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Abstract

Background: Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced
non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the
treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a
chemotherapeutic drug for NSCLC.

Methodology/Principal Findings: The cytotoxicity effect of OSU-HDAC-44 was examined in three human NSCLC cell lines
including A549 (p53 wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). The antiproliferatative mechanisms of OSU-
HDAC-44 were investigated by flow cytometric cell cycle analysis, apoptosis assays and genome-wide chromatin-
immunoprecipitation-on-chip (ChIP-on-chip) analysis. Mice with established A549 tumor xenograft were treated with OSU-
HDAC-44 or vehicle control and were used to evaluate effects on tumor growth, cytokinesis inhibition and apoptosis. OSU-
HDAC-44 was a pan-HDAC inhibitor and exhibits 3–4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA)
in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, cytokinesis was inhibited and
subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated
degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by
OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. ChIP-on-chip analysis
revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling
pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549
xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo.

Conclusions/Significance: OSU-HDAC-44 significantly suppresses tumor growth via induction of cytokinesis defect and
intrinsic apoptosis in preclinical models of NSCLC. Our data provide compelling evidence that OSU-HDAC-44 is a potent
HDAC targeted inhibitor and can be tested for NSCLC chemotherapy.
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Introduction

Lung cancer is the leading cause of cancer mortality worldwide.

The 5-year overall survival of non-small cell lung cancer (NSCLC)

is less than 15% in many countries [1,2]. The standard therapeutic

strategy for advanced NSCLC is platinum-based double-agent

chemotherapy which, however, has reached a plateau of potency

in improving survival of patients [3,4]. Only a few ‘‘target agents’’

have showed benefits when used in combination with platinum-

based double-agent for NSCLC chemotherapy, such as bevacizu-

mab, erlotinib and gefitinib, in a subset of patients [5,6].

Therefore, the development of novel molecular targeted drugs

with more general effectiveness for lung cancer patients is an

imperative task.

The epigenetic changes as well as genetic alterations are

associated with tumorigenesis [7]. A recent report identifies that

the epigenetic changes involving modifications of histones H2A

and H3 in NSCLC patients influence the overall survival and

disease-free survival, providing the prognostic value of histone

modifications [8]. It also reveals the rationale for the use of drugs

against histone modification as a therapeutic strategy for NSCLC.

Histone deacetylases (HDACs) are the enzymes that catalyze the

deacetylation of histones and epigenetically regulate chromatin

architecture and gene expression. It has been demonstrated that
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inhibition of HDACs reverses aberrant epigenetic status and

exhibits potent antitumor activities by inducing cell cycle arrest,

differentiation and/or apoptosis in diverse cancer cells [9,10].

HDAC inhibitors are classified into six groups according to their

chemical structures and at least 12 of them have progressed to

clinical trials [9,11]. To date, the U.S. Food and Drug

Administration approves two HDAC inhibitors, vorinostat

(SAHA, suberoylanilide hydroxamic acid, ZolinzaH) and romi-

depsin (FK228, depsipeptide, IstodaxH), for the treatment of

cutaneous manifestations of cutaneous T-cell lymphoma (CTCL)

[12]. However, some adverse events occur in patients treated with

vorinostat or other HDAC inhibitors, which may result from the

high concentrations of dose used during the treatment for solid

tumors in clinical trials [11,13].

In the present study, we propose a novel class of potent

phenylbutyrate-based HDAC inhibitor, OSU-HDAC-44 [4-(2,2-

dimethyl-4-phenyl-butyrylamino)-N- hydroxy-benzamide], a de-

rivative of known HDAC inhibitor, N-Hydroxy-4-(4-phenylbu-

tyryl-amino)benzamide (HTPB) [14]. The antitumor activities and

mechanisms of OSU-HDAC-44 were studied in NSCLC cell and

mice xenograft models. We found that OSU-HDAC-44 was a

pan-HDAC inhibitor and exhibited 3-4 times more effectiveness in

suppressing cell proliferation in vitro and tumor growth in vivo

compared to SAHA or trichostatin A (TSA). In addition, OSU-

HDAC-44 induced mitosis and cytokinesis defect followed by

mitochondria-mediated apoptosis in both cell and animal models.

Chromatin-immunoprecipitation-on-chip analysis revealed the

genome-wide target genes which were induced by OSU-HDAC-

44-mediated hyperacetylation of chromatin. Our data suggest that

OSU-HDAC-44 was an HDAC inhibitor and could be applied as

targeted anticancer drug for NSCLC chemotherapy.

Results

OSU-HDAC-44 inhibits cell proliferation and shows
synergistic effects with cisplatin regardless of p53 status

The structure of OSU-HDAC-44 and SAHA are shown in

Fig. 1A. Docking analysis demonstrated that OSU-HDAC-44

interacted with the catalytic domain of HDAC 8, suggesting the

direct function of OSU-HDAC-44 in targeting HDACs (Fig. 1B).

The cell growth inhibition activities of OSU-HDAC-44 were

assessed in three human NSCLC cell lines including A549 (p53

wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). SAHA was

included as a positive control HDAC inhibitor. OSU-HDAC-44

significantly inhibited cell proliferation in all cancer cell lines

despite their differences in p53 background, and did not cause

Figure 1. Chemical structure, molecular docking analysis, and the effect of OSU-HDAC-44 on cell viability. (A) Chemical structure of
OSU-HDAC-44 and SAHA. (B) Molecular docking analysis of OSU-HDAC-44 and SAHA. The structures of OSU-HDAC-44 and SAHA were calculated and
the docking mode on catalytic domain of HDAC8 was predicted using the docking program GOLD 4.0.1. (C) Dose-dependent effects of OSU-HDAC-44
(left) and SAHA (right) on cell viability in IMR90, H1299, A549 and CL1-1 cells. Cells were treated with 0.5–10 mM of OSU-HDAC-44 or SAHA for 48 h,
and cell viability was assessed by trypan blue exclusion assay. (D) OSU-HDAC-44 synergized with cisplatin to suppress cell proliferation. Cells were
exposed to cisplatin (Cis) alone for 4 h, OSU-HDAC-44 (HDAC-44) alone for 48 h, or pretreated with OSU-HDAC-44 for 48 h before cisplatin treatment
for 4 h, and then drug were withdrew and cells were incubated with drug-free media for additional 48 h. Cell viability was assessed by trypan blue
exclusion assay. CL1-1 cells were treated with 4.4 mM cisplatin or 0.3 mM OSU-HDAC-44. A549 cells were treated with 1.6 mM cisplatin or 0.2 mM OSU-
HDAC-44. Data represent mean 6 SEM from three independent experiments. * P,0.05; ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0012417.g001
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apparent cytotoxicity to IMR90 cells, a normal lung cell line

(Fig. 1C). OSU-HDAC-44 suppressed cell viability of A549 and

CL1-1 cells with submicromolar IC50 values (0.6560.08 and

0.6760.01 mM, respectively) and the IC50 value of H1299 were

extrapolated to be 1.1460.14 mM. Notably, OSU-HDAC-44

exhibited 3–4 times more potency than SAHA in anticancer

capacity (IC50: A549, 1.9060.16; CL1-1, 2.8560.27; H1299,

4.8760.98 mM). In addition, Fig. 1D showed that OSU-HDAC-

44 acted in synergy with cisplatin to enhance cell death in CL1-1

and A549 cells, which were both cisplatin-resistant cells.

OSU-HDAC-44 induces cytokinesis inhibition and
apoptosis

To investigate the underlying mechanism of cell growth

repression by OSU-HDAC-44, the effects of OSU-HDAC-44 on

cell cycle progression were assessed by flow cytometry. Treatment

with 2.5 mM OSU-HDAC-44 for 24 hours caused A549 and

H1299 cells to accumulate in G2/M phase (4N cells), and

subsequently led to apoptosis (sub-G1 cells) at 48 hours treatment,

while exposure to higher concentration (5 mM) of SAHA for

48 hours had similar effect (Fig. 2A), indicating that OSU-HDAC-

44 exerted a more potent cell cycle deregulation effect than did

SAHA. To examine the cellular consequences of OSU-HDAC-44-

mediated accumulation of 4N cells, time-lapse microscopic

analyses were performed. As shown in Fig. S1A, OSU-HDAC-

44 caused the appearance of the defective cleavage furrow

structure and the two daughter cells were fused back together,

while untreated cells passed normally through cell division.

Concordantly, about 20% cells treated with OSU-HDAC-44

were accumulated as bi-nucleated cells, compared with less than

5% of control cells (Fig. 2B and Fig. S1B). OSU-HDAC-44 also

caused micronuclei formation and disrupted the normal structure

of F-actin of A549 and H1299 cells (Fig. 2B). Hence, these results

suggested that OSU-HDAC-44 may cause aberrant cytokinesis

and subsequently led to apoptosis in lung cancer cells.

To identify the molecular mechanism involved in OSU-HDAC-

44 induced cytokinesis inhibition, the cell cycle-regulatory proteins

were examined. The oscillation of mitotic inhibitor Weel and

mitotic markers phosphorylated histone H3 and cyclin B

expression indicated that OSU-HDAC-44-treated cells were in

M phase after 12 hours treatment and subsequently exited M

phase (Fig. S1C), accompanied with cytokinesis defect. Moreover,

OSU-HDAC-44 caused decreases in protein levels of Aurora B

and survivin (Fig. 2C; upper), which are essential for the

progression of mitosis and cytokinesis [15,16]. Notably, OSU-

HDAC-44 induced ubiquitination of Aurora B and survivin, and

cotreatment with proteosome inhibitor MG132 prevented the

OSU-HDAC-44-induced degradation of Aurora B and survivin

(Fig. 2C; middle and lower). Next, we used nocodazole to

synchronize cells at pre-metaphase and to further confirm that

OSU-HDAC-44 indeed triggered abnormal degradation of

Aurora B and survivin at mitotic phase. As shown in Fig. S1D

and E, treatment with nocodazole for 24 hours caused accumu-

lation in Aurora B and survivin proteins, whereas combination of

OSU-HDAC-44 and nocodazole resulted in decreases Aurora B

and survivin protein levels upon 24 hours post-treatment. These

results suggested that the OSU-HDAC-44-mediated failure of

cytokinesis may partly result from the downregulation of Aurora B

and survivin proteins via 26S proteasome pathway.

OSU-HDAC-44 activates the intrinsic apoptotic pathway
To further elucidate the OSU-HDAC-44-induced apoptosis, we

performed phosphatidylserine (PS) staining analyses to detect the

early process of apoptosis. As shown in Fig. S2, OSU-HDAC-44

treatment for 24 hours increased the intensity of PS staining in

contrast to low staining intensity upon DMSO treatment in A549 and

H1299 cells. In addition, OSU-HDAC-44 treatment significantly

stimulated caspase-3 and caspase-9 (an indicator of the intrinsic

mitochondrial pathway) activities after 24 hours treatment whereas

the activity of caspase-8 (an indicator of the extrinsic membrane

receptor pathway) remained unaffected in A549 and H1299 cells

(Fig. 2D, left). Moreover, treatment with 2.5 mM OSU-HDAC-44 for

12 hours caused a decrease in anti-apoptotic protein Bcl-xL, while it

increased the pro-apoptotic protein, Bad, within 6–12 hours

treatment in A549 and H1299 cells (Fig. 2D, right). The release of

cytochrome c into the cytosol accompanied by the cleavage of pro-

caspase-9 was also seen after OSU-HDAC-44 treatment for 24–

48 hours. These results further confirmed that OSU-HDAC-44

could induce the intrinsic apoptotic pathway in lung cancer cells.

OSU-HDAC-44 induces protein acetylation with its ability
to target numerous HDACs

The biomarkers of HDAC inhibition are acetylation of histone

and non-histone proteins, and induction p21Cip1 expression in a

p53-independent manner [17,18]. Exposure to OSU-HDAC-44

induced acetylation of histone H3, histone H4 and p53 in a dose-

dependent manner (Fig. 3A) and time-dependent manner (Fig. 3B),

while it did not affect the HDAC1 and HDAC6 protein levels

(Fig. 3B and Fig. S3). Notably, such effects were greater compared

to that of SAHA. Despite the p53 status, OSU-HDAC-44 induced

the expression of p21Cip1 mRNA and protein in A549 and H1299

cells (Fig. S4). To examine the target specificity of OSU-HDAC-44

on class I, II, and IV HDACs, in vitro HDAC inhibition assay was

performed. As shown in Fig. 3C, the deacetylase activities of

different HDAC isotypes including class I (HDAC1 and HDAC8),

class II (HDAC4 and HDAC6), and class IV (HDAC11) were

significantly inhibited by OSU-HDAC-44. Such effects were greater

compared to that of SAHA, a known pan-HDAC inhibitor. These

results suggested that OSU-HDAC-44 induced protein acetylation

by exerting broad inhibitory activity upon numerous HDACs.

OSU-HDAC-44 increases gene expression by loosening
the chromatin structure

To determine the direct effects of OSU-HDAC-44 on chromatin

structure and gene expression, the chromatin-immunoprecipitation

(ChIP)-on-chip analysis was performed using the antibody against

the loose chromatin mark, acetylated lysines 9 and 14 of histone H3

(H3K9K14Ac), after 2.5 mM OSU-HDAC-44 treatment for 2 hours

in A549 and H1299 cells. Induction of histone acetylation in 33

common gene loci of A549 and H1299 were identified after OSU-

HDAC-44 treatment (Table S1). Several of these 33 genes had been

demonstrated to play important roles in certain signaling pathways,

such as apoptosis, oxidative stress response, axon guidance and

protein ubiquitination pathways (Table 1). To confirm microarray

data, we validated the chromatin structure of some of the gene loci

including srGAP1, NR4A1 and FOXO4 by ChIP-PCR using the

antibody against H3K9K14Ac. As shown in Fig. 4A, treatment with

2.5 mM OSU-HDAC-44 for 2 hours increased the amount of

srGAP1, NR4A1 and FOXO4 promoter DNA with loose chromatin

structure compared to untreated cells. Concordantly, the mRNA

levels of srGAP1, NR4A1 and FOXO4 were increased after OSU-

HDAC-44 treatment for 24 hours (Fig. 4B).

OSU-HDAC-44 down-regulates F-actin dynamics via
srGAP1 induction

OSU-HDAC-44 treatment induced F-actin aggregation

(Fig. 2B). Previous study has indicated that srGAP1 binds to

OSU-HDAC44 Inhibits Lung Cancer
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Figure 2. OSU-HDAC-44 induces cytokinesis inhibition and subsequently leads to intrinsic apoptosis. (A) The effects of OSU-HDAC-44
on cell cycle distribution in A549 and H1299 cells. Cells were treated with 2.5 mM OSU-HDAC-44 or 5 mM SAHA for indicated times and assessed by
flow cytometry. Left, results from one representative experiment are shown. Right, the mean percentage of G2/M and sub-G1 fraction population is

OSU-HDAC44 Inhibits Lung Cancer
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the active forms of RhoA and Cdc42 and inhibits their activities

in regulating actin polymerization in neuron cells [19]. However,

the biological function of srGAP1 binding to RhoA remains

unclear in other cells. Using immunoprecipitation (IP)-Western,

we showed that OSU-HDAC-44 increased the interaction

between srGAP1 and RhoA in A549 lung cancer cells (Fig. 4C).

Interestingly, knockdown of srGAP1 not only abolished the OSU-

HDAC-44-mediated decrease in RhoA-GTP level (Fig. 4D,

upper), but also restored the dynamics of F-actin after OSU-

HDAC-44 treatment (Fig. 4D, lower). These results indicated

that OSU-HDAC-44 down-regulated RhoA activity partly via

srGAP1 induction, leading to destruction of normal F-actin

fibers.

OSU-HDAC-44 inhibits lung tumor xenograft growth in
vivo

To further evaluate the antitumor activity of OSU-HDAC-44,

Bulb/c null mice bearing A549 lung tumor xenograft were

injected intraperitoneally with 7.5–30 mg/kg of OSU-HDAC-44,

3 days/week for three weeks. TSA of 0.5 mg/kg, which has been

demonstrated to exhibit anti-tumor growth effects in xenograft of

breast and bladder cancer cells [20,21], was used as a positive

control drug. As shown in Fig. 5A, treatment with 7.5, 15 and

30 mg/kg OSU-HDAC-44 significantly inhibited tumor growth

by 62%, 78% and 90%, respectively, on day 33 post-treatment

compared with vehicle control. Treatment with OSU-HDAC-44

did not adversely affect body weight and caused no detectable

plotted in the histogram. (B) The bi-nucleated cells and dysregulation of F-actin induced by OSU-HSAC-44. Cells were treated with 2.5 mM OSU-HDAC-
44 for 48 h, and then fixed and stained with DAPI (DNA) and phalloidin (F-actin). Asterisk pointed to the bi-nucleus. Scale bars: 30 mm. (C) OSU-
HDAC-44 induced degradation of Aurora B and survivin via 26S proteasome pathway. Upper, time-dependent decreases in Aurora B and survivin
protein levels after 2.5 mM OSU-HDAC-44 treatment. Middle, A549 cells were treated with 2.5 mM OSU-HDAC-44 in the presence or absence of MG132
for 24 h. Lower, A549 cells were treated with 2.5 mM OSU-HDAC-44 for 24 h and cell lysate was subjected to IP assay using anti-Aurora B or anti-
survivin specific antibodies and blotted with anti-ubiquitination antibody (Anti-Ub). (D) Caspase activity assay (left) and Western blot analyses (Right)
confirmed that OSU-HDAC-44 induced intrinsic apoptosis pathway. Cells were treated with 2.5 mM OSU-HDAC-44 for indicated times and the
subjected to caspase activity assay and Western blot analyses. Data represent mean 6 SEM from three independent experiments. * P,0.05;
** P,0.01.
doi:10.1371/journal.pone.0012417.g002

Figure 3. Effect of OSU-HDAC-44 on the biomarkers associated with broad inhibition on numerous HDACs. Dose-dependent effects
(A) and time-dependent effects (B) of OSU-HDAC-44 on the histone and non-histone proteins. Ac-H3, acetylated histone H3; Ac-H4, acetylated
histone H4; Ac-p53, acetylated p53; p53, total p53. (C) OSU-HDAC-44 suppressed activities of class I (HDAC1 and HDAC8), class II (HDAC4 and HDAC6),
and class IV (HDAC11) HDACs. Different HDAC isotypes were immunoprecipitated from H1299 nuclear extract by specific antibodies, and then
subjected to in vitro HDAC inhibition assay as described in Materials and Methods section. Data represent mean 6 SEM from three independent
experiments. ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0012417.g003
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toxicity as examined by hematoxylin and eosin staining of major

organs (Fig. 6A, B). Hematological biochemistry examinations

were in the normal ranges for OSU-HDAC-44 treated animals

(Fig. 6C).

OSU-HDAC-44 induces protein acetylation, apoptosis and
cytokinesis inhibition in vivo

To confirm that OSU-HDAC-44 suppressed xenograft tumor

growth via targeting the HDACs and inducing apoptosis in vivo,

mice bearing established A549 tumors were treated with a single

dose of OSU-HDAC-44. After treatment for indicated time,

tumors were dissected and subjected to Western blot, immuno-

histochemistry or fluorescence immunohistochemistry analysis

(Fig. 5B–D). Acetylation of histone H3, histone H4 and p53 were

profoundly increased after 2 hours treatment. The protein levels of

Bcl-xL and survivin started to decrease after 2 hours treatment,

while the level of Bad protein was increased after 4 hours

treatment (Fig. 5B). Activated caspase-3 was also detected in both

the cytosol and nucleus after 8 hours treatment and was further

enhanced after 24 hours treatment (Fig. 5C). Furthermore, OSU-

HDAC-44 decreased Aurora B levels and interrupted its

association with metaphase chromosome in comparison with

DMSO control cells (Fig. 5D). These results demonstrated that

OSU-HDAC-44 could induce apoptosis and down-regulate

mitotic and cytokinesis regulators, Aurora B and survivin, in vivo.

In addition, increase of HDAC inhibition biomarkers such as

acetylation of histone H3, histone H4 and p53 was evident in

tumors of treated mice.

Discussion

Since HDACs are promising targets for cancer therapy, a

number of HDAC inhibitors are in clinical trials as single therapy

and/or in combination with other anticancer drugs [9].

However, effective HDAC inhibitors for treatment of solid

tumors remain to be developed. In this study, we provide

compelling evidence from cell and animal studies that OSU-

HDAC-44, a phenylbutyrate-based compound, is a potential

HDAC inhibitor for NSCLC treatment. OSU-HDAC-44 target-

ed numerous members within three classes of HDACs in vitro and

efficiently stimulated protein acetylation in cell and animal

models (Fig. 3 and 5). OSU-HDAC-44 repressed cell viability and

induced apoptosis in various NSCLC cell lines with 3–4 times

greater potency than SAHA (Fig. 1C and 2A). In addition,

submicromolar concentration of OSU-HDAC-44 exhibited

prominently synergistic effects in combination with cisplatin on

suppressing proliferation of NSCLC cell lines (Fig. 1D). The

xenograft experiments further confirmed that OSU-HDAC-44

induced cell apoptosis and thereby inhibited tumor growth in vivo

(Fig. 5) without adversely affected body weight, major organs and

hematological parameters (Fig. 6). Collectively, these results

suggested that OSU-HDAC-44 is a promising candidate HDAC

inhibitor for NSCLC treatment.

It has been shown that several kinases and regulatory proteins,

such as Aurora B, suvivin as well as small GTPase RhoA are

required to complete cytokinesis [22]. Inhibition of Aurora B or

depletion of survivin can prevent the late steps of cytokinesis,

leading to formation of multi-nucleated cells [15,16]. In the

current study, we provided evidence that OSU-HDAC-44 induced

proteolysis of Aurora B and survivin both in vitro and in vivo (Fig. 2C

and Fig. 5B, D), which was associated with OSU-HDAC-44-

mediated cytokinesis inhibition, resulting in the accumulation of

bi-nucleated cells (Fig. 2B and Fig. S1A–B). In addition,

combination of a pre-metaphase inducer nocodazole and OSU-

HDAC-44 resulted in decrease of Aurora B and survivin protein

levels upon 24 h post-treatment (Fig. S1E). These data suggested

that OSU-HDAC-44-mediated cytokinesis defect was due to

abnormal degradation of Aurora B and survivin in mitotic phase.

It has been reported that overexpression of Aurora B correlates

with survivin expression in the nucleus, lymph node invasion, and

poor prognosis in NSCLC patients [23]. Thus, the clinical efficacy

of OSU-HDAC-44 in relation to down-regulated Aurora B and

surivin in treatment of NSCLC patients is worthy of further

investigation.

In this study, we performed a ChIP-on-chip analysis to

investigate the genome-wide target genes induced by OSU-

HDAC-44-mediated hyperacetylation of chromatin after 2 hours

exposure, and found that histone acetylation were stimulated in 33

common genes in the cell lines examined, including eight tumor

suppressor genes (TSGs) or TSG-like genes (Table S1). Several

genes play essential roles in apoptosis, oxidative stress response,

axon guidance and protein ubiquitination pathways (Table 1). The

srGAP1 gene, which encodes a GTPase activating protein known

to regulate axon guidance [19], was confirmed to be in the open

Table 1. The signal pathways involved of 12 common genes from the ChIP-on-chip analysis of A549 and H1299 lung cancer cells.

Symbol* Signaling pathway Accession no.

BAP1 Protein ubiquitination pathway BC001596

CAMKK1 Calcium signaling NM_172206

CLYBL Citrate cycle NM_138280

DNAJB11 NRF2-mediated oxidative stress response NM_016306

FOXO4 PTEN signaling NM_005938

GPT2 Glutamate metabolism; Alanine and aspartate metabolism NM_133443

HES7 Notch signaling NM_032580

NEU1 Sphingolipid metabolism; N-glycan degradation BC011900

NR4A1 Calcium-induced T lymphocyte apoptosis BC016147

PSMB8 Protein ubiquitination pathway BC001114

SH3BP4 Clathrin-mediated endocytosis BC057396

SRGAP1 Axon guidance NM_020762

*Full name was shown in Table S1, available online.
doi:10.1371/journal.pone.0012417.t001

OSU-HDAC44 Inhibits Lung Cancer
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chromatin structure and increased in expression level (Fig. 4A, B).

Interestingly, we found that OSU-HDAC-44 decreased the

activity of a small GTPase RhoA via induction of srGAP1 and

contributed to dysregulation of F-actin dynamics (Fig. 4C, D).

These results indicated that OSU-HDAC-44 may interrupt mitosis

and cytokinesis resulting from alteration of several additional

pathways, such as srGAP1/RhoA/F-actin control. Moreover, two

apoptosis-related genes, NR4A1/Nur77 and FOXO4, were validat-

ed from the ChIP-on-chip data and their mRNA expressions were

indeed increased by OSU-HDAC-44 (Fig. 4A, B). NR4A1/Nur77

and FOXO4 have been shown to trigger intrinsic apoptosis

through induction of mitochondrial cytochrome c release and

down-regulation of Bcl-xL expression, respectively [24–26]. Such

NR4A1/Nur77-mediated apoptosis has been demonstrated to be

induced by an HDAC inhibitor, LBH589, in CTCL cells [27].

Our results from cell and animal models showed that the OSU-

HDAC-44-induced cell death was possibly through the intrinsic

apoptotic pathway (Fig. 2D and 5B). Therefore, the transcriptional

up-regulation of NR4A1/Nur77 and FOXO4 may contribute to

OSU-HDAC-44-mediated intrinsic apoptosis.

Similar to our finding of selective chromatin change of a

fraction of gene loci in ChIP-on-chip, recent studies using cDNA

microarrays indicate that several HDAC inhibitors such as TSA,

SAHA, MS-275 and depsipeptide alter only 7–20% gene

expressions in various cancer cell lines [28–30]. Specific

recruitment of corepressor complexes containing HDACs by

transcription factors and/or transcription regulators is believed to

play an essential role in transcriptional repression [31–33],

however, the selective action of HDAC inhibitors on specific

genes remains unclear. Thus, it is worthy to investigate whether

there may be common and critical transcription-regulatory

complexes containing HDACs that determine the acetylation

levels of chromatin of these genes validated from ChIP-on-chip

data.

In conclusion, our findings shows that OSU-HDAC-44 is a

novel pan-HDAC inhibitor that exhibits a broad spectrum of

antitumor activities in NSCLC cell and xenograft models, which

involves not only histone acetylation-dependent activation of gene

transcription, but also activation of intrinsic apoptotic pathways

and post-translational down-regulation of mitotic regulators,

Figure 4. OSU-HDAC-44 decreased RhoA activity via srGAP1 induction, leading to F-actin dysregulation. (A) Chromatin-
immunoprecipitation-PCR analyses confirmed that treatment with 2.5 mM OSU-HDAC-44 for 2 h induced acetylation of histone H3 (H3K9K14Ac)
in the promoter region of srGAP1, NR4A1 and FOXO4 genes. (B) OSU-HDAC-44 increased the mRNA levels of srGAP1, NR4A1 and FOXO4 genes using
real-time RT-PCR analyses. Cells were treated with 2.5 mM OSU-HDAC-44 for 24 h and total RNA was extracted for the real-time RT-PCR analyses. Data
represent mean 6 SEM from three independent experiments. *P,0.05. (C) Immunoprecipitation assay indicated that increased interaction between
srGAP1 and RhoA was induced by OSU-HDAC-44. A549 cells were treated or untreated with 2.5 mM OSU-HDAC-44 for 24 h and subjected to IP-
Western analyses. (D) si-srGAP1 abrogated the OSU-HDAC-44-induced decrease in RhoA activity (upper) and rescued the normal structure of F-actin
after OSU-HDAC-44 treatment (lower). A549 cells transfected with srGAP1 siRNA were treated with 2.5 mM OSU-HDAC-44 for 24 h and subjected to
RhoA activation assay and immunofluorescence analyses. Scale bars: 30 mm.
doi:10.1371/journal.pone.0012417.g004
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Aurora B and survivin. In addition, RhoA/F-actin motility control

was inhibited by srGAP1 and several apoptosis induction proteins

were activated by OSU-HDAC-44 (Fig. 7). Collectively, our data

provide compelling evidence that OSU-HDAC-44 is an HDAC

targeted inhibitor and has the potential to be tested for NSCLC

treatment and combination chemotherapy.

Materials and Methods

Cell lines and culture conditions
Human normal lung cell line IMR90 and human NSCLC cell

lines A549 and H1299 were obtained from the American Type

Culture Collection (ATCC, Manassas, VA), and the human

NSCLC cell line CL1-1 was kindly provided by Dr. P-C Yang

(Department of Internal Medicine, National Taiwan University

Hospital, Taipei, Taiwan) [34]. All cell lines were cultured in

Dulbecco’s Modified Eagle’s Medium (GIBCO, Grand Island,

NY) containing 10% fetal bovine serum (FBS) (BIOCHROM AG,

Leonorenstr, Berlin, Germany) and 1% penicillin-streptomycin

(GIBCO) and incubated at 37uC in 5% CO2 atmosphere.

Preparation of OSU-HDAC-44
Isobutyric acid (1.4 mL) was added dropwise to a mixture of

diisopropylamine (2.2 mL, 0.015 mol) and 54% sodium hydride in

mineral oil (0.74 g, 0.0165 mol) in THF (40 mL), and refluxed for

15 min. When the solution was cooled to 0uC, a standard solution

of n-butyllithium in heptane (1.45 mmol/mL; 9.4 mL) was added.

After 20 min at 0uC, the mixture was heated to 30–35uC for

30 min and then cooled to 0uC when (2-bromoethyl)-benzene

(2.8 mL, 15 mmol) was added to the reaction mixture over

20 min. The ice-bath was retained for 30 min, the mixture was

then heated to 30–35uC for 1 h, and then 40 mL of water was

added to the reaction mixture at a temperature below 15uC. The

aqueous layer was separated, and the organic layer was washed

Figure 5. OSU-HDAC-44 effectively induced apoptosis and inhibited A549 xenograft growth. (A) Mice bearing the established A549
tumors (,50 mm3) were injected intraperitoneally with 7.5, 15 or 30 mg/kg of OSU-HDAC-44 or 1.5 mg/kg of TSA 3 days/week for three weeks. Eight
mice per group were used in the xenograft experiment. The tumor volumes of mice were measured. Points, mean; error bars, 95% confidence
intervals. P values were for comparisons with vehicle control (*P,.05; **P,.01; ***P,.001). (B–D) Mice bearing established (about 100,200 mm3)
A549 tumors were injected intraperitoneally with a single dose of OSU-HDAC-44 at 60 mg/kg. After treatment for the indicated time, tumors were
harvested and subjected to Western blot or immunohistochemistry analyses. (B) Tumors from two representative mice of each time point (a–f) were
harvested and subjected to Western blot analyses using the indicated antibodies. (C) Immunohistochemistry analyses were performed using
antibody against cleaved-form of caspase 3 (brownish color). Original magnification 6200. (D) Fluorescence immunohistochemistry analyses were
performed using antibody against Aurora B and DAPI (DNA). The images (d–f and j–l, scale bars: 10 mm) were magnified from framed ones (a–c and
g–I, scale bars: 30 mm).
doi:10.1371/journal.pone.0012417.g005
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with a mixture of 20 mL of water and 30 mL of ethyl ether.

Aqueous layers were combined, back extracted with 20 mL of

ethyl ether then acidified with 1N hydrochloric acid and the

product was extracted with 30 mL of ethyl ether twice. The

combined organic layer was washed with 20 mL of saturated

brine, dried with Na2SO4, and concentrated under vacuum.

Hexane was added to the resulting colorless oil to yield 1.1 g of

white solid 2, 2,-Dimethyl-4-phenylbutyric acid compound. Oxalyl

chloride (2 mmol) was added to the cooled solution of 2,

2,-Dimethyl-4-phenylbutyric acid (1 mmol) in dichloromethane

(5 mL), and the reaction mixture was then brought to room

temperature and stirred for 4 h. After the completion of the

reaction, solvent was removed under vacuum. The residue was

dissolved in dichloromethane (10 mL) and cooled to 0uC.

Paraamino benzoic acid was then added to the reaction mixture

followed by addition of triethyl amine. Resultant mixture was

brought to room temperature and stirred overnight. Reaction

mixture was then concentrated and purified by column chroma-

tography to give 4-(2, 2-dimethyl-4-phenylbutanamido) benzoic

acid compound. The cooled 4-(2, 2-dimethyl-4-phenylbutana-

mido) benzoic acid compound (1 mmol) in DMF (1 mL) was

added triethyl amine (1.2 mmol) followed by PyBOP (1.2 mmol).

Resultant mixture was stirred at room temperature for 4 h. After

complete consumption of starting material as evidenced by TLC,

reaction mixture was cooled to 0uC and hydroxylamine hydro-

chloride (1.2 mmol) was added to the reaction mixture followed by

addition of triethyl amine (1.5 mmol). Resultant mixture was

stirred at room temperature overnight and then quenched with

water. Solid was filtered and purified by column chromatography

to give OSU-HDAC-44.

Analysis of cell viability
Cells were seeded in 6-well plates and treated with various

concentrations of OSU-HDAC-44 or SAHA for 48 h, then

stained with Trypan Blue solution (0.4%) (Sigma-Aldrich, St.

Louis, MO) to measure their effects on cell proliferation. For its

synergistic effect in combination with cisplatin (Bristol-Myers

Squibb Caribbean Company, New York, NY), CL1-1 and A549

cells were exposed to cisplatin alone for 4 h, OSU-HDAC-44

alone for 48 h, or pretreated with OSU-HDAC-44 for 48 h before

cisplatin treatment for 4 h, and then drug-containing media were

replaced by drug-free media. Treated cells were incubated for

additional 48 h and cell viability was assessed by Trypan Blue

exclusion assay. The concentrations of drugs were described as

follows: CL1-1 cells were treated with 4.4 mM cisplatin and/or

0.3 mM OSU-HDAC-44; A549 cells were treated with 1.6 mM

cisplatin and/or 0.2 mM OSU-HDAC-44. For elucidation of the

OSU-HDAC-44-induced cell death, phosphatidylserine (PS)

staining analyses were performed and described in the Supple-

mentary Methods S1.

Cell cycle analysis
Cell cycle distribution was determined by flow cytometry. Cells

(26106) were treated with 2.5 mM OSU-HDAC-44 or 5 mM

SAHA for 24 or 48 h. Cells were trypsinized and fixed with 70%

ethanol for at least 2 h at 220uC. Fixed cells were stained with a

solution containing 20 mg/ml propidium iodide, 200 mg/ml

RNase A, and 0.1% Triton X-100 for 20 minutes in the dark.

Cell cycle distribution was performed by FACScan flow cytometry

(BD Biosciences, Mountain View, CA) and calculated using

ModFIT LT 2.0 version software (BD Biosciences). For examina-

Figure 6. The body weight, H&E staining of major organs, and hematological biochemistry examinations of tested animals. (A) OSU-
HDAC-44 treatments did not cause significant body weight loss of tested animals. (B) H&E staining of paraffin-embedded, 5 mm thick sections of the
heart, liver, lung and kidney from OSU-HDAC-44-treated and untreated mice with A549 xenografts. There were no apparent histopathologic
differences between these tissues sections (original magnification 6200). (C) Hematological biochemistry tests including GOT, GPT, albumin, BUN,
creatinine, and WBC were examined and the results showed no significant differences between DMSO and OSU-HDAC-44 treatment.
doi:10.1371/journal.pone.0012417.g006
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tion of the cellular consequences of OSU-HDAC-44-mediated

accumulation of 4N cells, time-lapse microscopic analyses were

performed and described in the Supplementary Methods S1.

Caspase activity assay
Caspase activity was measured with the caspase luminescent

assay kit (Promega, Madison, WI) according to the manufacturer’s

instructions. Briefly, cells were plated in a 96-well plates and

treated with 2.5 mM OSU-HDAC-44 for 12 or 24 h, followed by

incubating with various synthetic caspase substrates (Ac-DEVD-

pNA, Ac-LETD-pNA, and Ac-LEHD-pNA) to measure the

activity of caspases23, 28, and 29, respectively. After incubation

for 1 h, luminescence was detected on a SpectraMaxH M5

microplate reader (Molecular Devices, Sunnyvale, CA).

siRNA transfection
The srGAP1 siRNAs were purchased from Invitrogen (Carlsbad,

CA). Cells were transfected with 300 nM of srGAP1 siRNA

duplexes (sense, 59- AAA CGU AUC AUC CAU AUC CUG

CAC C -39 and antisense: 59- GGU GCA GGA UAU GGA UGA

UAC GUU U -39) using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s protocols. After transfection for

48 h, the cells were subjected to OSU-HDAC-44 treatment.

Western blot analysis
Cells were lysed on ice using RIPA buffer (0.05 M Tris-HCl,

pH 7.4, 0.15 M NaCl, 0.25% deoxycholic acid, 1% NP-40, 1 mM

EDTA, 0.5 mM DTT, 1 mM phenylmethylsulfonyl fluoride,

5 mg/ml leupeptin, 10 mg/ml aprotinin). The lysate was centri-

fuged at 13000 r.p.m for 15 minutes at 4uC. Protein extracts were

solubilized in SDS gel loading buffer (60 mM Tris-base, 2% SDS,

10% glycerol, and 5% b-mercaptoethanol). Samples containing

equal amounts of protein (50 mg) were separated on an 8% SDS-

PAGE and electroblotted onto Immobilon-P membranes (Milli-

pore Co., Bedford, MA) in transfer buffer. Immunoblotting was

performed for various proteins, using the conditions described in

the Table S2, available online. Antibody reaction was visualized

using Western blot chemiluminescence reagent (Millipore).

Immunoprecipitation assay
Catch and Release Reversible Immuonprecipitation System

kit (Upstate, Temecula, CA) was used for protein-protein

interaction analysis. One mg cell protein lysates were incubated

with the appropriate antibodies, including anti-srGAP1, anti-

RhoA, anti-Aurora B, anti-survivin or normal mouse-IgG, and

10 ml affinity ligand, and immunoprecitation was then performed

according to the manufacturer’s protocol. After incubation at

4uC overnight, immune complexes were washed with wash

buffer for three times. Proteins were eluted and then blotted with

appropriate antibodies using the conditions described in the

Table S2.

RhoA activation assay
The RhoA activation assay was performed by using active Rho

pull-down and detection Kit (Pierce, Rockford, IL). Briefly, a

glutathione S-transferase (GST) fusion protein containing the Rho

binding domain (RBD) from Rhotekin was used. One mg protein

lysates were incubated with 400 mg of purified GST-Rhotekin-

RBD immobilized on agarose-glutathione beads for 1 hour at 4uC
with constant agitation. The beads were washed three times with

1X Lysis/Wash buffer and bound proteins were eluted and

subjected to Western blot analysis using RhoA antibody described

in the Table S2.

Molecular docking analysis
In order to show the interaction between OSU-HDAC-44 and

HDAC, molecular docking assay was conducted. The reference

compound, SAHA, was included. We calculated the structure of

OSU-HDAC-44 and SAHA and predicted the docking mode on

catalytic domain of HDAC8 using the docking program GOLD

4.0.1 to confirm the accuracy of this prediction program. The

three dimensional structure of OSU-HDAC-44, the binding

affinity of OSU-HDAC-44 to HDAC8, and the angles of OSU-

HDAC-44 and HDAC8 were calculated by this prediction

program, with consideration of molecular interaction, such as

hydrogen bound and van der Waals force.

Figure 7. The antitumor activity of OSU-HDAC-44 via cytokinese defect, F-actin disruption, apoptosis induction, and gene
acetylation. OSU-HDAC-44 is a novel pan-HDAC inhibitor that exhibits a broad spectrum of antitumor activities in NSCLC cell and xenograft models,
which involves histone acetylation-dependent activation of gene transcription in nucleus. For example, re-expression of NR4A1 and FOXO4 along
with caspase activation induces intrinsic apoptosis. In addition, RhoA/F-actin motility control is inhibited by srGAP1 resulting from activation by OSU-
HDAC-44. OSU-HDAC-44 also induces post-translational down-regulation of mitotic regulators, Aurora B and survivin leading to cytokinese defect and
apoptosis.
doi:10.1371/journal.pone.0012417.g007
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HDAC inhibition Assay
Different HDAC isotypes were immunoprecipitated from

nuclear extract using specific anti-HDAC-1, 24, 26, 28, and

211 antibodies. The HDAC activity assay was performed using a

HDAC fluorescent activity assay kit (BIOMOL Inc, Plymouth

Meeting, PA) according to the manufacturer’s instructions. Briefly,

the specific HDAC isotypes were added to the diluted OSU-

HDAC-44 (1 mM) and SAHA (1 mM), and then the substrate was

added. Samples were incubated for 10 min at 25uC, followed by

adding developer to stop the reaction. After incubation for 10 min,

luminescence was recorded on a SpectraMaxH M5 microplate

reader (Molecular Devices, Sunnyvale, CA).

Target promoter chromatin immunoprecipitation (ChIP)-
PCR Assay

Treated and untreated lung cancer cells were cross-linked with

1% formaldehyde for 15 min at 37uC. Chromatin was immuno-

precipitated with anti-acetylated lysine 9 and lysine 14 of histone H3

(H3K9K14Ac) using the ChIP assay kit (Upstate) according to the

manufacturer’s instructions and the conditions were described in the

Table S2. PCR analysis for protein-DNA complex was performed

using the following primer pairs: srGAP1 promoter, forward, 59-

TTT CCA TAC CAT CGC TTT CC -39, and reverse, 59- AAA

CCC CTT CCT GAC CTG AG -39; NR4A1 promoter, forward,

59- GAC CTT CAG CAA GTG CCA TT -39, and reverse, 59-

GCC CCT GAG ACG TCA GTT AG -39; FOXO4 promoter,

forward, 59- GCA GAG ATG GGT TTC ACC AT -39, and

reverse, 59- TCT CCA ACG GCT TCA CTT CT -39.

Chromatin structure profiling assay: ChIP-on-chip assay
The A549 and H1299 cells (46106) were treated with DMSO

or OSU-HDAC-44 for 2 h, and then immunoprecipitated using

antibody to H3K9K14Ac as the conditions described in the Table

S2. DNA was amplified and labeled by ligation-mediated PCR

with Cy5 and Cy3 fluorescent dyes, respectively. Both pools of

labeled DNA were hybridized to the NimbleGen human 385k

RefSeq Promoter array (Roche NimbleGen Inc., Madison, WI).

Images of fluorescence intensities were generated by scanning

array using GenePix 4000B scanner (Axon Instruments, Union

City, CA), and then data were extracted and ChIP signals were

normalized using NimbleGen SignalMap software. The ChIP-on-

chip data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus and are accessible through

GEO Series accession number GSE20304 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE20304).

Real-time RT-PCR assay
Expression levels of srGAP1, NR4A1 and FOXO4 mRNA were

assayed by real-time RT-PCR analysis using the GAPDH gene as

an internal control. The primers used in real-time RT-PCR are as

follows: srGAP1, forward, 59- GGA TGG CCC TGT TTA TGA

GA -39 and reverse: 59- CCG CCC AAC ATA GTC AAA CT -39;

NR4A1, forward, 59- GGC ATG GTG AAG GAA GTT GT -39

and reverse: 59- GCC TGG CTT AGA CCT GTA CG -39;

FOXO4, forward, 59- CTT TGA GCC AGA TCC CTG AG -39

and reverse: 59- TTC CAA CAG CAT TGC TCA TC -39;

GAPDH, forward: 59- AAT CCC ATC ACC ATC TTC CA -39

and reverse: 59- CCT GCT TCA CCA CCT TCT TG -39.

Relative quantitation using the comparative Ct method with the

data from ABI PRISM 7000 (version 1.1 software) was performed

according to the manufacturer’s protocol. Analysis of p21 gene

expression and its primer sequence are described in the

Supplementary Methods S1.

Immunofluorescence and confocal microscopic analysis
To stain for DNA and F-actin, the fixed cells were stained with

DAPI and Phalloidin, respectively, for 1 hour and then the images

were recorded by an OLYMPUS FV1000 confocal microscope

(Olympus America Inc., Melville, NY). For examination of the

degradation of Aurora B and survivin at mitotic phase by OSU-

HDAC-44, nocodazole was used to synchronize cell and then cells

were subjected to immunofluorescence and confocal microscopic

analysis as described in the Supplementary Methods S1.

Xenograft studies
Athymic nu/nu female mice (BALB/c), 4–5 weeks of age, were

obtained from the National Laboratory Animal Center (Republic

of China, Taiwan) after being approved by Institutional Animal

Care and Use Committee (IACUC), National Cheng Kung

University (IACUC Approval No. 99131) and maintained in

pathogen free conditions. Eight mice per group were used in the

xenograft studies. The animals were implanted subcutaneously

with 56106 A549 cells in 0.1 ml Hanks’ balanced salt solution

(HBSS) in one flank per mouse. The tumor size was measured

according to the formula: (Length6Width2)/2. When tumors had

attained a mass of ,50 mm3, animals were treated intraperito-

neally with OSU-HDAC-44 (7.5 mg/kg, 15 mg/kg or 30 mg/kg),

TSA (1.5 mg/kg) or DMSO as control on days 1, 3, and 5 for

three weeks. Prior to being sacrificed, the animals were

anesthetized and blood samples were collected by intracardiac

puncture for the hematological biochemistry tests. Tumor samples

and mice organ tissues were resected, fixed and embedded in

paraffin for histologic examination. To examine the biological

effects of HDAC inhibition in tumors, mice bearing established

(about 100,200 mm3) A549 tumors were treated intraperitone-

ally with a single dose of OSU-HDAC-44 at 60 mg/kg. After

treatment for indicated time, tumors were harvested and subjected

to Western blot or immunohistochemistry analyses.

Immunohistochemistry (IHC) and fluorescence IHC assays
Tumor tissues from mice exposed to OSU-HDAC-44 were

analyzed using IHC assay to detect the expression levels of cleaved

caspase-3 protein and were also used for immunofluorescence and

confocal microscopic analysis of Aurora B where DAPI was used

to stain the DNA. The conditions were as described in the Table

S2.

Statistical analysis
The SPSS program (SPSS Inc. Headquarters Chicago, Illinois)

was used for all statistical analysis. Statistical analysis was

performed using Student’s t-test. Data shown were representatives

of at least three independent experiments. Data represent mean 6

SEM. P,0.05 was considered to be statistically significant.

Supporting Information

Figure S1 Effect of OSU-HDAC-44 on cell cycle progression

and cell cycle-regulatory proteins. (A) The cells were treated with

DMSO or 2.5 mM OSU-HDAC-44 for 12 h and then subjected to

time-lapse microscopy analysis. Representative images are shown

for the indicated times. Arrows pointed to the dividing cells. (B)

Cells were treated with (+) or without (-) 2.5 mM OSU-HDAC-44

for 24 h or 48 h. The mean percentage of bi-nucleated cells was

calculated by counting over 250 cells per experiment and plotted

in the histogram. Data represent mean 6 SEM from three

independent experiments. *, P,0.05; **, P,0.01. (C) Cells were

treated with or without 2.5 mM OSU-HDAC-44 for the indicated

times and blotted for the indicated proteins. (D) Cells were treated
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with 200 ng/ml nocodazole and/or 2.5 mM OSU-HDAC-44 for

24 h, and then subjected to immunofluorescence analyses using

antibodies against Aurora B (red), survivin (green), and DAPI

(blue). Scale bars: 20 mm. (E) Cells were treated with 200 ng/ml

nocodazole and/or 2.5 mM OSU-HDAC-44 for indicated times

and blotted for the indicated proteins.

Found at: doi:10.1371/journal.pone.0012417.s001 (1.82 MB TIF)

Figure S2 OSU-HDAC-44 induced translocation of phosphati-

dylserine (PS) to the outer leaflet of the plasma membrane. A549

and H1299 cells were treated with 2.5 mM OSU-HDAC-44 24 h,

and then subjected to immunofluorescence analyses using

antibody against phosphatidylserine. Scale bars: 1.0 mm.

Found at: doi:10.1371/journal.pone.0012417.s002 (0.99 MB TIF)

Figure S3 Effect of OSU-HDAC-44 on the biomarkers

associated with HDAC inhibition. H1299 cells were treated with

or without 2.5 mM OSU-HDAC-44 or 5 mM SAHA for the

indicated times. Lysates were prepared and blotted for the

indicated antibodies by Western blot analyses. The immunoblots

shown are representatives of three independent experiments. Ac-

H3, acetylated histone H3; Ac-H4, acetylated histone H4.

Found at: doi:10.1371/journal.pone.0012417.s003 (0.55 MB TIF)

Figure S4 OSU-HDAC-44 increased p21 mRNA and protein

levels in a p53-independent manner. (A) A549 (p53 wild-type) and

H1299 (p53 null) cells were treated with or without 2.5 mM OSU-

HDAC-44 for the indicated times and total RNA was extracted for

the quantitative RT-PCR analyses using the specific primers for

p21 and GAPDH. Data represent mean 6 SEM from three

independent experiments. ***P,0.001. (B) Cells were treated with

or without 2.5 mM OSU-HDAC-44 for the indicated times.

Immunoblot analyses were performed using the indicated

antibodies. The immunoblots shown are representatives of three

independent experiments.

Found at: doi:10.1371/journal.pone.0012417.s004 (0.45 MB TIF)

Methods S1 Supplementary Methods

Found at: doi:10.1371/journal.pone.0012417.s005 (0.03 MB

DOC)

Table S1 Inductions of histone acetylation in 33 common genes

of A549 and H1299 lung cancer cells by OSU-HDAC-44.

Found at: doi:10.1371/journal.pone.0012417.s006 (0.07 MB

DOC)

Table S2 The antibodies and their reaction conditions used in

the present study.

Found at: doi:10.1371/journal.pone.0012417.s007 (0.11 MB

DOC)
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