMD/UMIACS/CBCB. MATLAB files, including the algorithm which
integrates pHi profiles into the GSMMs, the cell line models used in this study, as
well as analysis scripts which reproduce the in silico results are provided as Sup-
plementary Software.

Data availability. pH profiles were obtained from BRENDA. Human GSMMs of
cancer and normal cell lines were obtained from ref. 28 (https://elifesciences.org/
articles/03641/figures#SD4-data). Human metabolic enzymes in the human gen-
ome scale metabolic model, and their inferred pHi profiles are provided in Sup-
plementary Data 1. Any additional data is available upon request from the authors.
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