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Background: Alzheimer’s disease (AD) is themost common formof dementia in

old age and poses a severe threat to the health and life of the elderly. However,

traditional diagnostic methods and the ATN diagnostic framework have

limitations in clinical practice. Developing novel biomarkers and diagnostic

models is necessary to complement existing diagnostic procedures.

Methods: The AD expression profile dataset GSE63060 was downloaded from

the NCBI GEO public database for preprocessing. AD-related differentially

expressed genes were screened using a weighted co-expression network and

differential expression analysis, and functional enrichment analysis was

performed. Subsequently, we screened hub genes by random forest,

analyzed the correlation between hub genes and immune cells using

ssGSEA, and finally built an AD diagnostic model using an artificial neural

network and validated it.

Results: Based on the random forest algorithm, we screened a total of seven

hub genes from AD-related DEGs, based on which we confirmed that hub

genes play an essential role in the immune microenvironment and successfully

established a novel diagnostic model for AD using artificial neural networks, and

validated its effectiveness in the publicly available datasets GSE63060 and

GSE97760.

Conclusion: Our study establishes a reliable model for screening and

diagnosing AD that provides a theoretical basis for adding diagnostic

biomarkers for the AD gene.
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Introduction

Relevant studies have shown that in 2018 the prevalence of dementia is about

50 million people worldwide and is expected to triple by 2050 (Scheltens et al., 2021).

Alzheimer’s disease (AD), the most common form of dementia, is a significant threat to

the health and lives of older adults, with initial symptoms of memory loss, decreased
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verbal skills, and impaired logical thinking (Sabayan and

Sorond, 2017). The onset of AD is insidious, and some

pathophysiological changes are thought to occur years or

even decades before the clinical diagnosis of dementia

(Morris, 2005). It was not until 2011 that the concept of the

preclinical stage of AD was explicitly introduced in the NIA-AA

diagnostic criteria for Alzheimer’s disease (Sperling et al., 2011).

The introduction of this concept is critical and suggests that

interventions can be made in the preclinical stage of AD to

ultimately delay the disease’s progression.

The latest NIA-AA AD diagnostic framework-ATN

framework (Jack et al., 2018), officially published in 2018, is

considered promising for the early identification of disease

development in the preclinical phase of AD. In this framework,

the diagnosis of AD is determined by the biomarkers Aβ and tau.

Still, the framework is currently only used for scientific research

and is not widely used in the clinic. Therefore, how identifying and

diagnosing early becomes an urgent problem for us.

Genetic factors are considered a significant risk for

Alzheimer’s disease, accounting for 60%–80% of the disease

(Gatz et al., 2006). In addition to the well-known APEε4 risk

alleles, there are many genes involved in AD that we do not

recognize (Jansen et al., 2019). Second-generation sequencing

technology has revealed the potential of some of these genes in

the development of AD, such as SORL1 (Holstege et al., 2017),

ABC47 (Bossaerts et al., 2021), TREM2, and R47H (Cheng-

Hathaway et al., 2018; Sudom et al., 2018). With the development

of science and technology, bioinformatics analysis has been

widely used in diseases. Weighted co-expression networks

(WGCNA) have become the most prevalent gene screening

tool. They have been validated in numerous conditions by

constructing free-scale gene co-expression networks to explore

the association between clinical features and genes with co-

expression patterns. In addition, some machine learning

algorithms have been gradually introduced into medical

research. Random Forest (RF) algorithms have been applied

in acute myeloid leukemia (Shi and Xu, 2019), ALS (Hothorn

and Jung, 2014), and cardiovascular diseases (Yang et al., 2020).

Artificial neural networks have also demonstrated their powerful

functions in medical research applications. Some scholars have

validated diagnostic models for ulcerative colitis and heart failure

(Li et al., 2020; Tian et al., 2020). Using WGCNA combined with

machine learning to analyze AD biological data to find AD

susceptibility genes may be a breakthrough.

In this study, we identified datasets of AD serological sources

in the GEO database, used WGCNA with differential expression

analysis to screen out differentially expressed genes (DEGs)

between AD and normal control samples from them, and

applied the random forest algorithm to screen out hub genes,

constructed an artificial neural network AD diagnostic model,

and further analyzed the role of hub genes in the immune

microenvironment to provide early identification and

intervention of AD and a better understanding of the

molecular immune mechanisms provide new perspectives. The

technical route is shown in Figure 1.

Materials and methods

Download and processing of expression
spectrum data

In this study, the AD gene expression profile datasets

GSE63060, GSE63061, and GSE97760 were downloaded from

Gene Expression Omnibus (Table 1). The annotation

information of the microarray probes was obtained through

the soft annotation list of the corresponding platform.

Multiple probes corresponding to the same gene symbol may

be encountered during the annotation of probe data. We use the

average probe expression as the gene expression level. The

process is annotated through a Perl language script (https://

www.perl.org/).

Principal component analysis

To analyze the distribution of samples in the expression

profiling dataset GSE63060 and the differences in gene

expression between samples. We first performed a z-score on

the expression spectrum, further performed dimensionality

reduction analysis using the prcomp function to obtain the

reduced matrix, and visualized the results. The results of PCA

(Figure 2) show that there is little variability between the AD and

CTL groups, so constructing a diagnostic model is necessary. We

have invoked the R package stats (version 3.6.0) for the above

procedure.

Differential expression analysis

We performed differential expression analysis on the

expression profiling dataset GSE63060 for differential

expression genes between the AD and CTL groups with the R

package limma (version 3.40.6) (Ritchie et al., 2015). The

significance criteria for DEGs were set to FoldChang >1.2 and

adjusted p-value < 0.05. Heatmaps of DEGs were implemented

by the pheatmap package (version 1.0.12), and differentially

expressed genes were represented by volcano maps

constructed by the ggplot2 package (version 3.3.5).

Construction of weighted gene co-
expression network analysis

First, the obtained expression profile matrix was read in.

The MAD value, also known as median absolute deviation,
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was calculated separately for each gene. The first 50% of

genes with the smallest MAD values were eliminated. The

goodSampleGenes function of the R package WGCNA was

used to eliminate outlier genes and samples, on which the

scale-free co-expression network was further constructed.

The genes were then hierarchically clustered to identify

modules. Pearson’s correlation analysis determined

correlations between clinical phenotypes and the resulting

modules. Among all the obtained modules, we selected the

most correlated modules with the normal control group

(CTL group) and AD group for further analysis. The

genes in the key modules were those that met the

following criteria: gene significance (GS) > 0.1 and

module membership (MM) > 0.8.

Overlapping weighted co-expression
networks-related module genes with
differential expression genes

The 200 Differential Expression genes obtained from the

differential expression analysis overlapped with the WGCNA

correlation module genes. Venn (Bardou et al., 2014) diagrams

were used to visualize the results.

FIGURE 1
Technology route. Abbreviations: AD, Alzheimer’s Disease; CTL, Healthy Control; WGCNA, Weighted Gene Co-expression Network Analysis;
ANN, Artificial Neural Network.

TABLE 1 Dataset information from the GEO database.

Location Dataset ID Platform Type Number

Blood GSE63060 GPL6947 Microarray 104 control vs. 145 AD

Blood GSE63061 GPL10558 Microarray 134 control vs. 139 AD

Blood GSE97760 GPL16699 Microarray 10 control vs. 9 AD
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Screening for hub genes using random
forest

Random forest models for differentially expressed genes

were constructed using the randomForest package (version

4.6–14). First, the number of decision trees needed to achieve

the highest model accuracy in cross-validation was

calculated based on the expression matrix of differentially

expressed genes. Second, the random forest model was

constructed. The importance value scores of dimensions

were obtained from the random forest model using the

Gini coefficient method. Genes with an importance value

greater than two were identified as hub genes for subsequent

analysis. The hub genes were clustered, and heatmaps were

drawn with the pheatmap package (version 1.0.12).

Correlation analysis between hub genes
and immune characteristics

To determine the role of hub genes in the immune

microenvironment, we analyzed the correlation between

them and immune cell infiltration by applying the ssGSEA

approach to analyze the proportion of 28 different immune

cell distributions and infiltration scores in each sample of the

dataset GSE63060. Pheatmap package (version 1.0.12) was

used to map the immune cell distribution maps. Further, the

voplot package (version 0.3.7) was used to present the

differences in immune cell infiltration scores between the

CTL and AD groups. Finally, we used the Spearman

correlation test to assess the correlation between hub genes

and immune cells and visualized the results using the

ggplot2 package (version 3.3.5).

Construction and validation of artificial
neural network models

The hub genes expression matrix obtained was extracted,

and the data were first scaled by Min-Max processing. An

artificial neural network model was constructed using the R

package Neuralnet (version 1.44.2). The parameters were set

FIGURE 2
Principal component analysis.

FIGURE 3
(A) The differential expression analysis results are shown in
the volcano plot. Where the x-axis represents log2 (fold change)
and the y-axis represents -log10 (adjust p. value). Green triangles
represent downregulated genes, red triangles represent
upregulated genes, and black dots represent genes with no
obvious differential expression. (B) Heatmap of the top
50 differentially expressed genes. Each column in the graph
represents a sample, each row represents a gene, and the
expression status of the genes is indicated from high to low in
brown to green, respectively, and at the top of the heat map, blue/
red represents the AD group/CTL group, respectively.
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FIGURE 4
WGCNA of AD dataset GSE63060. (A) Scale-free index for analyzing the power of various soft thresholds. The horizontal coordinate represents
the power of soft thresholds, and the best soft threshold is marked with an asterisk. (B) Average connectivity of various soft thresholds. (C)
Identification of co-expressed gene modules. A dendrogram of all differentially expressed genes was clustered based on a measure of gene
similarity. Cut lines of modules were identified, and a different color indicated each module. (D) Heat map of the correlation between modules
and clinical phenotypes. Each row represents a module; each column represents a clinical trait. Each cell indicates the correlation between the

(Continued )
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to five hidden layers, the neural network algorithm obtained

the gene weight information, and the disease classification

score Neural AD was obtained using “Gene Expression” ×

“Gene_Weight.” The model was visualized using the software

package NeuralNetTools (version 1.5.2). Finally, the

classification performance of the artificial neural network

model was evaluated using the pROC package (version

1.18.0) and the ggplot2 package (version 3.3.5) to calculate

the AUC scores and plot the ROC curves. Two independent

datasets, GSE63060 and GSE97760, were used to validate the

accuracy of the artificial neural network model, while ROC

curves were plotted and the area under the curve AUC was

calculated.

Results

Differential expression analysis

The volcano plot (Figure 3A) shows that after differential

expression analysis, we screened 200 differential expression genes

(Supplementary Material S1), including 179 downregulated

genes and 21 upregulated genes. The heat map (Figure 3B)

shows the expression status of the top 50 differential

expression genes.

Construction of weighted gene co-
expression network analysis and
identification of core modules

Before performing the analysis, we first processed all pairs of

genes using the Pearson correlation matrix and the average

linkage method. Then, a weighted adjacency matrix is

constructed, which is built by a power function, and we

usually use the formula.

A mn � |C mn|β

Where C_mm is the Pearson correlation coefficient between gene

m and gene n, and A_mn is the adjacency relationship between

gene m and gene n. An important parameter in the construction

of the weighted adjacency matrix is the soft threshold parameter

β, which effectively emphasizes correlations between genes and,

at the same time, penalizes weak correlations between genes. This

study determines the soft threshold parameter as 6 (Figures

4A,B). Immediately after, we transformed this adjacency into

a TOMmatrix (topological overlap matrix), which better reflects

the connectivity and adjacency between genes, and 1-TOM was

defined as the difference between genes. To group genes with

similar expression characteristics into the same module, we

clustered genes in an average linkage hierarchy based on the

dissimilarity measure of the TOM matrix. We set the minimum

number of genes in the gene dendrogram to 30. We chose a cut

line for the module dendrogram, calculated the similarity of

module feature genes, and merged some similar modules to

better delineate the modules (Figure 4C). After a series of

calculations, we finally obtained 20 co-expression modules

and visualized the correlation between modules and clinical

FIGURE 5
A total of 134 DEGs were screened for further analysis. Red
represents 335 genes in the module with the strongest correlation
to the CTL group, blue represents 284 genes in the module with
the strongest correlation to the AD group, and the green
represents 200 genes obtained from differential expression
analysis. Abbreviations: AD (Alzheimer’s Disease), CTL (Healthy
Control), DEGs (Differential Expressed Genes).

FIGURE 4
module and the clinical phenotype. The corresponding cor value and p-value are labeled therein. The brown and dark green modules have the
strongest correlation with AD, and the brown module and plum1 module have the strongest correlation with CTL.(E) Correlation between module
membership (MM) and gene significance (GS) in the AD correlation module. r denotes the absolute correlation coefficient between GS and MM.(F)
Correlation between module membership (MM) and gene significance (GS) in the CTL correlation module. r denotes the absolute correlation
coefficient between GS and MM. Abbreviations: WGCNA (Weighted Gene Co-expression Network Analysis), AD (Alzheimer’s Disease), CTL (Healthy
Control).
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FIGURE 6
The GO and KEGG enrichment analysis results of 134 DEGs are shown as bubble and circle plots. (A) Shows the top 10 significantly enriched BP
(biological process). (B) Shows the top 10 enriched CC (cellular component) considerably. (C) The top 10 enriched MF considerably (molecular
function) are shown. (D) The top 10 significantly enriched KEGG pathways. In the bubble plot of GO and KEGG enrichment analysis, the x-axis
represents the GeneRatio, the y-axis represents the -log10 (FDR) value, the bubble size represents the number of genes, and the color shades
represent the size of the FDR value. The linkage between the left and right sides indicates the correlation between DEGs and terms. Abbreviations:
DEGs (Differential Expressed Genes), GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes).
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FIGURE 7
(A) Plot of decision tree versus error. The x-axis represents the number of decision trees; the y-axis represents the error. (B) Screening of hub
genes by Gini coefficient method. The X-axis represents the importance index, the y-axis represents the DEGs, and all DEGs are ranked according to
the “mean reduction Gini coefficient.” The higher the value, the closer the relationship between the gene and the disease.

FIGURE 8
The clustering heatmap shows the clustering results of the seven hub genes screened by the random forest algorithm in the GSE63060 dataset.
The brown color represents the highly expressed genes in the samples, the green color represents the lowly expressed genes in the samples, the blue
color at the top of the heat map represents the AD group samples, and the red color represents the CTL group samples.
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FIGURE 9
Immune infiltration landscape between AD and CTL obtained by ssGSEA analysis. (A) Heat map summarizing the scores of immune cell
infiltration between AD patients and non-AD patients. (B) Violin plot showing the difference in immune cell infiltration between AD (red) and CTL
(blue), p < 0.05, was considered statistically significant. (C) Shows the correlation between hub genes and immune cells. The colors from brown to
green represent the change from positive to negative correlations, respectively. More asterisks and darker colors of the modules represent
stronger correlations.
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features using the form of a heat map (Figure 4D). Notably, the

grey module was considered a set of genes that could not be

assigned to any module. From the correlation heat map of clinical

phenotypes and modules, we could learn that the brown module

negatively correlated with age and AD groups. In contrast, the

genes in the mediumpurple3 module were differentially

expressed between genders. The correlation between modules

and clinical features was used to estimate the association of

modules with features. Two methods were used to identify the

key modules of the network. In the first method, Pearson

correlation coefficients were calculated between the ME of

each module and each clinical trait, allowing the identification

of modules significantly associated with traits (p<0.05). In the

second approach, the Pearson correlation coefficient [gene

significance (GS)] between the expression level of each gene

and each clinical trait was calculated; then, the mean absolute

value GS of all genes in the module was calculated. The larger the

mean total value, the stronger the correlation between the

module and the clinical trait.

Also, we plotted the scatter plot of GS and MM correlations

for each module (Figure 4E). Combining Figure 4D as well as

Figures 4E,F, we can see that the brown module (cor = −0.21, p =

1.1e-4) and the dark greenmodule (cor = 0.14, p = 9.8e-3) had the

highest correlations with the AD group, and a total of 284 genes

were extracted from these two modules (Supplementary Material

S2). In contrast, the brown module (cor = 0.47, p = 4.3e-19) and

the plum1 module (cor = −0.28, p = 3.4e-7) had the highest

correlation with the CTL group, with a total of 335 genes

extracted in the same way (Supplementary Material S3). The

effect of clinical phenotype on module genes was also considered

in the extraction of genes.

Overlapping weighted co-expression
networks-related module genes with
differential expression genes

We overlapped the genes derived from the genes obtained in

the WGCNA analysis (335 genes in the CTL group-related

module and 284 genes in the AD group-related module) and

the 200 differentially expressed genes obtained in the differential

expression analysis, and a total of 134 DEGs were screened for

further analysis. The results were visualized by the Venn diagram

(Figure 5) and recorded in the table (SupplementaryMaterial S4).

Kyoto encyclopedia of genes and
genomes and gene ontology enrichment
analysis for overlapping differential genes

We performed GO and KEGG enrichment analysis on the

screened 134 DEGs. The results of our GO enrichment analysis

included BP (Figure 6A), CC (Figure 6B), and MF (Figure 6C).

GO-BP was mainly enriched in RNAmetabolic pathways such as

mRNA metabolic process, mRNA catabolic process, and RNA

catabolic process; GO-MF enrichment results showed DEGs

were primarily associated with nucleic acid binding, RNA

binding, structural constituent of ribosome, structural

molecule activity, oxidoreductase activity, acting on NAD (P)

H, and GO-CC analysis showed that these genes were

significantly enriched in ribosomal structures such as protein-

containing complex, ribonucleoprotein complex, catalytic

complex, etc. The results of GO enrichment (Supplementary

Material S5) indicate that DEGs play a role in ribosome function

and mitochondrial function.

The KEGG pathway shows (Figure 6D; Supplementary

Material S6)that DEGs are mainly involved in the “ribosome,”

“oxidative phosphorylation,” “thermogenesis,” “Parkinson’s

disease,” “NAFLD,” and “Alzheimer’s disease” pathways.

Random forest screening for Alzheimer’s
disease hub genes

We imported the expression profile files of 134 differentially

expressed genes into the random forest model. Before

calculation, firstly, we set the random seed to 123,456 and

calculate the number of decision trees needed to achieve the

highest accuracy of the model in cross-validation. The optimal

number of decision trees is 72 by operation. Next, we construct

the random forest model. Regarding parameter settings,

“importance” is the parameter for judging the importance of

variables, the “proximity” parameter is used to set the proximity

matrix for calculating the model, and “ntree” is used to set the

number of random forest decision trees. The importance score of

each gene in the random forest model was calculated using the

Gini coefficient method. Specifically, it is a method of decreasing

accuracy. The relationship between the random forest model

error and the number of decision trees is shown in the following

figures (Figures 7A,B). The genes with a better importance score

than two were selected as the hub genes for the subsequent

analysis. MRPL51, NDUFA1, NDUFS5, RPS25, SHFM1, RPA3,

and MAGOH, respectively. Among these genes, NDUFS5,

SHFM1, RPA3, and MAGOH have never been mentioned or

confirmed associated with AD development in studies.

We clustered the GSE63061 dataset and plotted a heat map

(Figure 8), confirming that the seven hub genes mentioned above

perform well in distinguishing between diseased and normal

samples.

Correlation analysis between hub genes
and immune characteristics

We quantified the immune infiltration scores of 28 immune

cells in the samples using the method of ssGSEA.We plotted heat
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FIGURE 10
Artificial neural network model building and ROC curve validation. (A) Visualization of the artificial neural network model has undergone
84,993 training sessions and contains five hidden layers and two output layers. (B) ROC curves of the training set GSE63060 dataset. (C) The
validation results of ROC curves in the validation set GSE63061 dataset. (D) The validation results of ROC curves in the validation set
GSE97760 dataset. The different color lines represent different genes.
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maps showing the distribution of immune cells in different

samples and the infiltration scores (Figure 9A; Supplementary

Material S7). The discrepancy in immune cell infiltration

between the AD and CTL groups was then computed and

visualized the results. The results showed (Figure 9B;

Supplementary Material S8) that the proportion of

CD56dim.natural.killer. Cells, MDSC, Monocyte, Natural.

killer.T.cells, and Regulatory.T.cells were substantially higher

in the AD group than in the CTL group. And many cells had

lower fractions than normal patients, such as Activated.B.cells,

Activated. CD4.T.cells, Activated. CD8.T.cells, Gamma.

delta.T.cells, Effector. memory.CD4.T.cells, Central. CD4.T.cell.

We analyzed the correlation between immune cell infiltration

scores and hub genes using Spearman correlation to explore the

role played by hub genes in the immune microenvironment and

the corresponding mechanisms. The results are shown

(Figure 9C): the seven hub genes identified by the random

forest algorithm were strongly correlated with the level of

immune cell infiltration, suggesting that these genes may play

a role in the development of AD by regulating the immune

microenvironment.

Construction and validation of artificial
neural network models

First, the expression profile data of the seven hub genes

identified by the random forest algorithm were imported.

Normalization of the input data was used to normalize the

data. The input variables were normalized through the input

nodes, and the normalized values fell between 0 and 1, or −1 to 1.

We chose min-max (0,1) and performed the extrapolation.When

choosing the parameters, we set the number of hidden layers to 5.

There is no fixed rule for the number of hidden layers and the

number of input neurons. The number of neurons is generally

between two-thirds of the input layer size and one-third of the

output layer size. In this study, the number of neurons is set to 7.

The training and validation sets used to train the model are

created randomly from the input data set. The purpose of the

training set is to calculate the importance value score (gene

weights) for each candidate gene. And the validation set is used to

test the classification performance of the model scores using the

expression of genes and gene weights. Finally, the formula was

used.

neural AD � Gene Expression × GeneWeight

The disease neural network classification score neural AD is

obtained. The specific training process is as follows:① The initial

value of the network weights is set to 0, and the function of each

node estimates the target variable value of the data. ② Compare

the error between the actual and estimated values and readjust

the bias of each weight according to the error value. Step ① is

repeatedly executed until the error between the actual and

calculated values is minimized, at which point learning is

stopped to obtain the best weights. The model’s training

process went through a total of 84,993 steps, and the

termination condition (reaching the threshold) was the

absolute partial derivative of the error function < 0.01. The

output results of the artificial neural network model and the

weight information of the candidate genes are shown in the table

(Figure 10A; Supplementary Material S9). The accuracy of the

artificial neural network model is reflected by the AUC values of

the hub genes, and the larger the value, the higher the accuracy of

the model is proved. We calculated the AUC values of the hub

genes (Figure 10B): MRPL51 (0.87), NDUFA1 (0.86), NDUFS5

(0.85), RPS25 (0.82), SHFM1 (0.83) RPA3 (0.83), and

MAGOH (0.81).

In addition, to further validate the accuracy of the ANN

model, two independent datasets (GSE63061 and GSE97760)

were selected for analysis. During the validation of the ANN

model accuracy using the independent dataset GSE63061, we

calculated the AUC values of seven hub genes using the same

method (Figure 10C): MRPL51 (0.74), NDUFA1 (0.76),

NDUFS5 (0.76), RPS25 (0.74), SHFM1 (0.73), RPA3 (0.73),

and MAGOH (0.62). It is worth noting that the AUC values

of the above genes remained significant when validated using the

independent dataset GSE97760 (Figure 10D) for MRPL51 (0.69),

NDUFA1 (0.77), NDUFS5 (0.74), RPS25 (0.79), SHFM1 (0.80),

and RPA3 (0.86), and MAGOH (0.78). The validation results

confirm that the ANNmodel has good classification performance

for AD and normal samples.

Discussion

In this study, we used a combination of bioinformatics

analysis and machine learning to obtain differential genes

(DEGs) for AD serology and did GO and KEGG enrichment

analysis. We got the following results from the enrichment

analysis of the obtained DEGs. GO analysis showed that

DEGs were significantly enriched in ribosomal and

mitochondrial functions. The KEGG pathway leads that DEGs

are mainly involved in “ribosome,” “oxidative phosphorylation,”

“thermogenesis,” “Parkinson’s disease,” and “non-alcoholic fatty

liver disease (NAFLD)” and “Alzheimer’s disease” pathways.

Previous studies have confirmed the role of the ribosomal

(Ding et al., 2005; Nyhus et al., 2019) and oxidative stress

pathways (Simunkova et al., 2019; Butterfield and Mattson,

2020; Zhang et al., 2020) in AD development, which deserves

further exploration.

Then seven hub genes MRPL51, NDUFA1, NDUFS5, RPS25,

SHFM1, RPA3, and MAGOH were obtained by a random forest

algorithm. Among these seven hub genes, NDUFA1 and

MRPL51 were considered potential biomarkers of AD in

previous bioinformatics analyses (Li et al., 2018; Liu et al.,

2021). NDUFA1 is an essential component of the human
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respiratory chain complex I. It is involved in mitochondrial

function and oxidative phosphorylation and is a critical

coding gene in the human body. Some studies have confirmed

that partial deletion of respiratory chain function may impair

ATP synthesis and chronic increase of oxidative stress (Carelli

et al., 2002). A survey of optic neuropathy also suggested that

reduced gene expression of mitochondrial proteins leads to

neuronal degeneration (Qi et al., 2003). Both studies indicate

that downregulation of the NDUFA1 gene in the serum of AD

patients is likely to lead to impaired oxidative phosphorylation

and partial deficiency of mitochondrial function, which is

ultimately involved in the disease development of AD. In

other studies, it has been suggested that RPS25 and AIF1 may

also play a role in AD development (Sanfilippo et al., 2020; Wang

et al., 2021). In contrast, one study confirmed that RPS25 is a

therapeutic target for neurodegenerative diseases caused by

nucleotide repeat amplification, which indirectly confirms the

role of RPS25 in the pathophysiological process of AD (Yamada

et al., 2019). However, few studies have mentioned or established

the association of NDUFS5, SHFM1, RPA3, and MAGOH genes

with AD development. NDUFS5 is a member of the iron-sulfur

family of NADH dehydrogenases (ubiquinone) and encodes a

subunit of the mitochondrial respiratory chain complex I

(Wirth et al., 2016). Previous studies have highlighted the

role of mitochondrial dysfunction in AD (Cai and

Tammineni, 2017; Perez Ortiz and Swerdlow, 2019), leading

us to speculate that NDUFS5 may be involved in the

pathogenesis of AD by affecting mitochondrial function and

oxidative phosphorylation processes. SHFM1 encodes the 26S

proteasome subunit, one of the proteasome components. Earlier

studies have confirmed the role of the proteasome in inhibiting

neurodegeneration and that impaired proteasome function

occurs in the early stages of AD (Keller et al., 2000; Cecarini

et al., 2007). The differential expression of SHFM1 in AD

patients is likely to be a manifestation of proteasome

dysfunction, offering the possibility of its use as a biomarker

for early screening of AD. RPA3 is a protein-coding gene mainly

involved in DNA repair and DNA replication. It has been

shown that disruption of DNA repair may lead to increased

DNA damage in AD patients and increase the risk of AD,

providing a theoretical basis for RPA3 as a biomarker for AD.

MAGOH is a protein-coding gene involved in the development

of the nervous system. Little research has been done on this

gene, and further studies are needed to elucidate its potential

association with AD.

We further constructed a diagnostic model for AD using

artificial neural networks based on the above seven hub genes.

We validated the efficacy of the model in two publicly available

datasets. The bioinformatics analysis combined with the

machine learning approach is the innovation of this study,

and good results were obtained. The random forest (RF)

algorithm is an emerging and high precision machine

learning algorithm that has been widely used in numerous

fields, and of course, its role in the medical field is also

exact. RF algorithms have been used for clinical diseases,

such as using random forests to identify biomarkers for

glioblastoma to find potential targets for treatment (Li et al.,

2021), building COPD risk prediction models (Perret et al.,

2021), and detecting and predicting type 2 diabetes (Muneeb

and Henschel, 2021), all with good results. An artificial neural

network is a new type of algorithm derived from imitating the

structure and function of the human brain, which has the

characteristics of self-learning ability and high efficiency

compared with the traditional machine learning algorithm. It

has also found many applications in clinical settings. Studies

have been using artificial neural network models to accurately

predict the risk of liver failure after hepatectomy in patients

with hepatocellular carcinoma who underwent

hemihepatectomy (Mai et al., 2020). Artificial neural

networks have also been used in AD for a long time. Some

scholars have applied artificial neural networks to the diagnosis

of AD based on the information contained in the digital images

of SPECT cerebral blood flow assessment (Świetlik and

Białowąs, 2019). There is a precedent for combining two

machine learning algorithms to diagnose and predict diseases

(Mozafari et al., 2020; Xie et al., 2020). Still, it is noteworthy that

no research has yet used this combination of the two in the field

of AD (Feng et al., 2021). Therefore, combining random forests

and artificial neural networks to build AD diagnosis models is a

bold attempt and an excellent complement to the existing

diagnosis methods. At the same time, our study revealed AD

susceptibility genes that may be involved in the regulation of

mitochondrial function and ribosomal pathways. We hope that

their essential value will be reflected in future studies.

Meanwhile, immunoassays showed that hub genes are closely

related to immune cell infiltration, confirming that

dysregulation of the immune microenvironment plays an

essential role in the pathogenesis of AD.

However, there are limitations to this study. First, AD is

highly heterogeneous, which affects our understanding and

judgment of the disease (Jellinger, 1996). Second, some AD

patients have other neurodegenerative lesions in combination,

affecting the model’s accuracy. And the data sample used in this

study is still insufficient, and the sample size needs to be

increased and further studied and optimized. Biological

experiments for critical steps may be more revealing, but they

cannot be completed at this time for objective reasons. In

subsequent studies, we will continue to analyze these genes to

further their upstream and downstream pathways to understand

AD’s biomolecular mechanisms better.

Conclusion

Using bioinformatics analysis and machine learning algorithm

modeling, we uncovered potential biomarkers of AD based on
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immune cell infiltration while constructing a random forest and

artificial neural network AD diagnostic model. We confirmed its

excellent classification performance in two independent datasets.

This study nicely complements the existing tools for early

screening and diagnosis of AD and reveals AD susceptibility

genes that may be involved in the regulation of mitochondrial

function and ribosomal function; and also provides new

perspectives for a better understanding of molecular immune

mechanisms and finding drug targets.
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