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Abstract

Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits
long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is
often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this
study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV
genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green
fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a
modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206])
were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag
(BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-
specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206]
and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343617 SFU/106 splenocytes, 16
fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold
higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In
addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
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Introduction

The estimated HIV prevalence rate in South African adults is

still unacceptably high at 17.9%, and is as high as 30% in some

regions[1], despite continuing government efforts to extend

antiretroviral therapy and other interventions. Thus, a safe and

effective HIV vaccine is required to significantly reduce the HIV

infection rate. Within the HIV vaccine scientific community there

is renewed optimism about the prospects of success, following the

first successful HIV vaccine efficacy trial in Thailand (RV144), in

which a canarypox vector prime and a gp120 protein boost were

utilised. Although there was only a 31% reduction in the rate of

HIV infection in vaccinated people compared with those receiving

placebo, it is the first indication that vaccination against HIV

acquisition is possible [2].

While antibody responses are important in preventing HIV

infection, there is broad agreement that a robust T cell response is

also desirable; the aim of this is to control HIV infected cells if the

antibodies fail to prevent infection [3–5]. In our laboratory we are

attempting to use the live, anti-tuberculosis vaccine Mycobacterium
bovis BCG to make a recombinant vaccine that delivers HIV-1

subtype C antigens, the subtype responsible for the devastating

epidemic in sub-Saharan Africa. BCG has many features that

make it a promising vaccine vector: it has been administered to

billions of people worldwide with a very low incidence of

complications; it is cheap to manufacture; it elicits long-lasting

cellular immunity and it is unaffected by maternal antibodies. A

variety of viral, bacterial, parasitic and human antigens have been

successfully expressed in BCG. In experimental models rBCG has
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elicited protective immunity against a variety of infectious agents

including viruses (measles, papillomavirus), bacteria (listeriosis,

pneumococcal infection, pertussis, Lyme disease) and parasites

(leishmaniasis and malaria) [6–13]. This work is promising,

however, the weaknesses of the system are generally not addressed.

A major limitation is the fact that recombinants can be unstable

[14–19]. This manifests as mutations within the recombinant

DNA, resulting in the loss of, or a decrease in, cloned antigen

expression or, in the absence of selection, in the loss of the

recombinant plasmid. This is a serious defect, because such

mutants cannot be selected against during scaled-up production,

precluding the vaccine from commercial development.

For antigen expression to fail, a mutation in the recombinant

gene must occur. This probably occurs in a small fraction of the

population in all cultures and is unimportant, provided the

mutants do not have a selective advantage, typically a higher

growth rate. This superior growth is achieved by elimination or

lower expression of the cloned gene, which otherwise imposes

some form of metabolic or toxic load on the parent strain [20].

Researchers have attempted to solve the instability problem by

utilising promoters that, during laboratory or commercial culture,

express weakly or not at all, but which express strongly after

vaccination [21]. Alternatively, researchers have attempted to

stabilise recombinant DNA by using single-copy, integrative

vectors, as opposed to multi-copy plasmid vectors [22]. While this

appears to work to some degree, it is probable that this is partially

due to a decrease in expression of the foreign gene and consequent

decrease in the metabolic or toxic load.

Efforts to improve the level of antigen expression in BCG have

focused on methods of increasing the amount of de novo antigen

synthesis. These include the use of multi-copy vectors, strong

expression signals and genes with corrected codon bias [17].

However, as this increases the burden on the bacteria, such

approaches must inevitably result in increased instability. In the

work here, we demonstrate that poor expression and instability are

causally related. We argue that instability and poor expression

occurs primarily in cases where the recombinant antigen is of

eukaryote origin, and is due to miss-folding of the protein. When

such miss-folding occurs, the host bacterium presumably responds

by up-regulating the components of the protein quality control

apparatus (the heat shock response), mainly chaperones and

proteases [23]. As there is no reason to expect that the chaperones

will be able to fold the antigen in a manner acceptable to the

bacterium, the proteases would be expected to destroy it. This

would explain both the instability (caused by stress and slow

growth) and low expression (caused by antigen destruction). This

insight has allowed us to devise a method whereby antigens can be

expressed at 14 fold higher levels while at the same time stability is

improved.

In this study we aimed to improve the stability and immuno-

genicity of HIV-1 Gag- expressing rBCG by applying a directed

evolution process. This involved modifying the antigen by

mutagenesis and then selecting for HIV-1 Gag-expressing

recombinant mycobacteria that show both higher growth rates

and increased antigen expression. Such a process should yield

rBCG that express modified versions of Gag that are less

deleterious, possibly because of a more acceptable manner of

protein folding. We have identified rBCG that are more stable and

have higher Gag antigen expression levels than the parent rBCG.

Upon vaccination one of these recombinants induced improved

immune responses in a mouse model.

Methods

Bacterial strains, culture, transformation, preparation of
vaccines

Bacterial strains Escherichia coli LKIII [24] E. coli Top10,

(Invitrogen), Mycobacterium smegmatis mc2155 [25] and Myco-
bacterium bovis BCG (Pasteur) were used. E.coli was cultured at

37uC in Luria-Bertani broth or on agar [26] with kanamycin

15 mg/ml as appropriate. M.smegmatis and M. bovis BCG were

cultured at 37uC in Middelbrooks 7H9 broth (Difco) supplement-

ed with oleic acid-albumin-dextrose-catalase (OADC) enrichment,

0.2% glycerol and 0.05% Tween 80 or 0.025% tyloxopol in roller

bottles or on Middelbrooks 7H10 (Difco)/OADC agar with

kanamycin 10 mg/ml when appropriate. Liquid culture growth

and cell density of bacterial cultures were monitored by recording

the absorbance at 600 nm. Electrotransformation of M. bovis
BCG, M. smegmatis and E. coli was as previously described [27].

Vaccine stocks of all BCG recombinants were prepared by

culture in Middelbrooks 7H9 broth supplemented with OADC,

0.2% glycerol and 0.025% tyloxopol [16]. Plasmid DNA was

isolated from all recombinant BCG vaccine stocks and restriction

enzyme mapped and the gag gene was sequenced to confirm the

integrity of the plasmids.

Recombinant MVA expressing Gag (MVA-Gag) was grown on

the chorioallantoic membranes of 10–12 day-old chick embryos

and harvested after 72 hours [16]. This work was carried out

according to the guidelines and approval of the UCT Animal

Research Ethics Committee.

Plasmids
All E. coli-mycobacterial shuttle vectors are kanamycin

resistant, with designs based on the pMV261-type mycobacterial

expression systems [28] and were created for this work by standard

gene cloning methods [26]. Plasmid pWB100 is a control plasmid

that carries no expression cassette (accession number DQ191755).

The high-copy-number mutant mycobacterial plasmid

pHIGH100 has been described ([29], EF216316). Plasmids

pWB102 (EF216320), pWB104 (EF216321) and pWB105

(EF216322), are described in Figure 1. Plasmids pWB106

(EF216324), pWB206 (EF216325), pWB107 (EF216326) and

pHS207 (EF216327) were isolated after directed evolution (below).

Plasmids pWB102 and pWB104 are expression vectors that carry

modified HIV-1 subtype C genes tat and gag as a translational

fusion. Both genes have been codon optimised for BCG and the tat
gene has been rearranged to disrupt its activity [30]. Transcription

of the gene fusion is driven by the mycobacterial hsp60 promoter.

In plasmid pWB102, translation of the recombinant protein is

driven by a powerful consensus Shine-Delgarno sequence and

downstream box, with the correct spacing for maximum

expression, whereas plasmid pWB104 contains much weaker

translational signals [31,32]. In addition to this, the vectors carry a

transcription terminator downstream of the HIV genes, a

kanamycin resistance gene, an E. coli plasmid origin of replication

and a mycobacterial plasmid origin of replication.

Isolation and enzymatic treatment of DNA
Unless otherwise stated, standard enzymatic and other treat-

ments of DNA were as recommended by Sambrook et al. [26] or

the manufacturer. Isolation of plasmid DNA from mycobacteria

was as described by Parish and Stoker [27].

Protein isolation and p24 capture ELISA
Total protein was isolated using the SDS boiling method [33].

To determine the protein concentration a DC protein assay kit
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(Biorad) was used with bovine serum albumin (Roche, molecular

biology grade) as the standard. Capture ELISA was conducted

using the automated Elecsys 2010 (Roche) and an Elecsys HIV Ag

(p24) kit with purified recombinant His-tagged-P24 [34] as the

standard.

Directed evolution
In order to create a pool of mutants that carry small deletions

and insertions, 4 mg samples of the plasmid pWB105 were digested

with dilutions of DNase 1 (Roche, molecular biology grade)

0.0125–0.0016 U/mg in DNase 1 buffer (10 mM MnCl2, 50 mM

Tris-Cl, pH 7.6,) at 37uC in 100 ml. In the presence of manganese,

DNAseI cuts the target at random positions and leaves a mixture

of both 39- and 59- overhanging ends, of different lengths.

Reactions were stopped by the addition of 20 ml of 0.25 M EDTA

and phenol chloroform extraction. DNA was precipitated with

isopropanol and resuspended in TE buffer. Aliquots were

visualised on an agarose gel. Linearised plasmid containing

samples, were pooled and blunt ends generated with T4 DNA

polymerase, this results in either a small deletion or duplication,

depending upon the nature of the overhang. The sample was

separated on an agarose gel. The full-length and near-full-length

linearised plasmids were isolated by electroelution, and purified

DNA was resuspended in 180 ml of ligation mix for re-circularised

by ligation with T4 DNA ligase (Roche). Batches of E. coli LKIII

were CaCl2-transformed with 5 m ml aliqots of the ligation mix.

Following transformation samples were immediately pooled, and

aliquots removed for plate counts. The remainder of the mixture

was cultured in broth under kanamycin selection and plasmid

DNA was isolated.

Starting with that pool of deletion/insertion mutants, and using

primers 59-CTAAGAATAACGTTGGCACTCG-39 and 59-

TTTGTGCCCATTAACATCACC-39 the region between nu-

cleotides 4001 and 6038 (numbering according to Figure 1) was

amplified by error-prone PCR, in order to create point mutations.

Taq DNA polymerase (Promega) was used with the template at

20 fg/ml, and 30 cycles of priming at 54uC for 30 sec and

extension at 72uC for 90 sec, all other conditions were as

recommended. The high cycle number and the fact that the

nucleotide mix was equimolar and did not reflect the G+C

richness of the target promote the likelihood of errors occurring.

Equal amounts of both the mutant pool and original pWB105

plasmid DNA were used as templates. After purification, the PCR

product was digested with EcoRI and HindIII, separated on an

agarose gel and the 1.9 kb internal EcoRI-HindIII fragment

(nucleotides 4022–5929) was isolated. The EcoRI-HindIII frag-

ments were then ligated with EcoRI-HindIII digested pWB105,

which had been dephosphorylated, back into their original

position to create a library of mutants. The ligation mix was

purified and used to transform electrocompetent E. coli LKIII.

Following transformation, aliquots were removed for plate counts.

The remainder of the transfomants were broth-cultured. Plasmid

DNA was isolated from this pool of mutants and used to transform

M. smegmatis. Transformants were selected on solid medium.

Colonies were viewed under UV light and bright fluorescing

clones were streaked onto fresh solid medium. After incubation,

colony sizes were compared to those of similarly treated M.
smegmatis[pWB105]. Clones were also patched onto solid medium

and, after culturing, cells from each patch were removed from the

plate, total protein was isolated and the level of Gag p24 assessed

by capture ELISA. This was compared to similarly treated M.
smegmatis[pWB105]. Clones that displayed 2-fold or higher levels

of Gag p24 and equivalent or better growth, as estimated from

colony size, than the parental strain were selected.

Plasmid DNA was isolated from each of the promising clones,

and the plasmids were used to transform E. coli. Plasmid DNA was

isolated and restriction endonuclease mapped. E. coli that carried

plasmids with gross deletions were discarded. The remaining

recombinants were pooled, cultured and plasmid DNA was

isolated on a large scale.

To shuffle and introduce further mutations 80 mg of the plasmid

pool was first linearised by digestion with XbaI then digested

(10 mg DNA) with DNase 1 (0.007–0.0002 U/mg in 20 ml, 37uC,

30 min). Reactions were stopped as previously described. DNA

from each sample was separated and visualised on an agarose gel.

Fragments of 100–800 bp were isolated, pooled and subjected to

error prone assembly PCR as follows: A standard PCR mixture

was assembled in 20 ml, except no oligonucleotide primers were

included. The thermo-cycle consisted of a 30 sec, 95uC denatur-

ation step, and a 2 min, 72uC extension step which were repeated

45 times, following which 5 ml 0.25 M EDTA was added to the

reaction. The DNA was then purified and digested with ClaI and

XbaI, separated on an agarose gel and the 2–4 kb size fraction

purified. Error prone PCR was conducted as in the first round of

mutagenesis. The PCR product was digested and the EcoRI-

HindIII fragments were inserted back into their original position

in pWB105 to create an E. coli library of mutants as before. DNA

was isolated from this pool and used to transform M. smegmatis;
colonies were again viewed under UV light and selected by p24

expression level and colony size assessment as before.

rBCG antigen expression and growth rate
To assess stability of recombinant M. smegmatis and Gag p24

antigen expression, duplicate cultures were passaged daily for 10

days (approximately 40 generations) in liquid media with and

without antibiotic selection. Starter cultures were derived from

glycerol stocks of a single colony of M. smegmatis transformants

grown to an OD600 of approximately 1 in 10 ml liquid media.

Cultures were sub-cultured at an OD600 of between 0.7 and 1

Figure 1. Schematic map and details of the expression cassette
and translation control signals of E. coli-mycobacterial shuttle
vectors. A. Schematic map of plasmids pWB102 and pWB105: hsp60,
the mycobacterial promoter; RBS, ribosome binding site; tat and gag,
the translationally fused tat and gag genes; rrnBt1 E. coli transcription
terminator; Linker sequence of A,L and S codons; gfp, gene encoding
the green fluorescent protein. B. Details of translation control signals.
The ribosome binding site, start codon and downsteam box are bold
and underlined. Arrow indicates the beginning of the tat coding
sequence. Nucleotide positions are as recorded in Genbank.
doi:10.1371/journal.pone.0103314.g001
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approximately every 24 hours. The approximate generation of

each culture was calculated according to the equation: Generation

= [ln(final OD600)-ln(starting OD600)]/ln2 [35]. Prior to each

passage total protein was isolated using the SDS boiling method

[33]and Gag p24 concentrations were determined. An aliquot of

culture, grown in the absence of kanamycin, from days 1, 3, 6 and

10 was also diluted (1025–1026) and plated on solid media with

and without kanamycin, to determine CFUs. Gag p24 and GFP in

extracts were detected by western blot using HIV-1 Gag p24-

specific antiserum (ARP432, NIBSC Centralised Facility for AIDS

reagents, MRC, UK) and anti-GFP (Roche) respectively. Proteins

were detected with anti-rabbit or anti-mouse alkaline phosphatase-

conjugated secondary antibodies (Sigma). Purified, recombinant

p24 [34] and GFP (BD Biosciences) were used as positive controls.

In order to visualise the distribution of the GFP-antigen fusions

within the cells, mycobacteria that had been grown to mid-

exponential phase in broth culture were viewed using an inverted

epifluorescence microscope (Carl Zeiss Axiovert 200 M). The

excitation and detection of GFP were performed using a FITC

filter set.

Mouse vaccinations and splenocyte preparation
All experiments were performed with female BALB/c mice (8–

10 weeks old) in groups of 10 according to the guidelines and

approval of the UCT Animal Research Ethics Committee.

Immune responses to the rBCG constructs BCG[pHS207],

BCG[pWB105], BCG[pWB106] and BCG[pWB206], at a dose

of 107 CFU in 50 ul, instilled in 25 ml aliquots per nostril, over a

period of 10 seconds, were evaluated at 8 weeks. Intraperitoneal

vaccinations with BCG[pHS207] and BCG[pWB206] at doses of

107, 105 or 103 cfu in 200 ul were used to prime mice before a

boost with MVA-GagC which encodes a matching Gag antigen.

MVA-Gag (107 pfu) was given to half the mice in each group as an

intramuscular injection in a final volume of 100 ml with 50 ml

injected into each hind leg muscle on day 56 after the rBCG

prime. Immune responses were evaluated on day 68. At the end of

the vaccination periods spleens from each group were pooled and

a single cell suspension of splenocytes was prepared. After red

blood cell lysis (0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM

Na2EDTA, 1 min at room temperature) splenocytes were

suspended in R10 medium (RPMI-1640 with 10% heat inactivat-

ed FCS, 15 mM b-mercaptoethanol, 100 U penicillin and 100 mg

streptomycin per ml).

IFN-c ELISPOT assays and quantification of cytokines
The Mouse IFN-c ELISPOT set (BD Pharmingen) was used

according to manufacturer’s instructions [36,37]. Splenocytes were

plated in triplicate at 500 000 cells/well in a final volume of 200 ml

R10 medium either alone to determine background responses, or

in medium containing 4 mg/ml of specific peptides (.95% pure,

Bachem, Switzerland). The peptides comprised either the GFP H-

2Kd-restricted CD8 T Cell peptide HYLSTQSAL or the H-2Kd-

restricted Gag CD8 peptide AMQMLKDTI or a pool of the Gag

MHC class II-restricted CD4 peptides NPPIPVGRIYKR-

WIILGLNK and FRDYVDRFFKTLRAEQATQE. Reactions

were stopped after incubation for 22 hours at 37uC in 5% CO2

and spots were detected using Nova Red substrate (Vector Labs)

then scanned and counted using a CTL Analyzer (Cellular

Technology, OH, USA) with Immunospot Version 3.2 software.

The mean number of spots from triplicate wells 6 standard

deviation (SD) was calculated and background spots (not more

than 20610 sfu/106 splenocytes) were subtracted. Data are

presented as sfu/106 splenocytes 6 SD.

Pooled splenocytes at a concentration of 7.56106 per ml R10

culture medium were also cultured in triplicate either alone to

determine background cytokine release or with the peptides as for

the IFN-c ELISPOT assay. Cytokines secreted into the superna-

tant were assayed using a Th1/Th2 Cytokine Bead Array assay

(BD Pharmingen). IFN-c, TNF-a, IL-4 and IL-10 levels are

presented as pg cytokine per 106 splenocytes.

Generation of GagCD8 peptide-specific effector cells and
51Chromium-release assay

A standard 51Chromium-release assay was performed with

GagCD8 peptide-specific effector cells generated by culturing

pooled splenocytes (107/ml R10) with the Gag CD8 peptide,

AMQMLKDTI, at a concentration of 4 mg/ml for 6 days [38].

Harvested effector cells were incubated with 51Cr labelled P815

target cells at ratios of 200:1–6:1 in the absence and presence of

the GagCD8 peptide. Supernatants were assayed for 51Cr release

after a 4 h culture. The percentage of specific 51Cr release was

calculated as 1006 (experimental cpm-spontaneous cpm)/(total

cpm-spontaneous cpm).

Vaccinia virus challenge
The New York City Board of Health strain of vaccinia virus

(NYCBH) and a recombinant vaccinia virus vT369 (VVGag C),

which expresses HIV-1 DU422 Gag (Clade C), were obtained

from the NIH AIDS Research & Reference Reagent Program,

Division of AIDS, NIAD, NIH. These viruses were grown on 10–

11 day old chick chorioallantoic membranes as described

previously [39] and resuspended in PBS. Titration was performed

in CV1 cells obtained from Highveld Biological, SA. Groups of

BALB/c mice (5 per group) were immunized with a 200 ml

intraperitoneal inoculation of either 26106 CFU BCG[pWB206],

the vector control, BCG[pWB100] or the buffer used to resuspend

the vaccines. The mice were given either a single inoculation or a

triple inoculation at 4 week intervals. Two weeks after the final

inoculation half the mice in each group were challenged with

16106 pfu VVGag C and the other half challenged with

16106 pfu control NYCBH, given as a 200 ml intraperitoneal

injection. Five days after challenge all mice were killed by cervical

dislocation and ovaries collected bilaterally. Crude extracts of virus

were prepared from the ovaries by chopping the ovaries, placing

them in ,5 ml McIlvain’s solution (4 mM citrate phosphate

buffer, pH 7.4), performing 30 strokes in a tenbrook grinder,

freeze/thawing three times and then subjecting the homogenate to

centrifugation at low speed for 5 minutes to remove cell debris.

The volumes were adjusted to 5 ml (1 ml per mouse) prior to

centrifugation. Titrations were performed in CV-1 cells in

triplicate. Thirty six hours post infection cells were stained using

carbol fuschin and plaques were counted. Titres were expressed as

pfu/ml which was equivalent to pfu/mouse.

Results

The effect of HIV -1 Gag antigen expression on the
stability and growth rate of recombinant mycobacteria

The relationship between mycobacterial growth and level of

HIV Gag antigen expression was investigated using the fast-

growing model organism M. smegmatis. Relative growth rates of

M. smegmatis[pWB102], M. smegmatis[pWB104] and [pWB100]

were compared four days after transformation. Translation of the

Tat-Gag fusion protein in plasmid pWB102 (Figure 1, EF216320)

is driven by a powerful consensus Shine-Delgarno sequence and

downstream box, with the correct spacing for maximum

expression. The second plasmid, pWB104 (Figure 1, EF216321)
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is identical to the first, except that the powerful Shine-Delgarno

and downstream box sequences have been replaced by much

weaker translation signals. This should result in much lower levels

of antigen synthesis. The third plasmid, pWB100, is identical to

the other two, except that the hsp60 promoter and HIV genes

have been removed. All colonies of M. smegmatis[pWB102] were

visually much smaller than M. smegmatis[pWB100] or [pWB104]

(Figure 2A). To relate protein expression levels and colony size,

two single colonies of each recombinant were picked and cultured

to mid-log phase, total protein was extracted and Gag p24 content

measured. Gag p24 protein levels ranged between 0.1% and

0.05% of the total mycobacterial protein in the case of M.
smegmatis[pWB102] and was 30 fold less in the case of M.
smegmatis[pWB104]. This growth inhibition on solid media also

occurred in liquid media. M. smegmatis[pWB102] had a doubling

time of approximately 5.4 hours in liquid culture whereas M.
smegmatis[pWB104] had a doubling time of approximately

3.8 hours. In the absence of antibiotic selection in liquid culture

Gag p24 levels in M. smegmatis[pWB102] extracts fell to

background levels within seven generations, while Gag p24 levels

for M. smegmatis[pWB104] dropped to half after fifteen genera-

tions and remained at this level for over 60 generations (data not

shown). These results suggest that mycobacteria expressing high

levels of foreign antigen experience growth retardation in both

solid and liquid culture and are unstable.

This growth inhibition maybe a consequence of induction of the

heat shock responses, whichoccurs as a consequence of the

recombinant proteins being unable to fold correctly and/or

aggregating in the bacteria and leading to the destruction of the

expressed protein [40]. To demonstrate that the stress/heat shock

response is induced in those mycobacteria expressing a certain

level of foreign antigen, M. smegmatis was electroporated with

plasmids [pWB102], [pWB104] and [pWB100], held at 37uC for

2 hours to allow antigen expression and then plated on solid

media, grown at either 37C or 43uC and scored for colony growth

after 3 days. All transformants grew at 37uC, although M.
smegmatis[pWB102] colonies were the smallest of the three as

shown before in Figure 2A. The control M. smegmatis[pWB100],

which expresses no antigen, never survived growth at the elevated

temperature of 43uC. In contrast, M. smegmatis[pWB102] always

survived at this high temperature and only a few M. smegma-
tis[pWB104] colonies grew. Thus the M. smegmatis[pWB102]

transformants that produced the most foreign antigen, out of the

three tested, survived a heat challenge, implying that the heat

shock defences had been pre-induced.

Generation of a stable mycobacterial recombinant with
improved antigen expression

The data presented above supports the contention that poor

bacterial growth and antigen expression are both due to the

inability of the recombinant antigen to fold correctly, which in

turn induces stress responses. It can then be argued that, by

improving the acceptability of the recombinant antigen to the

bacterial protein quality control apparatus, higher levels of antigen

expression can occur. To test this we used a method, based on the

‘‘folding reporter’’ system of Waldo et al.[41]. This system

involved fusing randomly mutated antigen to the N-terminus of

the green fluorescent protein (GFP). GFP fluorescence levels are

dependent on both expression level and fusion-protein folding.

Bright clones expressing high levels of GFP were selected. The

growth rates of the recombinant bacteria were also assessed, in

terms of colony size, which was assumed to be a surrogate measure

of overall fitness. Fitter, high- expressing mutants were thus

identified.

For the target we used M. smegmatis[pWB102], which showed

growth retardation and low Gag-p24 accumulation. Plasmid

pWB102 was modified such that a 12 amino acid linker and GFP

encoding sequence was fused to the tat-gag recombinant gene to

create pWB105 (Figure 1, EF216322). M. smegmatis[pWB105]

fluoresced weakly under UV light and displayed growth inhibition

(Figure 2B). Instability was again apparent, in that occasionally a

larger colony that did not fluoresce was seen, (Figure 2B,

expanded insert). M. smegmatis[pWB105] was subjected to

directed evolution as described in the Methods. In the first round

16 clones were isolated from a library of 50000 mutants, these

were pooled and used as the target for a second round of

mutagenesis and creation of a library of 400000 mutants.

Ultimately four transformants that expressed extremely high levels

of Gag p24 and showed no growth inhibition in comparison to M.
smegmatis[pWB100] (which expresses no HIV antigens) were

isolated. The plasmids carried by these clones were designated

pWB106, pF56, pF122 and pF242. Expression levels of GFP in M.
smegmatis and rBCG transformed with plasmid pWB106 (selected

clone), pWB100 (empty vector) and pWB105 (original clone) were

compared by viewing the colonies under UV light (Figure 2B &

C). Transformants containing the selected clone (pWB106) showed

higher levels of GFP expression and approximately 13 fold higher

levels of Gag p24 expression(738 pg Gag p24/mg cell lysate). They

were fitter (as judged by colony size) than the parent clone, M.
smegmatis[pWB105] (53 pg Gag p24/mg cell lysate).

The high GFP expressing constructs pWB106, pF56, pF122 and

pF242 were sequenced and similar yet different mutations were

detected. In every case there had been a 1 base pair deletion that

dissociated translation of tat-gag p17 and gag p24 such that p24

was expressed from a fortuitous internal ribosome-binding site and

GTG start codon (Figure 3A). For pWB106, pF56 and pF242, p7

and p6 were completely deleted, in the other (pF122), the p7

coding sequence was converted into out-of-frame nonsense, while

Figure 2. Colony size and expression of GFP by recombinant
mycobacteria grown on solid medium. A. Colonies of M.
smegmatis transformed with pWB102, pWB104 and pWB100 viewed
under normal light. B. Colonies of M. smegmatis transformed with
pWB100, pWB105 or pWB106 viewed over UV light. The insert shows a
magnified view of a mutant, non-expressing clone adjacent to a normal
clone. C. Colonies of M. bovis BCG transformed with either pWB100,
pWB105 or pWB106 viewed over UV light.
doi:10.1371/journal.pone.0103314.g002
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p6 was maintained in-frame (Figure 3B). An extremely bright

clone, which carried the plasmid designated pWB107, was also

isolated. In this case, the entire Gag p24-p7-p6 region had been

deleted. This resulted in the GFP being expressed from the same

internal start codon as for the other constructs, but without any

associated Gag p24 antigen. In every case where a deletion

occurred, it was such that the GFP was brought into the correct

frame to allow GFP expression. To confirm that the increased Gag

p24-GFP expression was due to the internal ribosome binding site-

GTG start codon and not due to a new promoter generated during

directed evolution, various deletions of pWB106 were created,

transformed into M. smegmatis and GFP expression determined

(Figure 3C). The constructs lacking the hsp60 promoter showed

no GFP expression in M. smegmatis, indicating that antigen

expression is dependent on the hsp60 promoter.

The low-copy-number mycobacterial plasmid replicon (consist-

ing of the origin of replication and replication proteins) was

replaced with a high-copy-number mutant version of the same

replicon. The mutant replicon displays a 7-fold increase in copy

number and this conversion can result in stronger expression of

cloned genes [29]. The plasmids pWB100 (empty vector),

pWB105 (parental antigen expression), pWB106 (strongest Gag

p24 expression) and pWB107 (GFP only expression) were thus

converted, to create pHS200, pWB205, pWB206 and pHS207

respectively. The plasmids were used to transform M. smegmatis
and BCG. Colony sizes and Gag p24 expression levels were

determined. Expression of the cloned antigen was shown by

capture ELISA to have increased approximately 3 fold (M.smeg-
matis[pWB105] = 53, [pWB106] = 738, [pWB205] = 332,

[pWB206] = 2268 pg Gag p24/mg cell lysate). This increase in

cloned antigen expression was confirmed by Western blotting of

protein extracts (Figure 4). As expected, antigen could not be

detected in the case of BCG[pWB105], but was present and

showed little degradation in the case of BCG[pWB106] and

BCG[pWB206], which displayed the highest level of expression.

On solid media, M. smegmatis[pWB205] displayed severe

growth inhibition, while M. smegmatis[pWB206] was fitter

(colonies were larger) than M. smegmatis[pWB205], but less so

than M. smegmatis[pWB106]. M. smegmatis[pHS200] displayed

no growth inhibition when compared to pWB100 (data not

shown). In BCG, plasmid pWB206 caused strong expression of

Gag p24 and GFP while the plasmid pWB205 was lethal. Only

rBCG containing mutant plasmids of pWB205 were obtained, and

then only if very large numbers of transformants were plated.

The stability, or ability of recombinant M. smegmatis to

maintain Gag p24 expression over multiple generations of liquid

culture, was therefore assessed. Duplicate cultures were passaged

for over 40 generations, total protein was extracted before each

passage and Gag p24 content determined. In the presence of

antibiotic selection, the level of Gag p24 in the extracts of the

parent M. smegmatis[pWB105] and the high copy number version

M. smegmatis[pWB205] was low prior to passage and completely

lost by 40 generations (Figure 5A). In contrast extracts of the

selected clone M. smegmatis[pWB106] maintained initial high

levels of Gag p24 for over 40 generations. Large error bars can be

seen for M. smegmatis[pWB206] cultures after approximately 35

generations as Gag p24 levels in one of the duplicate cultures had

dropped to approximately 4% of the original level by 40

generations. Whereas Gag p24 levels of the second culture had

only dropped to 44% of the original level after 40 generations

(Figure 5A). As each 10 generations translates into an approximate

1000-fold increase in bacterial numbers, passaging for 40

generations can result in a 1012-fold increase of the original

starter culture. In the absence of antibiotic selection antigen

expression was rapidly lost for all the clones except the selected

clone M. smegmatis[pWB106] (Figure 5B). The percentage of cells

retaining antibiotic resistance in the absence of selection mirrored

the antigen expression data (Figure 5C).

It is known that when bacteria suffer stress both the colony and

cellular morphology can change[42]. We observed that the slow-

growing recombinants appeared as unusual, smooth, compact and

slightly conical colonies, whereas the fast-growers adopted a flat,

wrinkled form. To determine if antigen expression affected the

Figure 3. Maps and sequence of plasmids that express high
levels of GFP, generated through mutation and selection.
Position numbers are as for the parental plasmid pWB105.A. Potential
ribosome binding site and start site utilized for P24-GFP expression in
pWB106 transformants. B. Mutations found in transformants expressing
high levels of p24. Mutation type symbols: X, 1 base pair deletion of an
A nucleotide at position 4884 that allows expression of p24 from an
internal start codon;Y, 1 bp insertion of an A nucleotide between
positions 5539–5540; Z, 1 bp deletion of a C nucleotide at position
5706. Deletions (D) are shown with positions given to include the
remaining portion. C. Map showing plasmids generated by deleting
regions of plasmid pWB106 to determine whether p24-GFP is
transcribed from the hsp60 promoter. GFP fluorescence indicates
whether M. smegmatis transformed with these plasmids showed GFP
fluorescence.
doi:10.1371/journal.pone.0103314.g003

Figure 4. Western blots of antigen expressed by recombinant
BCG. A. Detection with anti-GFP antibodies. B. Detection with anti-p24
antibodies: Lanes; 1, molecular size marker; 2, pWB105; 3, pWB106; 4,
pWB206; 5, pHS200; 6, pHS207; 7, purified recombinant p24 protein.
doi:10.1371/journal.pone.0103314.g004
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cellular morphology, the recombinant M. smegmatis were viewed

under a fluorescent microscope, where correctly folded GFP could

be visualised (Figure 5).

The Gag-GFP fusion protein expressed by M. smegma-
tis[pWB105] was found in granulated aggregates possibly repre-

senting inclusion bodies (Figure 6A). The fusion protein expressed

from M. smegmatis[pWB106] was also highly aggregated, however

the fluorescent patches were only located at the ends of the bacilli

with possibly more soluble protein expressed, as the entire bacillus

had a slightly higher level of fluorescence in comparison to M.
smegmatis[pWB105] bacilli (Figure 6B). It should be noted that the

fluorescence reflects only where properly folded GFP is found, so

there may be aggregates of miss-folded antigen that are not

identified. The GFP expressed from M. smegmatis[pWB107] was

uniformly located through-out the cell as would be expected for a

properly folded, soluble protein (Figure 6C).

GFP- and Gag-specific T cell responses after rBCG
immunization

IFN-c ELISPOT responses 8 weeks after vaccination with

BCG[pHS207], [pWB105], [pWB106] and [pWB206] (107 CFU/

mouse) indicated that all of these vaccines induced GFP-specific

CD8 T cells and for those vaccines expressing modified Gag

antigen, Gag-specific CD4 T cells but no Gag-specific CD8 T cells

were detected. The range in the cumulative responses to the GFP

and GagCD4 peptides was 66–207 SFU/106 splenocytes for the

four vaccines (Figure 7A). The Th1/Th2 bias of the immune

response to these vaccines was assessed using a cytokine bead array

assay to quantify Th1 and Th2 cytokines in the culture medium

collected from splenocytes stimulated with the GFP CD8 and the

Gag CD4 peptide pool. IFN-c but no TNF-a, IL-4 or IL-5 was

detected (Figure 7B). A high cumulative level of 329 pg IFN-c/106

splenocytes for vaccine BCG[pWB106] and 817 pg IFN-c/106

splenocytes for vaccine BCG[pWB206] was produced by stimu-

lation with the GFP CD8 and Gag CD4 peptides. Splenocytes

from BCG[ pHS207] and BCG[pWB105] vaccinated mice

produced a much lower level of IFN-c (106 and 71 pg/106

splenocytes respectively) when stimulated with these peptides. The

potency of the vaccines BCG[pWB106] and BCG[pWB206] was

ranked by relating the frequency of responding cells in the IFN-c
ELISPOT assay which appeared to be similar for these vaccines

(Figure 8A) to the level of IFN-c released from splenoyctes during

peptide stimulation (Figure 7B). BCG[pWB206] appeared to be

more potent than BCG[pWB106] as GFP CD8 specific T cells

together with Gag-specific CD4 T cells produced 4.8 pg IFN-c per

vaccine induced cell whereas BCG[ pWB106] produced 1.5 pg

IFN-c per vaccine induced cell.

BCG[pWB206] primes the immune system to a boost
with MVA-Gag

Priming with one vaccine vector and boosting with another

expressing the same HIV antigens provides enhanced cellular

immune responses in animal models, thus the ability of

BCG[pWB206] to prime the immune response to a boost with

MVA-Gag was investigated. Mice were primed with escalating

doses of BCG[pWB206], then boosted 8 weeks later with MVA-

Gag, and immune responses were assayed 12 days later. Mice

primed with BCG[pHS207], which does not express Gag, then

boosted with MVA-Gag as well as mice that received only MVA-

Gag served as controls in the experiment. The frequency of Gag-

specific CD8 and CD4 T cells induced by MVA-Gag was not

modulated by a prime with the control vaccine BCG[pHS207]

(Figure 8A) nor did MVA-Gag boost the frequency of GFP-

specific CD8 T cells induced by the control vaccine pHS207

Figure 5. Stability of recombinant M. smegmatis. Duplicate
cultures of recombinant M. smegmatis were passaged daily for 40
generations in liquid media with A. or without B. antibiotic selection.
Expression of p24 in cell-free lysates was measured by capture ELISA. C.
The % CFU retaining antibiotic resistance when passaged without
antibiotic selection was determined by plating suitable dilutions of the
cultures on solid media with and without kanamycin.
doi:10.1371/journal.pone.0103314.g005

Figure 6. Expression of GFP by A. M. smegmatis[pWB105], B. M.
smegmatis[pWB106. C. M. smegmatis[pWB107]. Bar = 20 mm.
doi:10.1371/journal.pone.0103314.g006

Directed Evolution of Recombinant BCG

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e103314



(Figure 8A). IFN-c ELISPOT analysis indicated the cumulative

frequency of GFP-specific CD8 and Gag-specific CD4 T cells

increased in response to increasing doses of BCG[pWB206]

(Figure 8A). Although no Gag-specific CD8 T cells were detected

at any dose of BCG[pWB206], mice primed with 107 CFU

BCG[pWB206] and then boosted with MVA-Gag developed Gag-

specific CD8 T cells with a frequency of 1343617 SFU/106

splenocytes, 16 fold above that induced by MVA-Gag alone.

Lower Gag-specific CD8 T cell frequencies of approximately 4

fold above that of MVA alone were observed when mice were

primed with doses of 105 and 103 CFU of BCG[pWB206] and

then boosted with MVA-Gag (Figure 8A). The frequency of Gag-

specific CD4 T cells induced by BCG[pWB206] was boosted 2.5

fold by MVA-Gag for doses of 105 and 103 CFU.

The Th1 bias of the immune response to vaccination with

pWB206 was maintained and enhanced by a MVA-Gag boost

with the level of IFN-c produced increasing with higher doses of

BCG[pWB206] used as a prime (Figure 8B). Gag-specific CD8 T

cells produced 74% of the cumulative IFN-c of 17900 pg/106

splenocytes in response to a prime with 107 CFU pWB206 and

MVA-Gag boost. This is 7.5 fold above the cumulative IFN-c
produced by a vaccination with 107 CFU BCG[pWB206] only

(Figure 8A and 8B).

CTL responses induced by a pWB206 prime and MVA-
Gag boost

Gag-specific CD8 T cells induced by priming with

BCG[pWB206] and a boost with MVA-Gag displayed CTL

activity as measured in a 51Cr release assay (Figure 9). GagCD8

peptide-specific kill appeared to be positively related to

BCG[pWB206] dose and was greater than that for MVA-Gag

only. The mean GagCD8 peptide-specific lysis at an E:T ratio of

50:1, was 54%63% after a prime with BCG[pWB206] and boost

with MVA-Gag, and 1762% in response to a MVA-Gag

Figure 7. GFP and Gag-Specific immune responses induced by
rBCG vaccines. Mice were vaccinated with BCG[pHS207], [pWB105],
[pWB106] and [pWB206] (intranasal, 107 CFU). Splenocytes pooled from
a group of 5 mice were used on day 56 in A. an IFN-c ELISPOT assay
with the GFPCD8 peptide, GagCD8 peptide or GagCD4 peptide. Bars
represent the average number of SFU/106 splenocytes 6 the standard
deviation of triplicate reactions after subtraction of average background
responses of not more than 20610 SFU per 106 splenocytes. No
response to the GagCD8 peptide was detected. B. Splenocytes were
cultured (48 h) with the GFPCD8 peptide, GagCD8 peptide or GagCD4
peptide and cytokine levels in the culture supernatant were quantified
using a Th1/Th2 cytokine bead array assay and flow cytometry. Only
IFN-c was detected in the culture fluid and for splencoytes stimulated
with the GFPCD8 and GagCD4 peptides. Levels are expressed as pg/106

splenocytes and are from a representative experiment.
doi:10.1371/journal.pone.0103314.g007

Figure 8. rBCG prime and MVA-Gag boost immune responses.
Mice were primed with BCG[pWB206] or BCG[pHS207] (intraperitoneal
vaccination; doses of 107 CFU, 105 CFU, 103 CFU) or left unprimed, then
boosted on day 56 with MVA-Gag (intramuscular vaccination, 107 pfu).
Splenocytes pooled from a group of 5 mice were used on day 68 in A.
an IFN-c ELISPOT assay with the GFPCD8 peptide, GagCD8 peptide or
GagCD4 peptide. Bars represent the average number of SFU/106

splenocytes 6 the standard deviation of triplicate reactions after
subtraction of average background responses of not more than
20610 SFU per 106 splenocytes. B. Splenocytes were cultured (48 h)
with the GFPCD8 peptide, GagCD8 peptide or GagCD4 peptide and
cytokine levels in the culture supernatant were quantified using a Th1/
Th2 cytokine bead array assay and flow cytometry. Only IFN-c was
detected in the culture fluid. Levels are expressed as pg/106 splenocytes
and are from a representative experiment.
doi:10.1371/journal.pone.0103314.g008
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vaccination alone (Figure 9). A BCG[pHS207] prime and MVA-

Gag boost had no effect on GagCD8 peptide-specific kill by MVA-

Gag alone (Figure 9).

The Gag-Specific immune response induced by
BCG[pWB206] protects mice against a VVGag C challenge

BALB/c mice were inoculated intraperitoneally either once or

three times with BCG[pWB206], BCG[pWB100] or resuspension

buffer. Triple inoculations were given at 4 week intervals. Mice

were intraperitoneally challenged with VV-GagC two weeks after

the final inoculation. Five days later ovaries were harvested,

pooled and the VV-GagC titres determined. The Gag-specific

CD8 T cells elicited by the BCG[pWB206] vaccine clearly

provided protection from a challenge with VV-GagC (Figure 10).

A single inoculation of 26106 CFU reduced the VV-GagC titre by

approximately 2 logs, while three inoculations of 26106 CFU

resulted in complete (greater than 5 log) protection against VV-

GagC. This suggests that homologous boosting is effective and

does not impact negatively on the immune response.

Challenge of all groups of mice with the control virus NYCBH

resulted in the recovery of similar titres of VV from the ovaries. In

addition there was no inhibition of virus growth detected in mice

inoculated with buffer or the control rBCG prior to challenge with

VVGag C.

Discussion

This study has shown that growth rate of mycobacteria is

reduced as recombinant HIV-1 antigen expression increases and

that this reduced fitness is the driving force behind recombinant

instability. We argue that the expression of miss-folded antigen in

M. smegmatis causes induction of stress response. This serves to

explain the often poor expression of recombinant protein in

mycobacteria. Usually, it is assumed that there is some form of

bottle-neck in protein synthesis; however, the level of protein is

determined by the balance between production and destruction, so

probably the low level of Tat-Gag protein is due to accelerated

degradation, caused by the fact that it is miss-folded. This model

explains why, when a protein is expressed in a closely related host,

extremely high levels of expression can usually be achieved and the

expression vector is stable, while the converse is often true when a

protein from a distantly related organism is expressed. Thus, to

increase antigen expression it seems necessary to express the

antigen in a manner that is acceptable to the bacterial quality

control mechanism. We have utilised a directed evolution

approach to create recombinant mycobacteria that show both

improved antigen expression and fitness. The recombinants were

shown to be more stable and to generate immune responses that

varied, in a manner dependent upon antigen expression levels.

Immune responses of mice to BCG[pWB105], BCG[pWB106]

and BCG[pWB206] with a range of Gag p24 expression levels

indicate that the magnitude of immune response to Gag may be

related to the level of recombinant antigen expressed (Figure 8A).

Both GFP CD8 and Gag CD4 T cells specific for the insert were

generated. The absence of Gag CD8 T cell detection was probably

due to the immunodominance of the GFP CD8 epitope. Although

BCG per se induces CD4 T cell responses in mice, our observation

of induction of insert specific GFP CD8 and Gag CD4 T cells

suggests that both MHC class I and II presentation of the antigen

occurs. The generation of CD8 T cells is possibly a consequence of

efficient cross priming [43,44]. Generally, responses of mice to a

recombinant antigen carried by BCG are predominantly CD4

specific, while insert specific CD8 cells are generated when the

antigen is carried by M. smegmatis [45–47]. The very low overall

cellular responses to BCG[pWB105] may be associated with low

Gag p24 expression levels. For BCG[pWB206] where Gag p24

expression levels were greater than that of BCG[pWB106], similar

frequencies of GFP- and Gag-specific IFN-c producing T cells

were detected for both vaccines. The major difference in the

immune responses to these two vaccines appears to lie in the

capacity of the induced T cells to produce IFN-c. The GFP CD8

and Gag CD4 T cells induced by pWB206 had a higher IFN-c
producing capacity than that of BCG[pWB105]. The nature of the

Gag p24-GFP protein being expressed by the recombinants may

account for this, with the ratio of soluble to insoluble protein

playing a role. It is important to note that although we could not

detect effector Gag CD8 T cells, memory cells must have been

Figure 9. CTL responses measured in a 51Cr release assay.
Splenocytes pooled from a group of 5 mice on day 68 after a prime with
BCG[pWB206] or BCG[pHS207] (107 CFU, 105 CFU, 103 CFU) or no prime
and boost with MVA-Gag (107 pfu) on day 56, were stimulated with the
GagCD8 peptide for 6 days. Generated effector cells were used in a 51Cr
release assay using p815 antigen presenting cells in the presence and
absence of peptide. Data values indicate the mean net percentage Gag-
peptide specific lysis 6 the standard deviation (n = 3), calculated after
the background lysis (,10%) in the absence of peptide has been
subtracted. Net Gag-specific lysis was considered positive if .10% and
are shown.
doi:10.1371/journal.pone.0103314.g009

Figure 10. Protection against Vaccinia Virus Gag challenge.
BALB/c mice were inoculated intraperitoneally either once or three
times with BCG[pWB206], BCG[pWB100], or resuspension buffer. Triple
inoculations were given at 4 week intervals. The mice were
intraperitoneally challenged with A. VV-Gag or B. the wild type
vaccinia virus strain NYCHB two weeks after the final inoculation. Five
days after challenge ovaries were harvested and pooled for each group.
The ovaries were processed and virus titres determined. Titrations were
performed in triplicate and averaged.
doi:10.1371/journal.pone.0103314.g010

Directed Evolution of Recombinant BCG

PLOS ONE | www.plosone.org 9 July 2014 | Volume 9 | Issue 7 | e103314



induced by BCG[pWB206] vaccination, as inhibition of infection

by vaccinia virus expressing Gag was observed.

BCG[pWB206] possessed the potential to prime the immune

system to a boost with MVA-Gag. This is in agreement with other

studies in which HIV antigen-expressing recombinant M. bovis
BCG and M. smegmatis were used in heterologous regimens with

recombinant viral or protein vaccines as a boost [15,16,45–52].

Both Gag-specific CD8 and CD4 T cells with a high capacity to

produce IFN-c at levels above those of the individual vaccines

were detected after the boost. In addition, the magnitude of these

Gag-specific CD8 and CD4 T cells was dose dependent. These

responses were specific and not due to non-specific immune

activation occurring through BCG[pWB206] enhancing second-

ary immune responses, as no non-specific Gag priming occurred

with BCG[pHS207]. Expansion of Gag CD8 T cells in response to

a boost with MVA-Gag is a further indication that memory CD8

T cells are induced by a BCG[pWB206] prime. Again, and is in

agreement with other studies, where memory T cells induced by

recombinant M. bovis and M. smegmatis were shown to expand

following an MVA boost [15,45,53]. Even low doses of

BCG[pWB206] induces a sufficient frequency of Gag-specific

CD8 memory cells to be detectable upon MVA boosting. This

generation of Gag-specific memory CD8 T cells by the prime may

occur as a consequence of help from the prime-induced Gag-

specific CD4 T cells that we detect [54,55]. In addition, the slow

doubling times of BCG result in reduced levels of antigen

generated followed by poor antigen presentation and subsequently

delayed and weak priming of CD8 T cells which differentiate

primarily into the central memory CD8 T cell subset. These CD8

memory cells are able to proliferate rapidly and produce cytokines

after boosting [56,57]. The Gag-specific CD8 T cells induced by

the boost possessed cytolitic activity. Although the nature of the

immune responses required for a vaccine aimed at the prevention

of HIV infection are not clear, Gag-specific responses by HIV

infection in humans is associated with the level of infection control

[58,59]. Complete protection against a surrogate virus challenge

was provided by three doses of BCG[pWB206] alone, however, we

were not able to investigate this after a single BCG[pWB206]

prime-MVA-Gag boost due to vector immune response interfer-

ence.

In this study we have shown that the stability and levels of

recombinant antigen expression of BCG expressing HIV-1 Gag

can be improved through modification of the antigen. Recombi-

nant BCG expressing the modified HIV-1 Gag, were able to

induce HIV-specific T cells that protected against a surrogate

vaccinia virus challenge and were strongly boosted by MVA-Gag.
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