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Thrombosis is a major clinical complication of COVID-19 infection. COVID-19

patients show changes in coagulation factors that indicate an important role for

the coagulation system in the pathogenesis of COVID-19. However, the

multifactorial nature of thrombosis complicates the prediction of thrombotic

events based on a single hemostatic variable. We developed and validated a

neural net for the prediction of COVID-19-related thrombosis. The neural net

was developed based on the hemostatic and general (laboratory) variables of

149 confirmed COVID-19 patients from two cohorts: at the time of hospital

admission (cohort 1 including 133 patients) and at ICU admission (cohort 2

including 16 patients). Twenty-six patients suffered from thrombosis during

their hospital stay: 19 patients in cohort 1 and 7 patients in cohort 2. The neural

net predicts COVID-19 related thrombosis based on C-reactive protein

(relative importance 14%), sex (10%), thrombin generation (TG) time-to-tail

(10%), a2-Macroglobulin (9%), TG curve width (9%), thrombin-a2-

Macroglobulin complexes (9%), plasmin generation lag time (8%), serum IgM

(8%), TG lag time (7%), TG time-to-peak (7%), thrombin-antithrombin

complexes (5%), and age (5%). This neural net can predict COVID-19-

thrombosis at the time of hospital admission with a positive predictive value

of 98%-100%.
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Introduction

In December 2019, Severe Acute Respiratory Syndrome-

CoV-2 (SARS-CoV-2) virus emerged and caused a pandemic

that led to hospitalization of over one hundred thousand

patients worldwide (1). By November 2021, more than 250

million SARS-CoV-2 infections have been reported and the

disease caused over 5.1 million deaths (2). The course of the

disease differs greatly among patients: some patients have

symptoms resembling a mild cold or are even asymptomatic,

while others suffer from fulminant pneumonia requiring

hospitalization and admission to the intensive care unit

(ICU) (3, 4).

An important clinical complication of COVID-19 infection

is thrombosis, indicating a role for the coagulation system in the

pathogenesis of COVID-19 (5, 6). It was previously reported that

severe COVID-19 patients have decreased antithrombin levels

and increased levels of fibrinogen, fibrin degradation products

and D-dimer (1). The degree of elevation correlates with the

severity of the disease. Currently, COVID-19 patients admitted

to the ICU are treated with low molecular heparin (LMWH) to

prevent the development of thrombi that could lead to thrombo-

embolism or stroke.

There have been several attempts to predict and thereby

prevent thrombosis in COVID-19 patients. Due to multifactorial

nature of thrombosis, one lab result is not sufficient to predict

thrombosis (7). Therefore, it is unlikely that the occurrence of

thrombosis in COVID-19 patients can be accurately predicted

by a single lab test parameter or a combination of two. The

neural net is an artificial intelligence tool that focusses on the

integration of data to predict a certain outcome, in our case the

occurrence of thrombosis during a COVID-19 infection (7).

Since the start of the SARS-CoV-2 pandemic, many neural nets

have been developed by researchers worldwide (8–17). Most of

these neural nets focus on the diagnosis of COVID-19, and the

neural net’s input is either an X-ray (9–13) or a computed

tomography (CT)-scan of the chest (8) to study the effect of

COVID-19 in the lungs. Other neural networks make

predictions on a national or international level, by forecasting

the COVID-19 spread through a geographical region (14–17).

Additionally, researchers from the Wuhan region have shown

that a neural net based on C-reactive protein, lactate

dehydrogenase and lymphocyte count can predict mortality in

Chinese COVID-19 patients (18).

Our goal was to use the neural networking approach to

predict the risk of thrombosis during COVID-19 infection based

on lab test results obtained at the time of hospital admission.

Therefore, we collected blood samples of COVID-19 patients at

2 different hospitals, one population enrolled patients at the time

of hospital admission (cohort 1) and one population enrolled

patients admitted to the ICU (cohort 2) (19, 20). As input for our

thrombosis-prediction neural network we focused on functional
Frontiers in Immunology 02
coagulation tests, such as the thrombin and plasmin generation,

coagulation factor levels and markers of inflammation.
Materials and methods

Patients

COVID-19 patients were included at two centers (Meander

Medical center in Amersfoort and Hospital Oost-Limburg in

Genk) after approval of the “MEC-U” and the “Comité

Medische Ethiek” medical ethics committees, respectively, and

in accordance with the declaration of Helsinki. In the first

cohort, COVID-19 patients were enrolled in the study at the

time of hospital admission, and selected for analysis after

COVID-19 infection was confirmed by a positive PCR test

(n=133) (19). In the second cohort, intensive care unit (ICU)

patients were included if they when tested positive for COVID-

19 (n=16) (20). Samples were taken after informed consent of

the patient or its legal relative. Blood was taken by venipuncture

(cohort 1) or arterial catheter (cohort 2). Plasma was prepared

by centrifuging twice for ten minutes at 2630g and stored at - 80°

C until further analysis. In both cohorts, thrombosis was defined

as pulmonary embolism, deep vein thrombosis as diagnosed by

ultrasound, acute coronary syndrome, a cerebral ischemic attack

or mesenteric ischemia.
Thrombin generation

TG was measured by Calibrated Automated Thrombinography

(CAT) using PPP reagent, calibrator and FluCa from Diagnostica

Stago (France). TG was measured in the presence or absence of

thrombomodulin (TM; the concentration causing 50% inhibition of

the peak height in pooled normal plasma; Synapse Research

Institute, the Netherlands) to test the sensitivity of the activated

protein C (APC) system. In the cohort of ICU patients, who were all

treated with low molecular weight heparin, heparin was neutralized

with 0.045 mg/mL polybrene added to the plasma prior to the

measurement of TG. In addition to the classical TG parameters

ETP, peak height, time-to-peak and lag time, novel time-to-tail and

curve width were quantified. The time-to-tail was quantified as the

time it takes until the thrombin concentration stays below 1 nM at

the end of thrombin generation. The curve width was quantified as

the difference between the lag time and time-to-tail, providing a

measure for the broadness of the curve.
Thrombin dynamics

Prothrombin conversion curves were quantified form TG

curves using the thrombin dynamics method (21). The following
frontiersin.org

https://doi.org/10.3389/fimmu.2022.977443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


de Laat-Kremers et al. 10.3389/fimmu.2022.977443
parameters were quantified from the prothrombin conversion

curves: PCtot (total amount of prothrombin converted during the

TG test), PCmax (maximum rate of prothrombin conversion), T-

AT (amount of thrombin-antithrombin complexes formed) and

T-a2M (amount of thrombin-a2M complexes formed).
Coagulation factor determinations

Plasma antithrombin, fibrinogen, FVIII, protein C and D-

dimer levels were measured on the STA-R Max using the STA

Stachrom AT III, STA Fibrinogen, STA Deficient FVIII, STA

Staclot Protein C, and STA Liatest DDI kits, respectively, and in

accordance with the manufacturers recommendations

(Diagnostica Stago, France). Functional a2M levels were

measured as previously described (Synapse Research Institute,

the Netherlands) (21). VWF, active VWF, VWF pro-peptide

were measured in house by ELISA as previously reported (22).

C-reactive protein (CRP) levels were determined on the

Architect C16000 according to the manufacturers

specifications (Abbott, USA). Activated partial thromboplastin

time (APTT) and cell counts were measured on the Sysmex CS-

5100 using Innovin and Actin FSL reagents and Sysmex XN-

9000 (Siemens, Germany) respectively. COVID-19 IgM titers

were determined on the Afias-6 according to the manufacturers

recommendations (Boditech, Republic of Korea).
Plasmin generation assay

Plasmin generation was performed as previously described

(23). Plasmin generation lag time, i.e. the time it takes until

plasmin in formed, was quantified to serve as an input for the

neural network.
Neural network development

Matlab was used to develop and train neural networks using

the neural pattern recognition application of the neural network

toolbox (Mathworks, the Netherlands). The input of the

“thrombosis or no thrombosis” classification network

consisted of CRP, IgM titer for COVID-19, a2-Macroglobulin,

thrombin-a2-Macroglobulin complexes, thrombin generation

parameters (lag time, time-to-peak, time-to-tail and curve

width) and plasmin lag time (Table 2). Parameters were

selected based on (statistically insignificant) trends that were

visible in cohort 1 and 2 and the crude (continuous) values for

each parameter were used.

The hospital admissions cohort (cohort 1) was used to train

the neural network, perform the initial validation and test the

performance. The thrombosis group was much smaller than the

non-thrombosis group (114 vs 19 subjects) in cohort 1.
Frontiers in Immunology 03
Subsequently, the thrombosis group was oversampled by 6-

fold to overcome the difference in group size. The analysis was

run 10 times and the model performance was quantified as the

mean ± standard deviation of the 10 replicate analysis. The

positive and negative predictive values (PPV and NPV) were

calculated for each neural network to determine its diagnostic

accuracy. Finally, the validity of the neural network was tested in

the ICU cohort (cohort 2), which was acquired separately at

another hospital to ensure the generalizability of the neural

network to other patient cohorts.
Statistical analysis

Statistical analyses were performed in GraphPad Prism

(version 8, San Diego, USA). The Mann Whitney test was

used to compare differences between groups and statistical

significance was reported as p-values below 0.05.
Results

In a total of 149 confirmed COVID-19 patients available

from two study cohorts (19, 20), we quantified general

laboratory parameters, the function of the coagulation system,

coagulation factor levels and biomarkers of inflammation

(Tables 1, 2). We studied two cohorts of COVID-19 patients

(Tables 1, 2). Cohort 1 consisted of 133 COVID-19 patients

enrolled in the study when they were admitted to the hospital for

suspicion of COVID-19 infection and were tested positive for

COVID-19 by PCR testing (Table 1). Cohort 2 consisted of 16

severe COVID-19 patients who were admitted to the intensive

care unit (ICU; Table 2). The aim of this study is to create and

validate a neural network that predicts thrombosis risk in

COVID-19 patients, using the generated data displayed in

Tables 1, 2.

In cohort 1 (Table 1), COVID-19 patients with thrombosis

were significantly younger than patients without thrombosis,

and remarkably, mortality was significantly lower in the

thrombosis group. The activated partial thromboplastin time

(aPTT) was comparable between the groups, but D-dimer,

fibrinogen and CRP were higher in the thrombosis group.

a2M was significantly lower in the thrombosis group, and

FVIII and VWF were significantly higher. Even though

thrombin generation, thrombin dynamics and plasmin

generation showed trends towards differences between

thrombotic and non-thrombotic patients, these differences

were not statistically significant. In the ICU cohort 2 (Table 2),

COVID-19 patients with or without thrombosis did not differ

significantly in age, but thrombotic COVID-19 patients were

significantly less likely to die during their hospital stay. aPTT, D-

dimer, fibrinogen, CRP and other coagulation factors were

comparable between the groups. Although thrombin
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generation, thrombin dynamics and plasmin generation showed

trends towards differences between thrombotic and non-

thrombotic patients, these differences were not statistically

significant, except for the PG lag time.

For the neural networking approach, we tested the

parameters listed in Tables 1, 2 and selected the most

promising predictive parameters to achieve the highest
Frontiers in Immunology 04
predictive accuracy for COVID-19-related thrombosis.

Figure 1 shows in detail the differences of the 10 selected

parameters in thrombotic and non-thrombotic COVID-19

patients that contributed significantly to the performance of

the neural network. Single thrombin generation parameters

could not make a conclusive distinction between thrombosis

and non-thrombosis patients, even though a trend is visible
TABLE 1 General characteristics and laboratory tests of the hospital admissions patient (n=133) cohort 1.

Reference
range

COVID-19 patients without
thrombosis (n=114)

COVID-19 patients with
thrombosis (n=19)

p-
value

General characteristics Sex (% male) 64.0% 73.7% 0.028

Age (years) 64.1 ( ± 14.1) 61.1 ( ± 8.1) ns

Mortality (%) 15.8% 10.5% <0.001

Inflammation and infection anti-SARS-Cov-2 IgM
(COI)

0.00-1.00 0.56 ( ± 1.24) 0.51 ( ± 0.59) ns

anti-SARS-Cov-2 IgG
(COI)

0.00-1.00 8.72 ( ± 12.15) 9.95 ( ± 14.4) ns

C-reactive protein
(mg/mL)

0 - 5 106 ( ± 84) 182 ( ± 98) 0.001

Hemostatic parameters and
coagulation factors

APTT (sec) 25 - 33 31.1 ( ± 6.1) 29.1 ( ± 5.1) ns

D-dimer (µg/mL) 0.01 - 0.51 1.61 ( ± 2.11) 3.41 ( ± 5.01) 0.046

Fibrinogen (g/L) 1.81 - 4.51 5.31 ( ± 1.71) 6.11 ( ± 1.71) 0.021

Protein C (%) 65 - 135 85.1 ( ± 24.1) 83.1 ( ± 21.1) ns

Antithrombin (%) 98 - 137 99.1 ( ± 17.1) 105.1 ( ± 11.1) ns

a2-macroglobulin
(µM)

1.71 - 4.71 4.51 ( ± 1.91) 3.71 ( ± 1.31) 0.032

VWF (%) 50 - 200 186 ( ± 45) 208 ( ± 36) 0.026

active VWF (%) 92 - 155 157 ( ± 77) 162 ( ± 42) ns

VWF propeptide (%) 73 - 189 216 ( ± 110) 249 ( ± 107) ns

FVIII (%) 76 - 237 162 ( ± 79) 208 ( ± 104) 0.005

Thrombin generation ETP (nM·min) 899 - 1697 1238 ( ± 397) 1329 ( ± 550) ns

Peak (nM) 185 - 462 211 ( ± 88) 232 ( ± 102) ns

Lag time (min) 1.71 - 3.81 4.41 ( ± 1.81) 4.71 ( ± 2.51) ns

Time-to-peak (min) 3.21 - 6.61 7.81 ( ± 3.01) 8.41 ( ± 5.41) ns

Velocity index (nM/
min)

55 - 289 77.1 ( ± 52.1) 89.1 ( ± 56.1) ns

Time-to-tail (min) 14.8 – 30.9 24.1 ( ± 7.1) 23.1 ( ± 8.1) ns

Curve width (min) 12.8 – 27.7 21.1 ( ± 6.1) 20.1 ( ± 6.1) ns

Decay index (nM/
min)

39 - 124 54.1 ( ± 30.1) 58.1 ( ± 26.1) ns

Thrombin dynamics PCtot (nM) 746 - 1335 727 ( ± 253) 750 ( ± 291) ns

PCmax (nM/min) 153 - 474 200 ( ± 116) 219 ( ± 119) ns

T-AT (nM) 729 - 1279 662 ( ± 240) 690 ( ± 258) ns

T-a2M (nM) 16 - 63 42.1 ( ± 26.1) 35.1 ( ± 27.1) ns

Thrombin decay
capacity (min-1)

0.631 - 1.001 0.601 ( ± 0.111) 0.591 ( ± 0.081) ns

Plasmin generation EPP (nM·min) 237 - 535 751 ( ± 384) 907 ( ± 583) ns

Plasmin Peak (nM) 82 - 132 124 ( ± 30) 123 ( ± 28) ns

Plasmin Lag time
(min)

3.31 - 8.01 5.21 ( ± 1.71) 5.31 ( ± 1.61) ns

Plasmin Time-to-peak
(min)

5.01 - 9.71 7.61 ( ± 1.91) 8.11 ( ± 2.41) ns
frontier
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toward higher time-dependent variable values in both

thrombosis groups, which is borderline significant (Figures 1B,

D, H, I). ETP and peak height did not differ between thrombotic

and non-thrombotic COVID-19 patients (Table 1). Thrombin

dynamics analysis revealed that thrombin-inhibitor complex

formation did not differ significantly between the thrombosis

and non-thrombosis groups (Figures 1E, J), and comparable

amounts of thrombin were formed.
Frontiers in Immunology 05
Another important process to maintain the hemostatic

balance is the dissolvement of blood clots. A key process in

clot lysis is generation of the fibrin cleaving enzyme plasmin.

The time until the generation of the first traces of plasmin is

significantly longer in thrombosis patients than in COVID-19

patients without thrombosis in the ICU (Figure 1F). In contrast

to the significant reduction of a2M levels in thrombosis patients

(Figure 1C), inflammatory marker CRP is elevated in COVID-19
TABLE 2 General characteristics and laboratory tests of the intensive care unit patient (n=16) cohort 2.

Reference
range

COVID-19 patients without
thrombosis (n=9)

COVID-19 patients with
thrombosis (n=7)

p-
value

General characteristics Sex (% male) 66.7% 57.1% ns

Age (years) 76.1 ( ± 6.1) 56.1 ( ± 13.1) ns

Mortality (%) 55.6% 0.0% 0.021

Inflammation and infection anti-SARS-Cov-2 IgM
(COI)

0.00-1.00 3.21 ( ± 5.11) 2.81 ( ± 2.51) ns

anti-SARS-Cov-2 IgG
(COI)

0.00-1.00 31.1 ( ± 9.1) 31.1 ( ± 6.1) ns

C-reactive protein
(mg/mL)

0 - 5 149 ( ± 89) 215 ( ± 130) ns

Hemostatic parameters and
coagulation factors

APTT (sec) 25 - 33 42.1 ( ± 11.1) 42.1 ( ± 10.1) ns

D-dimer (µg/mL) 0.01 - 0.51 7.11 ( ± 8.51) 6.31 ( ± 8.71) ns

Fibrinogen (g/L) 1.81 - 4.51 5.61 ( ± 1.71) 4.61 ( ± 1.91) ns

Protein C (%) 65 - 135 120 ( ± 48) 114 ( ± 47) ns

Antithrombin (%) 98 - 137 111 ( ± 38) 104 ( ± 29) ns

a2-macroglobulin
(µM)

1.71 - 4.71 3.91 ( ± 1.11) 4.21 ( ± 3.31) ns

VWF (%) 50 - 200 254 ( ± 26) 229 ( ± 40) ns

active VWF (%) 92 - 155 245 ( ± 176) 187 ( ± 86) ns

VWF propeptide (%) 73 - 189 316 ( ± 124) 297 ( ± 187) ns

FVIII (%) 76 - 237 342 ( ± 81) 317 ( ± 112) ns

Thrombin generation ETP (nM·min) 899 - 1697 1376 ( ± 261) 1340 ( ± 641) ns

Peak (nM) 185 - 462 214 ( ± 80) 159 ( ± 81) ns

Lag time (min) 1.71 - 3.81 6.21 ( ± 1.51) 8.01 ( ± 2.71) ns

Time-to-peak (min) 3.21 - 6.61 10.01 ( ± 2.01) 12.41 ( ± 3.81) ns

Velocity index (nM/
min)

55 - 289 67.1 ( ± 43.1) 43.1 ( ± 28.1) ns

Time-to-tail (min) 14.8-30.9 27.1 ( ± 8.1) 34.1 ( ± 6.1) 0.050

Curve width (min) 12.8 - 27.7 21.1 ( ± 8.1) 26.1 ( ± 6.1) ns

Decay index (nM/min) 39 - 124 51.1 ( ± 30.1) 29.1 ( ± 15.1) ns

Thrombin dynamics PCtot (nM) 746 - 1335 849 ( ± 217) 772 ( ± 394) ns

PCmax (nM/min) 153 - 474 192 ( ± 99) 137 ( ± 71) ns

T-AT (nM) 729 - 1279 753 ( ± 226) 591 ( ± 338) ns

T-a2M (nM) 16 - 63 36.1 ( ± 13.1) 29.1 ( ± 22.1) ns

Thrombin decay
capacity (min-1)

0.631 - 1.001 0.651 ( ± 0.221) 0.661 ( ± 0.191) ns

Plasmin generation EPP (nM·min) 237 - 535 926 ( ± 441) 1036 ( ± 885) ns

Plasmin Peak (nM) 82 - 132 102 ( ± 20) 103 ( ± 60) ns

Plasmin Lag time
(min)

3.31 - 8.01 6.71 ( ± 1.11) 9.21 ( ± 2.11) 0.011

Plasmin Time-to-peak
(min)

5.01 - 9.71 9.01 ( ± 1.41) 14.51 ( ± 4.51) 0.002
frontier
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patients (Figure 1A). The last input that was selected for the

neural network was the IgM titer of COVID-19 antibodies

because a trend was visible towards a lower IgM titer in

thrombotic COVID-19 patients (Figure 1G).

Although analysis of coagulation functionality and

immunology did reveal significant differences between

thrombotic and non-thrombotic COVID-19 patients, these
Frontiers in Immunology 06
differences were not striking enough to be used for risk

stratification. To integrate the selected data and in order to

develop a prediction model for thrombosis, we applied the

artificial intelligence method neural networks. We constructed

a neural net that predicts COVID-19 related thrombosis based

on laboratory parameters collected at the time of hospital

admission. Table 3 summarizes the input variable used for the

development of the neural network. The input parameters can be

divided into 5 main groups: general characteristics,

immunology, thrombin generation, thrombin inhibitors and

plasmin generation. General characteristics included age and

sex, and general laboratory parameters included IgM titer and

CRP levels. Coagulation variables were subdivided in three

groups: Thrombin generation parameters (lag time, ttPeak,

ttTail, and curve width), thrombin inhibitors variables (a2M,

T-a2M and T-AT) and plasmin generation. A neural network

with 10 hidden neurons was trained in a randomly selected

subset (70%) of the samples of the hospital admission cohort.

The remaining 30% of samples were randomly divided between

the validation (15%) and testing (15%) dataset. Network

development was performed in 10-fold and the average results

( ± SD) are shown in Figure 2. In the non-thrombosis group, on

average 112 out of 114 patients were correctly predicted to stay

thrombosis-free, whereas in the thrombosis group, 16 out of 19

patients were correctly predicted to suffer from thrombosis

during their hospital stay (Figure 2A). In the hospital

admission cohort, the positive predictive value (PPV) was 98%

(Figure 2C) and the negative predictive value (NPV) was 86%.

The overall accuracy of the neural network was 91%.

We tested the model further in a second, separately acquired

COVID-19 patient cohort. In this cohort, 9 out of 9 non-

thrombotic COVID-19 patients were correctly predicted and 2

out of 7 thrombotic patients were classified correctly as patients

that would suffer from a thrombosis during their hospital stay

(Figure 2B). In the ICU cohort, the positive predictive value was

100% (Figure 2C) and the negative predictive value (NPV) was

66%. In Figure 2E we quantified the relative importance of each

input parameter to the predictive accuracy of the neural

network. CRP levels contribute the most to the predictive

accuracy (14%). Both sex and ttTail contribute equally by 10%,

followed by 9% contribution each of a2M, curve width and T-

a2M. Plasmin generation lag time and serum IgM both

contribute 8% and TG lag time and ttPeak contribute 7%. The

last 10% is divided between T-AT (5%) and age (5%).
Discussion

COVID-19 patients show very diverse pathogenesis varying

from mild flu-like symptoms to hospitalization, ICU admission

or even death (4, 24). An important complication in COVID-19

pathogenesis is the development of thrombosis (25, 26). Many
A B

D E F

G IH

J

C

FIGURE 1

The individual association of coagulation and general (laboratory)
parameters used for the development on a neural net for the
prediction of thrombosis in COVID-19 patients, arranged from
most to least important. Patients without thrombosis are
depicted as black circles and patients with thrombosis are
depicted as blue circles. (A) C-reactive protein was significantly
higher in the thrombosis group of the hospital admission cohort.
(B) Anti-SARS-CoV-2 IgM antibody titer did not differ between
the groups. (C) a2-macroglobulin was significantly lower in the
thrombosis group of the hospital admission cohort. (D-F) The
width of the TG curve, lag time and time-to-peak did not
significantly different between the groups. (G-I) The time-to-tail,
thrombin-antithrombin formation and thrombin-a2-
macroglobulin formation did not differ between the groups.
(J) The plasmin generation lag time was significantly longer in
the thrombosis group of the ICU cohort. The data are
represented as mean ± standard deviation. * and ** respectively
indicate a p-value smaller than 0.05 and 0.01.
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research has been conducted to study the disease process aiming

to predict its severity (27–29). As COVID-19 can have a very

divergent course of disease, it is of interest to predict the risk of

COVID-19 severity and the risk of complications on an

individual level. In this study we set out to develop a

prediction algorithm for thrombosis in COVID-19 patients

using the machine learning method neural networks.

We enrolled two populations of confirmed COVID-19

patients. Thrombotic complications were registered in detail

for both cohorts (19, 20). Our study revealed that COVID-19

patients that suffer from COVID-19 related thrombosis have a

trend towards higher TG, reduced levels of thrombin inhibitor

a2M, and an elevated plasmin generation lag time. Although

previous reports have shown reduced AT levels in severe

COVID-19 patients, we did not observe a difference in AT in

patients with or without thrombosis, although there seemed to

be a trend toward lower AT levels in patients with thrombosis

(1). The observed changes in hemostasis point towards a more

prothrombotic phenotype, as more thrombin is formed,

thrombin is inhibited less efficiently, and it takes longer until

the clot is dissolved. Additionally, we found that CRP was

increased, as reported by others (30). Interestingly, the

mortality rate in subjects with COVID-19 related thrombosis

is lower than the mortality rate in patients without thrombosis.

This was proposed to be attributable to differences in age and

treatment between the groups (20, 31) as older individuals are

known to be at risk for severe COVID-19 complications (32),

including thrombosis (33).

Even though we found differences in biomarkers of

hemostasis between thrombotic and unaffected patients, the

differences in test results were not pronounced enough to use

a single biomarkers as an independent predictor of thrombosis

in COVID-19 patients. Therefore, we used machine learning to

integrate all variables into a neural net that accurately classifies

COVID-19 patients with a high risk of future thrombosis at the
Frontiers in Immunology 07
time of hospital admission. The accuracy of the neural net is very

high (91%). Especially the high positive predictive value of 98%

and specificity of 99% would be very useful in the risk

stratification of patients in order to treat patients with a high

thrombosis risk or to avoid profound anticoagulation in

COVID-19 patients at low risk for thrombosis. The neural net

showed a higher PPV and specificity (both 100%) in cohort 2

that was used for the external validation of our model, indicating

that the neural net can also be used for risk stratification in other

COVID-19 patient cohorts.
TABLE 3 Input parameters for the neural network.

Category Specific parameters

General characteristics Age

Sex

Immunology C-reactive protein

IgM titer for COVID-19

Thrombin generation Lag time

Time-to-peak

Time-to-tail

Curve width

Thrombin inhibitors a2-Macroglobulin

T-a2-Macroglobulin complexes

T-antithrombin

Plasmin generation Plasmin lag time
A B

D

E F

G

C

FIGURE 2

Prediction of thrombosis in hospitalized COVID-19 patients. A neural
network was constructed to predict thrombosis based on the input
parameters described in table 2 in the first patient cohort. (A) The
confusion matrix shows that on average 112 out of 114 non-
thrombosis patients were correctly predicted and 16 out of 19 were
correctly predicted to suffer from thrombosis due to COVID-19.
(B) Further validation of the network in a second and separate
cohort of COVID-19 patients shows the accurate prediction of 9 out
of 9 non-thrombosis patients and 2 out of 7 thrombosis patients.
(C) The positive predictive value (PPV) was 98% for the hospital
admission cohort and 100% for the ICU cohort. (D) The negative
predictive value (NPV) was 86% for the hospital admission cohort
and 66% for the ICU cohort. (E) The sensitivity was 84% for the
hospital admission cohort, and 34% for the ICU cohort. (F) The
specificity was 99% and 100%, respectively for the hospital
admission and ICU cohorts. (G) The relative importance for each
input variable for the accuracy of the outcome of the neural
network. Data are represented as mean ± standard deviation of 10
neural net development runs in the confusion matrices in panel A
and B, and in the bar charts in (C, D).
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Although many neural networks have been constructed for

COVID-19 patients to predict individual risks (8–13) or even

forecast the spread of the virus (14–17), this is the first network

to our knowledge to accurately identify patients at high risk for

COVID-19 related thrombosis. The most important

contributors to the neural network to predict thrombosis are

CRP, sex, thrombin inhibition by a2M (a2M levels and T-a2M

formation), and the time that thrombin is present in clotting

plasma (curve width and time-to-tail). The time until the first

traces of thrombin and plasmin are formed is important for the

accuracy of the model and thrombin-antithrombin complex

formation and age are of minor importance. CRP is known to

be related to disease severity (34), and sex has been reported to

be an important influencer of the course of the disease since the

start of the pandemic (35). Another important factor, plasma

a2M levels, is both an acute phase reactant and a thrombin

inhibitor (36), and to our knowledge has not previously been

investigated in COVID-19 patients. Interestingly, age is of less

importance than expected to the neural net, even though others

have shown that the elderly have an increased risk for severe

COVID-19 and COVID-19 related thrombosis. This could

potentially be a result of the high overall age of both cohorts,

although the cohorts represent a cross section of the population

of hospitalized patients.

Additionally, this studies has two limitations, being (1) the

limited sample size of the cohorts for the neural networking

approach, and (2) that several input parameters for the neural

net are not readily available for routine clinical laboratories.

However, the developed neural net was not accurate if the

thrombin generation and thrombin dynamics parameters were

excluded, as the thrombin generation test is a global hemostasis

test, and therefore an important predictor of thrombotic risk

(37). Moreover, recent advances in the thrombin generation

method have led to the development of a fully automated

device to measure thrombin generation in the clinical

setting (38).

In conclusion, we developed a neural network that predicts

future thrombosis in COVID-19 patients at the time of hospital

admission with a positive predictive value of respectively 98%

and 100% in a general hospital admission and ICU cohort. A

combination of general (laboratory) parameters and hemostatic

markers can predict future COVID-related thrombosis, whereas

the separate variables showed no or slight differences between

thrombotic and non-thrombotic patients.
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