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A B S T R A C T   

This study aims at generation of a novel artificial bee colony algorithm using surrogate finite 
element method with neural network technique. In this paper, theory of surrogate finite element 
method with physics-informed neural networks (PINNs) are generated and applied to deal with 
the geometrically nonlinear optimization problem of size, shape and topology for single-layer 
domes. In the artificial bee colony algorithm, the feedforward neural network is used to surro-
gate finite element analyses. Three numerical examples of 10-bar truss, Lamella dome, and Kiewit 
dome are carried out to verify feasibility and accuracy of the proposed method. Results of the 
present study are in good agreement with ones from literature. It is indicated that optimization 
processes can be considerably accelerated using the modified algorithm. That is, using the neural 
network surrogate-based models could significantly increase computational efficiency of struc-
tural optimum design for single-layer domes.   

1. Introduction 

Structure optimization is one of the hottest issues of civil engineering. It has been very helpful to reduce time and cost of structural 
design. Main issue in structural design is to minimize weight of structures under certain constraints. It is important to investigate how 
to let weight of structures as light as possible with certain strength, stiffness and stability [1]. Structural optimization problems can be 
divided into three categories, size optimization, shape optimization and topology optimization [2]. Size optimization is a process to 
determine optimal section parameters of a component, such as area, moment of inertia, etc. In shape optimization, position of a joint is 
taken as a variable to optimize relative component position. In topology optimization, material properties are regarded as optimization 
parameters to find the best scheme in the structural design with the greatest flexibility. 

Dome, as a specific style of structure, composed of a group of spatial rods with elegant shape and magnificent appearance. The 
special structural type could be used to cover a large area without too many columns, so it is widely used in theaters, gyms, and 
exhibition halls. In recent decades, steel has been widely designed as main material of dome structures. Compared with concrete, 
mechanical properties of steel structure are more stable and suitable for the specific structural style. In structural optimization process, 
domes need to be discretized as spatial beam elements and be analyzed using finite element method. Usually, most of joints are 
regarded as rigidly connected, and most of members are assumed to bear axial force and bending moment. Axial stiffness has been 
proved to be affected by the moment due to the large slenderness ratio [3]. In addition, overall stability of single-layer dome has been 
regarded as an important design index to evaluate buckling failure. Some studies have demonstrated that it might be necessary to take 
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geometric nonlinearity into account to accurately investigate global stability especially for light structures [4,5]. 
Solutions of structural optimization problems are gradient-based and search-based. Gradient-based optimization methods are 

usually based on ground structure technique, in which the structure initially contains a large number of joints and grids in design 
space. Subsets of the structure are selected from final solutions of iteration. For example, Changizi and Jalalpour have proposed an 
efficient gradient-based topology optimization framework for steel frames [6]. Mattias and Schevenels have proposed an 
gradient-based optimization algorithm to optimize the size, shape and topology of domes simultaneously [7]. It has been demonstrated 
that metaheuristic algorithms have great performance in search routine [8–10]. 

Metaheuristic algorithms are inspired from natural phenomena. Thus, it is used to solve optimization problems by imitating 
biological or physical situations [11]. They are divided into three categories, evolution-based, physics-based, and population-based. 
They have following advantages. At first, principle of algorithm is straightforward, and it is easy to understand and implement. 
Secondly, gradient is not required. Next, local optimal procedure is easily avoided. Also, they can be widely applied to many complex 
problems in different fields. Metaheuristic algorithms have been widely used in the field of building structure optimization, such as 
particle swarm optimization [12], genetic algorithm [2,13], ant colony algorithm [14,15], firefly algorithm [16–18], cuckoo search 
[19], harmony search [20], artificial bee colony algorithm [21–24], etc. As a subtopic of structure optimization, geometric nonlinear 
optimization design of dome structure has also been extensively investigated. Kaveh and Talatahari have applied charged system 
search to nonlinear optimal design of geodesic domes [25]. Richardson et al. have proposed form-finding technique based on dynamic 
relaxation and damping approach using genetic algorithm for geometric nonlinear shape optimization [26]. Çarba and Saka have 
generated a harmony search method for topology optimization of latticed domes [27]. Kaveh and Talatahari have presented a topology 
optimization method for several types of domes based on hybrid big bang–big crunch algorithm [3]. Kaveh and Javadi have proposed 
two chaotic firefly algorithm, chaos-based logistic firefly algorithms, and chaos-based Gaussian firefly algorithms, to optimize the 
nonlinear multi-frequency constrained domes [28]. Dede et al. have proposed series of Rao algorithms to optimize the size of small, 
medium and large-scale truss dome structures subjected to multiple dynamic frequency constraints [29]. 

In this paper, the artificial bee colony algorithm, one of the metaheuristic algorithms, is modified and applied to make geomet-
rically nonlinear structural optimum design for single-layer steel domes. A surrogate-based deep neural network is proposed to replace 
finite element analyses in the optimization. Three numerical structural optimizations are conducted to verify feasibility and accuracy 
of the proposed approach. Results of the present study are in good agreement with ones from literature. It is indicated that the proposed 
algorithm significantly accelerates the optimization process with satisfied precision. That is, using the neural network surrogate-based 
models could significantly increase computational efficiency of topology optimum design for single-layer domes. 

2. Theory of the surrogate finite element method 

2.1. Computational scheme—Finite element method 

Computational scheme of finite element method is defined as CFEM (ui
h, wi

h, vi
h, gi

h). In conventional continuum mechanics, the strong 
formulation of the partial differential equation is given in Eq. (1). Given fi:Ω → R, gi:Γgi → R, and ti:Γhi → R, find ui: Ω →  R such that 

σij,j + fi = 0 in Ω
ui = gi on Γgi

σijnj = ti on Γhi

(1)  

where σij = cijklεkl,εkl = u(k,l) ≡
uk,l+ul.k

2 , εkl infinitesimal strain tensor, σij Cauchy stress tensor, cijkl elastic coefficients, R denotes the set 
of real numbers, Ω domain in R, Γ boundary of Ω. Γgi and Γhi represent the specified boundary conditions, respectively; ui denotes test 
functions; fi, gi, and hi represent loading conditions. 

The corresponding weak formulation of the partial differential equation is given in Eq. (2). Given f, g, and t, in which fi:Ω →  R, gi:Γgi 
→ R, and ti:Γhi → R, for all w ∈ V find u ∈ δ such that 

a(w,u)= (w, f) + (w, t)Γ (2)  

where 

a(w,u) ≡
∫

Ω
w(i,j)cijklu(k.l)dΩ,

(w, f) ≡
∫

Ω
wifidΩ,

(w, t)Γ ≡
∑nsd

i=1

(∫

Γh i

witidΓ

)

Here δ denotes collections of trail solutions, V collections of weighting functions, u trial solutions, w weighting functions. f, g, and h 
represent body force, displacement, and traction vectors, respectively. 

The corresponding Galerkin formulation of the partial differential equation is given in Eq. (3). Given f, g, and t, in which fi:Ω →  R, 
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gi:Γgi → R, and ti:Γhi → R, for all wh ∈ Vh find uh = vh + gh ∈ δh such that 

a
(
wh, vh)=

(
wh, f

)
+
(
wh, t

)

Γ − a
(
wh, gh) (3)  

where δh and Vh are finite-dimensional approximation to δ and V, 

a
(
wh, vh) ≡

∫

Ω
wh

(i,j)cijklvh
(k.l)dΩ  

(w, f) ≡
∫

Ω
wifidΩ  

(
wh, t

)

Γ ≡
∑nsd

i=1

(∫

Γh i

wh
i tidΓ

)

a
(
wh, gh) ≡

∫

Ω
wh

(i,j)cijklgh
(k.l)dΩ  

Here h denotes element information; δh and Vh represent test solutions and weighting functions, respectively; uh, wh, gh denote virtual 
solutions, weighting functions, and boundary displacement in finite dimension, respectively. 

2.2. Learning scheme—Deep neural network 

Learning scheme of deep neural network is defined as NL
l=1 (α; W, b). Essentially, the neural network is composed of numerous 

neurons with adjustable connection weights. The Gaussian process is placed over the latent function u(x) given as Eq. (4). 

u(x) ≈ GP(0, k(x, x′; θ)) (4)  

where θ denotes the hyper-parameters of the covariance function k, GP Gaussian process. Each neuron multiplies its initial input value 
by a certain weight, and adds other input values combined with other information values to the neuron. A sum is calculated and 
adjusted for deviation by the neuron. The output value is standardized using an excitation function. Neural networks are connected by 
different computing units layer by layer. 

Let NL
l=1 (α; W, b): Rdx→Rdy be an L-layer neural network with input vector α, output vector β, and network parameters W, b. The 

feed-forward network generates information from one layer to the next layer through complex matrix calculation expressed in Eq. (5). 

zl = σl
(

Wlzl − 1
+bl

)
l= 1,…,L (5)  

where z0 and zl present inputs and outputs of the network; W, b are weight and bias arrays; σ denotes activation function. 
Artificial neural network is established in parallel and distributed form motivated by individual nervous system of human being. 

Multilayer feedforward neural network is used frequently in engineering applications. The elementary structure is composed of a 
group of input neurons, output neurons, and intermediate layer neurons. The neurons have the functions of receiving, transmitting and 
transforming. They receive a weighted value from the upper layer and transmit it to the lower layer through a specific activation 
function, as shown in Fig. 1(a and b). 

The common activation function of neurons, including sigmoid: y = 1
1+e− x, tanh: y = 1− e− x

1+e− x, and relu: y = max(0, x) functions, as 
shown in Fig. 2(a–c). 

In the special structural form, the neural network is used to learn a certain number of data sets with similar characteristics, identify 
potential relationships, and generate either simple linear functions or complex nonlinear functions. The neural network technique has 
been widely used to solve complex problems which are difficult to be solved using conventional approaches such as pattern 

Fig. 1. Schematic diagram of (a) the neuron, and (b) the neural network model.  
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recognition, signal processing, knowledge engineering, expert system, optimization combination, robot control, etc. 

2.3. Surrogate-based approach 

The deep learning technique has been broadly investigated, and the surrogate approach has also been widely explored and applied 
in different areas [30]. But, corresponding mathematical theories seem to be limited. Meanwhile, researches on physical information 
neural networks are also well conducted. Based on conventional finite element theory, this study derives data-driven mathematical 
expressions of physical information neural networks to solve structural optimization problems. 

The surrogate-based approach is simply defined as CFEM←NL
l=1. It is indicated that the finite element computational schemes are 

replaced by the trained learning neural networks. For example, displacement vector and stress tensor in solid mechanics are defnied in 
independent neural networks as our architecture of choice given in Eqs. (6) and (7). 

u(x) ≈ NL
u

(
xh) (6)  

σ(x) ≈ NL
σ
(
xh) (7)  

And it can be done through the cost or the loss functions, denoted as cost, along with initial and boundary conditions as Eq. (8). 

cost=
⃒
⃒u − u∗h

⃒
⃒+
⃒
⃒u − u∗h

⃒
⃒

∂Ω +
⃒
⃒u0 − u∗h

0

⃒
⃒+
⃒
⃒σ − σ∗h

⃒
⃒

+
⃒
⃒a
(
wh, vh) −

(
wh, f

)
−
(
wh, t

)

Γ + a
(
wh, gh)⃒⃒

(8)  

where u*h denotes the solution of the Galerkin form within the domain Ω, u0*h the one at initial point. The cost represents residual from 
all given training points. The norm | • | of a generic quantity g defined in Ω domain is given as Eq. (9). 

|g(xi)|=
1
N
∑N

i=1
g(xi)

2 (9)  

where the xi’s are the spatial points. 

2.4. Physics-informed neural network (PINN) 

Lately, physical information neural networks have been well developed by many researchers all over the world. Usually, it is used 
to deal with boundary value problems. However, this study explores how to use it deal with the structural optimization problems. This 
section generates the physical information neural network using rigorous mathematical formulation. 

The physics-informed neural network is simply defined as CPDE←NL
l=1, where PDE denotes partial differential equation. It is 

indicated that the computational scheme of partial differential equation, known as the strong form, is replaced by the trained learning 
neural network. Thus, we propose to have variables defined as independent neural networks as our architecture of choice in Eqs.10 and 
11. 

u(x) ≈ NL
u(x) (10)  

σ(x) ≈ NL
σ(x) (11)  

And it can be done through the cost or the loss functions, denoted as cost, along with initial and boundary conditions as Eq. (12). 

cost=
⃒
⃒ui − u∗

i

⃒
⃒+
⃒
⃒ui − u∗

i

⃒
⃒

∂Ω +
⃒
⃒u0 − u∗

0

⃒
⃒+

⃒
⃒
⃒σij − σ∗

ij

⃒
⃒
⃒

+
⃒
⃒σij,j + fi

⃒
⃒

(12) 

Compared the surrogate-based approach, the physics-informed neural network technique makes direct measurements using the 
exact solution ui* instead of the approximated solution of the Galerkin form u*h. Because it was proved that solutions of nodal points 
are of high precision, two methods could be almost identity. 

Fig. 2. Common activation functions: (a)sigmoid, (b)tanh, and(c)relu.  
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3. Surrogate-based optimization schemes 

The development of the first generation of computers was remarkable for their excellent computing power. At the same time, it has 
created a revolution in numerical methods. The finite element method was one of the most representative new methods at that time. In 
recent years, the era of artificial intelligence has arrived, and machine learning has made rapid progress, bringing about another 
revolution. For the field of computational mechanics, two methods are particularly valued. The first is the data-driven proxy method; 
The second type is physical information neural networks. These two methods have a certain degree of similarity, both of which use 
calculated numerical or analytical solutions to train deep neural networks. The goal of this study is to explore the feasibility and 
applicability of such methods in structural optimization problems. 

The structural optimization problem is given as Eq. (13). 

(SO)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,u

g0(x,u)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K(x)u = F(x)
gi(x,u) ≤ 0, i = 1,…, l

x ∈ χ =
{

x ∈ Rn, xmin
j ≤ xj ≤ xmax

j , i = 1,…, n
}

(13)  

where K(x) is the global stiffness matrix of the structure, u is the global displacement vector, and F(x) is the global external force 
vector. The displacements could be written as functions of the design variables in Eq. (14).  

u(x) = K− 1(x)F(x).                                                                                                                                                                  (14) 

In general, the final finite element matrix form is always given as K(x)u = F(x). Thus, the structural optimization problem could be 
modified as Eq. (15). 

(SO)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,u

g0(x,u)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
(
wh, vh) =

(
wh, f

)
+
(
wh, t

)

Γ − a
(
wh, gh)

gi(x,u) ≤ 0, i = 1,…, l

x ∈ χ =
{

x ∈ Rn, xmin
j ≤ xj ≤ xmax

j , i = 1,…, n
}

(15) 

The surrogate-based optimization scheme is SO(CFEM ←NL
l=1) expressed as Eq. (16). 

(SO)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,u

g0(x,u)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CFEM←NL
l=1

gi(x,u) ≤ 0, i = 1,…, l

x ∈ χ =
{

x ∈ Rn, xmin
j ≤ xj ≤ xmax

j , i = 1,…, n
}

(16) 

It is indicated that the computational scheme of finite element analysis is replaced by the trained learning neural network. 
For example, Kiewit and Lamella domes are commonly used structural styles as shown in Fig. 3(a and b). Main issue in structural 

design is to minimize weight of structures under certain constraints when boundary conditions are determined. There has been 
theoretical optimum design procedure of the dome structure to maintain stability of structural performance under different situations. 

Fig. 3. Plan views of (a) Lamella dome, and (b) Kiewit dome.  
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In optimization of dome structures, dome center height (h), number of ribs (n), and section size (Ai) are assumed as optimization 
variables. Optimization objective is to minimize weight of the whole structure. According to China Code for Design of Steel Structures 
(GB50017-2017), maximum displacement (d), maximum stress (σ) and overall stability coefficient of the structure would be checked 
during the design process. In the optimization problem of dome structure, x = {h,n,DV1,DV2,…DVng}, g0(x) =

∑ne
i=1ρiAili, and gi(x) 

include (dmax/dlim) − 1, (σmax/σlim) − 1, and (φ/φlim) − 1. Here x is optimization vector, h center height of dome, n number of ribs of 
domes, and DVi the i th group of member area. Other parameters are shown in Table 1 in details, where ng denotes number of member 
groups, g0(x) weight of structure. ρi density, Ai cross-sectional area, li length of the i th member, ne number of elements, gi(x) con-
straints, dmax maximum joint displacement, σmax maximum von Mises stress, φ overall stability coefficient of domes, and dlim, σlim, φlim 
limitation of displacement, stress, and overall stability coefficient, respectively. 

After design vectors are assigned to the platform, parametric modeling and nonlinear analysis are carried out to obtain structural 
response, including maximum joint displacement, maximum stress, and overall stability coefficient. 

In the nonlinear finite element analyses, Timoshenko beam element is selected to compute displacement and stress of the dome 
structure. 1/300 of the maximum joint displacement is introduced into the structure as initial geometric defect. The arc-length method 
module is used to evaluate overall stability coefficient through iteration. The maximum iteration number of the arc length method is 
set as 30. 

4. Artificial bee colony algorithms 

The artificial colony algorithm has been proposed by Karaboga [31] at the first time. Then, it has been extensively investigated by 
researchers because of its rapid convergence, high optimization accuracy, few parameters, and simple principle. A series of modified 
methods have been proposed, for example, modified search equation of individual bees [32–37], modified quality of population 
initialization [38–40], combined with other meta-heuristic algorithms, such as genetic algorithm [41], ant colony algorithm [42,43], 
particle swarm optimization [44,45], etc. Because of symmetry of dome structures, number of optimization variables is countable. 
Thus, this paper adopts basic version of artificial bee colony algorithm combined with the artificial neural network technique, 
investigated in Section 4, to carry out the numerical experiments, introduced in Section 5. 

Based on the clustering intelligence of natural organisms, various constrained and unconstrained optimization problems have been 

Table 1 
Available section list.  

Type Size Section 
Area (cm2) 

Theoretical Weight(kg/m) Inertia Moment 
Ix (cm4) 

h(mm) b(mm) d(mm) t(mm) r(mm) r1(mm) 

10 100 68 4.5 7.6 6.5 3.4 14.345 11.261 245 
12.6 126 74 5 8.4 7 3.5 18.118 14.223 488 
14 140 80 5.5 9.1 7.5 3.8 21.516 16.89 712 
16 160 88 6 9.9 8 4 26.131 20.513 1130 
18 180 94 6.5 10.7 8.5 4.3 30.756 24.143 1660 
20a 200 100 7 11.4 9 4.5 35.578 27.929 2370 
20b 200 102 9 11.4 9 4.5 39.578 31.069 2500 
22a 220 110 7.5 12.3 9.5 4.8 42.128 33.07 3400 
22b 220 112 9.5 12.3 9.5 4.8 46.528 36.524 3570 
25a 250 116 8 13 10 5 48.541 38.105 5020 
25b 250 118 10 13 10 5 53.541 42.03 5280 
28a 280 122 8.5 13.7 10.5 5.3 55.404 43.492 7110 
28b 280 124 10.5 13.7 10.5 5.3 61.004 47.888 7480 
32a 320 130 9.5 15 11.5 5.8 67.156 52.717 11100 
32b 320 132 11.5 15 11.5 5.8 73.556 57.741 11600 
32c 320 134 13.5 15 11.5 5.8 79.956 62.765 12200 
36a 360 136 10 15.8 12 6 76.48 60.037 15800 
36b 360 138 12 15.8 12 6 83.68 65.689 16500 
36c 360 140 14 15.8 12 6 90.88 71.341 17300 
40a 400 142 10.5 16.5 12.5 6.3 86.112 67.598 21700 
40b 400 144 12.5 16.5 12.5 6.3 94.112 73.878 22800 
40c 400 146 14.5 16.5 12.5 6.3 102.112 80.158 23900 
45a 450 150 11.5 18 13.5 6.8 102.446 80.42 22200 
45b 450 152 13.5 18 13.5 6.8 111.446 87.485 33800 
45c 450 154 15.5 18 13.5 6.8 120.446 94.55 35300 
50a 500 158 12 20 14 7 119.304 93.654 46500 
50b 500 160 14 20 14 7 129.304 101.504 48600 
50c 500 162 16 20 14 7 139.304 109.354 50600 
56a 560 166 12.5 21 14.5 7.3 135.435 106.316 65600 
56b 560 168 14.5 21 14.5 7.3 146.635 115.108 68500 
56c 560 170 16.5 21 14.5 7.3 157.835 123.9 71400 
63a 630 176 13 22 15 7.5 154.658 121.407 93900 
63b 630 178 15 22 15 7.5 167.258 131.298 98100 
63c 630 180 17 22 15 7.5 179.858 141.189 102000  
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solved by imitating searching behavior of bees in process of collecting honey. Bee colonies in nature can be divided into three cate-
gories, employed bees, onlooker bees, and scout bees. 

Each employed bee is associated with a food source. The employed bees evaluate quantity of food source and try to find better food 
source around it. After this search process is completed, the employed bees abandon the original food source and move to the other 
one. At the same time, the employed bees share information about the new food source with the bees in the hive through a waggle 
dance. 

The hive receives all the food source information from the employed bees, evaluates and compares the qualities of all sources, and 
sends the onlooker bees in the hive to randomly select the food source. To better utilize and search for food source, onlooker bees tend 
to move to food source of high quality, and search around it to obtain another one. 

If the better food source cannot be found after several times of searching around a current one, it would be abandoned and 
employed bees would be randomly changed to scout bees, in which new food sources would be randomly searched. After the 
search is completed, the scout bees would become employed bees, send information back to the hive, and cooperate with 
onlooker bees to start a new round of searching. 

In the artificial bee colony algorithm, location of food source is design variable in the optimization process. Quality of food source is 
cost function of the design variable. Employed bees and onlooker bees account for half of the bee population, and they search for 
optimal or satisfactory solution in the solution space through information exchange and mutual cooperation. 

The main steps of the artificial colony algorithm are given as follows: At first, food sources are initialized. For each food source, it is 
assigned to an employed bee. Secondly, employed bees search around food source. Next, quality of the new food source is evaluated 
and obtained by employed bees. And the current food source is replaced by the better one. Also, the onlooker bees evaluate quality of 
all food sources, move to a random food source by roulette algorithm, and update it. If no better food source is found in the neigh-
borhood after several search attempts, the current one would be abandoned. And employed bees would automatically turn into scout 
bees and randomly assign a new food source. The previous four steps are repeated until the iteration is complete. The pseudocode of the 
artificial colony algorithm is shown in Algorithm 1. 

■(Begin@Objective function f(X),X=(x_1, …,x_d)^T@Generate initial solutions of bees x_i (i = 1,2, …,n)@Determine fitness 
function F_i of each bee@while(t < MaxGeneration)@for i = 1:num_of_employedbees@Search around initial solutions@end@for i =
1:num_of_onlookerbees@Choose employed bees and follow@end@for i = 1:num_of_scoutbees@find better solutions@end@Rank and 
find best solution@end@Update global best solution@end) 

Fig. 4. Flowchart of the proposed optimization process.  
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Algorithm 1. The pseudocode of the artificial colony algorithm. 
In structural optimization process with the metaheuristic algorithm, searching and verifying procedures are essential. Usually, 

finite element method (FEM) is used to verify structural constraints. However, for complex structural analyses, computational cost of 
the traditional method in the optimization process is very high. Thus, the artificial neural network could be a surrogate of finite 
element model potentially. After several numerical experiments are conducted, it is demonstrated that the artificial neural network 
technique could save about 50–80 times as much as computational cost of FEM to solve geometric nonlinear global stability problem of 
the single-layer steel dome structure. 

In this paper, the modified artificial bee colony algorithm with surrogate-based neural network model is proposed. It consists of the 
following parts.  

1. Structural responses are trained using the artificial neural network. The design variables are inputted into the artificial neural 
network, and the structural responses, including maximum joint displacement, maximum von Mises stress and overall stability 
coefficient, are outputted from the neural network. Sample features are randomly generated, and the finite element analyses are 
made, and sample labels are obtained. Number of samples is an important parameter of the training neural network. Too few 
samples will result in the overfitting of the neural network, while too many will cause the burden of finite element calculation. In 
this study, 3000–6000 training samples are generally taken.  

2. In the optimization process of artificial bee colony algorithm, instead of using results from finite element analyses, we use ones 
predicted by the trained ANN to conduct the searching procedure. 

3. To prevent inevitable errors of ANN, effective solutions judged by the neural network are recorded in the whole searching pro-
cedure as potential real optimal solutions. They are arranged in ascending order based on corresponding structural weight values. 
Then, finite element analyses are carried out. The minimum weight value under constraints is the final optimal solution of ABC- 
PINN. 

The flowchart of the optimization method in this study is shown in Fig. 4. At first, sample data is initiated. According to the 
structural form, type and number of optimization variables are determined. Several groups of sample features are randomly generated 
and imported for structural analysis to obtain the sample labels. Secondly, the artificial neural network is trained. After the neural 
network structure training method, error function, and activation function are determined, the network error is reduced to fit the data. 
At last, the surrogate-based optimization is conducted, in which the finite element computation is surrogated by the trained ANN until 
iteration is finished. 

5. Numerical experiments 

In this section, a conventional 10-bar truss optimization is made to verify and validate efficiency and accuracy of the proposed 
method. Also, structural optimization of Lamella domes and Kiewit domes are carried out, in which geometric nonlinearity and overall 
stability are taken into account. Computational cost and accuracy of the proposed technique are made comparison with ones of 
conventional methods developed in literature. 

5.1. 10-Bar truss optimization 

Structural optimization of the 10-bar truss expressed in Fig. 5 is made to verify and validate efficiency and accuracy of the proposed 
method. It is a benchmark problem where No. 5 and No. 6 joints are connected by fixed hinged supports, No. 2 and No. 4 joints are 
subjected to a vertical downward force of 105 lb, and material density and elastic modulus are 0.1lb/in3 and 104 ksi, respectively. The 
objective is to minimize weight of truss defined by Eq. (2). There are two constraints, maximum axial compression and tension stress of 
all structural members are limited to 25 ksi, and maximum displacement of joints in y direction is limited to ±2 in. The discrete set of 

Fig. 5. The 10-bar truss.  
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sectional area in this example is given as S = {1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 
3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 
22.00, 22.90, 26.50, 30.00, 33.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5, 75, 77.5, 80, 82.5, 85, 
87.5, 90}(in2). 

In literature, several methods, such as Big Bang–Big Crunch Optimization(BB-BC) [46], Hybrid Harmony Search algorithm(HHS) 
[47], improved electro-search algorithm(IES) [48], have been adopted to optimize the 10-bar truss structure theoretically. The 
population number is set as 100, and the iteration number 1000. To make a comparison, two emerging swarm intelligence algorithms, 
Whale Optimization Algorithm(WOA) [49] and Grey Wolf Optimizer(GWO) [50] are used for the structural optimization problem. 

In this study, cross-sectional areas of 10-bar truss components are used as features of the artificial neural network and imported into 
finite element analyses. Maximum joint displacement in y direction and maximum axial stress are used as labels of the ANN. 4000 
groups of data samples are generated and normalized, in which the ratio of train, test and validation set is set as 7:1.5:1.5, and the 
probability distribution is always used during training. Levenberg-Marquardt approach is used as training technique with MSE as the 
error function, and sigmoid function is chosen as the activation function. The architecture of the network and its training results are 
presented in Fig. 6(a–c). 

It is indicated that the neural network is converged after several hundred training sessions while fitting degree exceeds 99 %. The 
optimization result is shown in Table 2, and the convergence curve is shown in Fig. 7. 

As shown in Fig. 7, GWO-PINN is converged rapidly, and ABC-PINN has the lightest solution. While the converged solution of ABC- 
FEM is worst, it might be resulted from that the neural network blurs the actual constraint boundary, meta-PINN is inclined to lighter 
solution whose FEM result might violate the constraints. 

As shown in Table 2, ABC-PINN performs better than GWO-PINN and WOA-PINN in computational speed and accuracy. Compared 
with ABC-FEM, ABC-PINN only has 2.48 % in error, but the efficiency 3.99 % better than one of ABC-FEM. 

From Table 2 and Fig. 8-9, it can be seen that the optimization of the cross-section of the 10-bar truss has the optimal solution, with 

Fig. 6. Network structure for (a) and mean square error convergence curve and correlation regression for (b) the maximum nodal displacement, (c) 
the maximum principal stress. 
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Table 2 
Optimization results for the 10-bar truss.  

Design variables BB-BC [8] HHS [11] IES [3] The present study 

ABC-FEM ABC-PINN GWO-PINN WOA-PINN 

DV1 33.50 33.50 33.50 33.50 30.00 45.00 22.00 
DV2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 
DV3 22.90 22.90 22.90 22.90 22.00 19.90 15.50 
DV4 14.20 14.20 14.20 14.20 22.90 15.50 19.90 
DV5 1.62 1.62 1.62 1.62 1.62 1.99 2.38 
DV6 1.62 1.62 1.62 1.62 2.38 1.62 2.93 
DV7 7.97 7.97 7.97 7.97 7.97 5.12 14.20 
DV8 22.90 22.90 22.90 22.90 22.00 22.90 30.00 
DV9 22.00 22.00 22.00 22.00 22.00 22.90 37.50 
DV10 1.62 1.62 1.62 1.62 1.62 1.99 1.62 
Weight(lb.) 5490.74 5490.74 5490.74 5490.74 5627.08 5776.42 6557.84 
FEM analyses – – – 87948 1516 78 19 
Data generation time(min.) – – – – 28.75 28.75 28.75 
Training time(min.) – – – – 0.28 0.28 0.28 
Optimization time(min.) – – – 1921.45 47.58 76.93 116.56 
Overall Time(min.) – – – 1921.45 76.61 105.96 145.59  

Fig. 7. Convergence curves of 10-bar truss: ABC-FEM, ABC-PINN, GWO-PINN, WOA-PINN.  

Fig. 8. A comparison among cross-section area of rods.  
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a structural weight of 5490.74 pounds. It is demonstrated that ABC-PINN has better performance for efficiency and accuracy than 
GWO-PINN and WOA-PINN. Compared with ABC-FEM, ABC-PINN, the total weight of the converged solution only lost 2.48 % of 
accuracy, but it reduces 96.01 % of computational time (see Fig. 9). 

5.2. Lamella dome optimization 

Fig. 10(a) presents the Lamella dome of 160 m in span, 40 m in center height. The spherical shape design is adopted. It is hinge- 
supported under 3 kN/m2 of vertical distributed dead loading, 9.8 N/Kg of gravity loading, 2 kN/m2 of vertical distributed live loading, 
and 1.5 kN/m2 of horizontal distributed loading. Fig. 10(b) illustrates loadings and boundary conditions of this numerical example. 
Fig. 11(a–d) present the architecture of the network and mean square error convergence curve and correlation regression for the 
maximum nodal displacement, the maximum principal stress, and stability parameter. 

According to design requirements of the dome structure, number of rings is set as 15, and number of ribs 20. Q345 steel is chosen 
with 345 MPa in yield strength. As shown in Table 1, sections are symmetrically distributed. Members 1–14 are circular in shape, and 
members 15–29 are longitudinal ribs. The displacement constraint is 0.4 m. 5000 sets of data samples are used for neural network 
training. They are normalized and randomly divided into train, test and validation set with the ratio of 7:1.5:1.5. Levenberg-Marquardt 
approach is used as training technique with MSE as the error function. The max epochs are set as 1000, and the learning rate is set as 
0.01 sigmoid function is chosen as the activation function. Optimization results are shown in Table 3. The convergence curve is shown 
in Fig. 12. 

As shown in Table 3, computational cost of ABC-PINN is less than ones of GWO-PINN and WOA-PINN. The computational time is 
around 69.38 % as much as one of ABC-FEM. However, GWO-PINN obtains the lowest error, 1.55 %. 

In Fig. 13-14, compared with ABC-FEM, accuracy error of ABC-PINN is approximately 2.36 %, while running time decreases around 
69.83 %; accuracy error of WOA-PINN about 1.55 %, while running time decreases around 60.83 %; accuracy error of GWO-PIN is 
approximately 21.52 %, while running time decreases around 65.65 %. It is demonstrated that ABC-PINN has better performance than 
other algorithms for computational accuracy and speed (see Fig. 14). 

5.3. Kiewit dome 

Fig. 15(a) presents a typical spherical Kiewit dome with 80 m in span. It is hinge-supported under 3 kN/m2 of vertical distributed 
dead loading, 9.8 N/Kg of gravity loading, 1.5 kN/m2 of vertical distributed live loading, and 1.0 kN/m2 of horizontal distributed 
loading. Fig. 15(b) illustrates loading and boundary conditions of the Kiewit dome. Fig. 16(a–d) present the architecture of the network 
and mean square error convergence curve and correlation regression for the maximum nodal displacement, the maximum principal 
stress, and stability parameter. 

According to requirements of the dome structural design, number of rings is set as 5. Q235 steel is used with 235 MPa in yield 
strength. The center height, h, is from 5 to 20 m. Members are uniformly distributed throughout the area, in which members 1–4 are 
circumferential rods, and members 5–9 are longitudinal rib rods. Displacement constraint is 0.2 m. 5000 sets of data samples are used 
for neural network training. They are normalized and randomly divided into train, test and validation set with the ratio of 7:1.5:1.5. 
Levenberg-Marquardt approach is used as training technique with MSE as the error function. The max epochs are set as 1000, and the 
learning rate is set as 0.01, sigmoid function is chosen as the activation function. Optimization results are shown in Table 3. The 
convergence curve is shown in Fig. 13. 

Optimization results are presented in Table 4, and convergence curve is shown in Fig. 18. 
As shown in Table 4, solutions of ABC-PINN are more efficient and accurate than ones of GWO-PINN and WOA-PINN. Error of ABC- 

PINN is approximately 8.20 % less than one of ABC-FEM. Computational cost ABC-PINN is approximately 11.73 % less than one of 
ABC-FEM. 

Fig. 9. A comparison of total weight and running time among different methods.  
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As shown in Fig. 17, solutions GWO-PINN are converged rapidly. Solutions of ABC-PINN are relatively accurate. Solutions of WOA- 
PINN are converged quite slowly. It might have trapped in a locally optimal solution. 

In Figs. 18–19,compared with ABC-FEM, accuracy error of ABC-PINN is approximately 8.20 %, while running time decreases 
around 88.27 %; accuracy error of WOA-PINN about 63.63 %, while running time decreases around 87.60 %; accuracy error of GWO- 
PIN is approximately 46.33 %, while running time decreases around 86.42 %. It is demonstrated that ABC-PINN has better perfor-
mance than other algorithms for computational accuracy and speed. 

5.4. Discussion 

One might question about how to choose the architecture of the surrogate model and how many layers and neurons per layer. In this 
article, training finite element proxy networks is indeed an important part. Determining the type, structure, and various hyper- 
parameters of neural networks is crucial for a good simulation result. In fact, we cannot theoretically determine the only optimal 
neural network model. In other words, multiple attempts and selection of the optimal solution may be inevitable. In this article, the 
structure of a neural network is determined by the number and characteristics of input neurons. The number of neurons in the first 
hidden layer is usually between one to two times the number of input neurons. And the number of neurons in each layer decreases 
sequentially with the number of layers. The number of neurons in the last layer of the hidden layer is also greater than the number of 
output neurons. Generally speaking, the fitting performance of neural networks improves with the increase of layers within a certain 
range. However, having more layers can also result in a loss of computational performance. In the size, shape, and topology opti-
mization of dome structures, the number of layers of neural networks is often chosen from 3 to 5 based on the classification of input 
variables. As for the choice of super parameters such as activation function, loss function and learning rate, the method adopted in this 
paper is to give priority to several commonly used ones. In fact, they have shown satisfactory performance. It is worth mentioning that 
we also tried some other types of neural networks, such as convolutional neural network (CNN) and radial basis function neural 
networks (RBF). They did not show better performance than ANN. 

The other issue is how to know when to stop collecting training data. It may be that the surrogate model is accurate in the early 
stage of the optimization, but gets less accurate as the optimization progresses. The explanation would be that too little training data 
can cause underfitting problems, and too much training data can increase computational burden and even bring about the risk of 
overfitting. We cannot theoretically determine how large a sample dataset is suitable and effective. Therefore, in the process of 
generating the sample dataset, we are based on the following principles: 1 Too little sample data can lead to insufficient accuracy. We 
usually hope that the fitting accuracy of neural network proxy finite element can reach over 95 %. If the fitting accuracy is too low, we 
tend to generate more sample data; 2. Generating too much sample data can lead to an increase in optimization costs. Sample data will 
not continue to be generated after the fitting accuracy meets the requirements. 

Another question is that in Table 2, the proposed Ant Bee Colony optimization method requires a lot more FEM analyses but 
strangely the overall running time is shorter. A similar phenomenon occurs for the third example summarized in Table 4. For the 
second example, strangely only 1 FEM simulation is required for all the surrogate models. The plausible interpretations for this result 
could be that due to the non directionality of neural network errors, we cannot guarantee that the proxy results would meet the 
constraint conditions. Therefore, after the convergence of the meta heuristic algorithm, we perform finite element calculations on the 
reasonable solutions in its search path to ensure that the true mechanical solution of the final solution meets the constraint conditions. 
The main part of overall running time is the time required to generate sample data and the iteration time of meta heuristic algorithms. 
Although the ABC algorithm performs more finite element calculations, it is still better than the other two algorithms in terms of 
overall time and accuracy. 

The next question is that why the study did not choose directly a consistent pure neural network solution as presented in literature 
[51,52]. According to our experiment, the amount of data required for using neural network to surrogate structure optimization al-
gorithms is 105–1010 times greater than that of the proposed method in this paper. One of the main reasons is that in this study, the 
physical constraint conditions are given, rather than being used as input variables for neural networks. In other words, this article 
attempts to find a method that requires less data but still has high accuracy. 

In addition, one might question why this study used the artificial bee colony algorithm in the optimization process. The rational 

Fig. 10. (a) Plan view, (b) boundary conditions, and loading of Lamella domes.  
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explanation would be that ABC is a very classic natural clustering algorithm. WOA and GWO are new meta heuristic algorithms that 
have received widespread attention in recent years. After comparison, ABC has shown better performance than the new algorithm in 
solving multi-scale optimization problems of dome structures. Thus, the application value of ABC has been demonstrated for solving 
practical problems. 

Fig. 11. The architecture of the network for (a) and mean square error convergence curve and correlation regression for (b) the maximum nodal 
displacement, (c) the maximum principal stress, and (d) stability parameter. 
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6. Conclusion 

In this study, the novel artificial bee colony algorithm, in which finite element computation is replaced by trained neural network, 
is generated to make structural optimization for single-layer domes. At first, numerical experiment of the 10-bar truss is made. Results 
of the present study are in good agreement with ones from literature. Thus, feasibility and accuracy of the proposed artificial bee 
colony algorithm with surrogate-based neural network have been demonstrated. In addition, structural optimization of Lamella domes 
and Kiewit domes are carried out, in which geometric nonlinearity and overall stability are taken into account. Computational cost and 

Table 3 
Optimization results for the Lamella dome.  

Design variables This study  

ABC-FEM ABC-PINN GWO-PINN WOA-PINN 

DV1 36a 50b 63b 10 
DV2 18 10 10 10 
DV3 10 10 10 10 
DV4 12.6 14 25a 32a 
DV5 25a 25a 12.6 40a 
DV6 20a 25a 28a 16 
DV7 20b 18 14 32b 
DV8 22a 28a 25a 28b 
DV9 20b 22a 22a 36a 
DV10 25a 25a 22a 28a 
DV11 20b 25a 28a 25b 
DV12 22a 18 22a 20a 
DV13 22a 22a 22a 22a 
DV14 22a 22a 22a 25b 
DV15 20a 16 12.6 18 
DV16 25a 22a 22a 14 
DV17 20b 22a 18 22a 
DV18 25b 25a 25a 28a 
DV19 25a 20a 22a 22b 
DV20 20a 20b 22a 28b 
DV21 20a 22b 22a 25a 
DV22 20b 22a 22a 25b 
DV23 22b 22a 22a 14 
DV24 20b 22a 22a 36a 
DV25 22a 22a 22a 36a 
DV26 22b 22a 22a 22b 
DV27 18 22a 22a 20a 
DV28 20b 20a 18 14 
DV29 20a 22a 22a 28a 
Best(lb.) 280965.28 287586.79 285309.38 341422.16 
FEM analyses 18662 1 1 1 
Data generation time(min.) – 297.25 297.25 297.25 
Training time(min.) – 2.18 2.18 2.18 
Optimization time(min.) 1153.561 48.64 152.41 96.87 
Overall Time(min.) 1153.561 348.07 451.84 396.30  

Fig. 12. Convergence curves of Lamella domes: ABC-FEM, ABC-PINN, GWO-PINN, WOA-PINN.  
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Fig. 13. A comparison among optimization parameters.  

Fig. 14. A comparison of total weight and running time among different methods.  

Fig. 15. (a) Plan view, (b) boundary conditions and loading of Kiewit domes.  
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accuracy of the proposed technique are made comparison with ones of conventional methods developed in literature. It is indicated 
that the modified artificial bee colony algorithm with surrogate-based neural network model could increase convergence speed up to 
approximately 11.73 % with error averagely 2 % less than conventional approach. It is demonstrated that optimization processes can 
be considerably accelerated using the modified algorithm. That is, using the neural network surrogate-based models could significantly 
increase computational efficiency of topology optimum design for single-layer domes. After some modification, the novel artificial bee 
colony algorithm, in which finite element approaches are replaced by surrogate-based neural network techniques, could be easily 
extended to complex structures. 

However, like most surrogate-based methods, this study does not consider the cost of modifying neural networks for higher 

Fig. 16. The architecture of the network for (a) and mean square error convergence curve and correlation regression for (b) the maximum nodal 
displacement, (c) the maximum principal stress, and (d) stability parameter. 
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Table 4 
Optimization results for the Kiewit dome.  

Design variables This study 

ABC-FEM ABC-PINN GWO-PINN WOA-PINN 

h 19 19 16.5 15.25 
n 6 6 6 6 
DV1 18 20a 36a 40a 
DV2 16 20a 22a 36a 
DV3 14 18 10 20a 
DV4 10 10 10 16 
DV5 20a 20a 32a 22a 
DV6 12.6 12.6 36b 16 
DV7 16 14 36a 20a 
DV8 16 18 32a 18 
DV9 16 16 28a 22a 
Weight(lb.) 42515.27 46002.84 69566.54 62212.87 
FEM analyses 101150 100 200 27 
Data generation time(min.) – 416.57 416.57 416.57 
Training time(min.) – 2.89 2.89 2.89 
Optimization time(min.) 3991.13 48.64 75.28 122.57 
Overall Time(min.) 3991.13 468.10 494.74 542.03  

Fig. 17. Convergence curves of Kiewit dome: ABC-FEM, ABC-PINN, GWO-PINN, WOA-PINN.  

Fig. 18. A comparison among optimization parameters.  
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accuracy. In other words, if the cost of modifying neural network is taken into account, the whole computational cost would still exceed 
one of the conventional methods especially for some single and simple projects. Therefore, the method proposed in this study might 
need to cooperate with the certain project management technique to achieve its maximum benefits. 
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