
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6404  | https://doi.org/10.1038/s41598-022-10253-5

www.nature.com/scientificreports

Identification of potent 
inhibitors of NEK7 protein using 
a comprehensive computational 
approach
Mubashir Aziz1, Syeda Abida Ejaz1*, Nissren Tamam2, Farhan Siddique3,4, Naheed Riaz5, 
Faizan Abul Qais6, Samir Chtita7 & Jamshed Iqbal8*

NIMA related Kinases (NEK7) plays an important role in spindle assembly and mitotic division 
of the cell. Over expression of NEK7 leads to the progression of different cancers and associated 
malignancies. It is becoming the next wave of targets for the development of selective and potent 
anti-cancerous agents. The current study is the first comprehensive computational approach to 
identify potent inhibitors of NEK7 protein. For this purpose, previously identified anti-inflammatory 
compound i.e., Phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives by our own group were 
selected for their anti-cancer potential via detailed Computational studies. Initially, the density 
functional theory (DFT) calculations were carried out using Gaussian 09 software which provided 
information about the compounds’ stability and reactivity. Furthermore, Autodock suite and 
Molecular Operating Environment (MOE) software’s were used to dock the ligand database into the 
active pocket of the NEK7 protein. Both software performances were compared in terms of sampling 
power and scoring power. During the analysis, Autodock results were found to be more reproducible, 
implying that this software outperforms the MOE. The majority of the compounds, including M7, and 
M12 showed excellent binding energies and formed stable protein–ligand complexes with docking 
scores of − 29.66 kJ/mol and − 31.38 kJ/mol, respectively. The results were validated by molecular 
dynamics simulation studies where the stability and conformational transformation of the best 
protein–ligand complex were justified on the basis of RMSD and RMSF trajectory analysis. The 
drug likeness properties and toxicity profile of all compounds were determined by ADMETlab 2.0. 
Furthermore, the anticancer potential of the potent compounds were confirmed by cell viability (MTT) 
assay. This study suggested that selected compounds can be further investigated at molecular level 
and evaluated for cancer treatment and associated malignancies.

Cancer is defined as an uncontrolled cell growth and is characterized by rapid proliferation of aberrant cells 
that extend beyond their normal bounds and infiltrate adjacent tissues and organs, resulting in metastasis1. 
According to the World Health Organization (WHO)2 cancer is the second biggest cause of mortality worldwide, 
accounting for 10 million deaths each year. Cancer is responsible for one out of every six deaths worldwide3. 
Breast cancer (685,000 deaths), liver cancer (830,000 deaths), stomach cancer (769,000 deaths), lung cancer 
(1.80 million deaths), and colon and rectum cancer (935,000 deaths) were the leading causes of cancer death in 
20204. Cell division fidelity is maintained by a variety of regulatory proteins, the most significant of which are 
kinases5. Protein kinases play a variety of roles in the cell cycle, checkpoint control, and cancer6–8. Mutations in 
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the genetic makeup of protein kinases cause cell cycle dysregulation, which is a hallmark of neoplastic growth 
and plays a significant role in cancer start and progression5–11. Other risk factors for cancer development include 
age, a poor diet, exposure to toxins, and certain chronic illnesses12. Polo-like kinases (PLKs), cyclin-dependent 
kinases (CDKs), Aurora, and the Never in Mitosis (NEK) family of kinases are all examples of kinases13–16. 
These proteins are essential for cell cycle control17. Thus, inhibiting protein kinase can be an effective cancer 
treatment18,19. The NEK family of kinases is a conserved serine/threonine kinase family that plays a crucial 
function in modulating the signaling pathway of metabolic cells20. The NEK family consists of 11 members21. 
NEK1-1117 is an example. It is clear that two NIMA-related kinases, NEK6 and NEK7, play important roles in 
cell cycle control, signaling, differentiation, and proliferation22,23. Both of these proteins have a sequence identity 
of 85%24. NEK9 is another essential member of the NEK family that regulates checkpoints during cell division25. 
Furthermore, through downstream kinases NEK6 and NEK7, NEK9 is responsible for spindle assembly and 
centrosome separation. However, NEK7 performed critical roles during mitosis that NEK6 and NEK9 could 
not replace. In both humans and mice, NEK7 is the shortest member of the family, with around 302 amino acid 
residues26. NEK7 is involved in a variety of mitotic processes, including spindle assembly, centrosome placement, 
and cytokinesis. The functional specificity of NEK7 is also determined by its expression patterns in various cells 
and tissues. High-throughput transcriptome study revealed that NEK7 is prevalent in the majority of tissues 
where it regulates mitotic progression9. The most prevalent event that happens during the cell cycle is phospho-
rylation of the NEK7 protein. Kinases, which include serine-threonine specific kinases, protein tyrosine kinase, 
and sphingosine kinase, catalyze the transfer of high energy phosphate groups from ATP to protein substrate27. 
Phosphorylation of a protein substrate causes it to become more active or interact with other molecules, which 
causes a variety of physiological responses28. NEK7 phosphorylates the Kinesin 5 protein (Eg5) at SER 1033, 
causing centrosome separation prior to nuclear envelop collapse29. NEK7 promotes the nuclear envelop collapse 
by increasing phosphorylation of nuclear pore protein NUP9830. It is believed that reversible phosphorylation 
and dephosphorylation occur in around 50% of total protein31. Interference with the NEK7 protein causes 
unregulated phosphorylation, which leads to an increase in the number of mitotic cells, aberrant chromosomal 
segregation, multi-nucleation, and cell death32–34.

Protein kinases have been intensively studied targets over the last two decades35,36. They are being studied in 
order to produce newer anti-neoplastic drugs36. There are 53 FDA-approved medications in the United States that 
are known to have anti-cancer activity, and over 200 leads are in the pipeline for research into newer anti-cancer 
agents37, but very few FDA-approved inhibitors are known to have activity against the NIMA family of kinases. 
Only Dabrafenib has been reported to have potent inhibitory effect against BRAF-mutant melanoma and NRAS-
mutant melanoma cell lines. Both mutant melanomas displayed significant levels of NEK9 and CDK16 protein 
expression. These proteins were found in charge of mutant melanomas’ proliferation and survival. Dabrafenib, 
in particular, had considerable action against the NEK9 protein, with an IC50 value of 1–9 nM38. However, none 
of the FDA-approved inhibitors are known to have inhibitory potential against the NEK7 protein, indicating a 
scarcity of effective NEK7 inhibitors. We utilized Dabrafenib as a standard inhibitor because of the functional 
and structural similarities between NEK7 and NEK9.

This work explored the anticancer potential of novel N-alkyl/aralky/aryl derivatives (M1–M15) of 2-(4-phe-
nyl-5-(1-phenylcarbamoyl) piperidine-4H-1, 2,4-triazol-3-ylthio)acetamide which have been synthesized and 
reported with the goal of disrupting inflammatory pathways and treating inflammatory disorders such as asthma 
and rheumatoid arthritis39. These derivatives are a heterocyclic class of compounds that interact with the recep-
tor’s active site by accepting and donating electrons and creating hydrogen bonds with the activation loop’s 
amino acid residues. In these compounds, triazoles works as a pharmacophore and is resistant to acid–base 
hydrolysis, metabolic destruction, and oxidative-reductive conditions40. These characteristics make them attrac-
tive candidates for the creation of new anticancer agents. Additionally, different types of triazoles have been 
identified as antidepressant, antibacterial, anti-inflammatory, antirheumatic, anticancer, bactericidal, herbicidal, 
insecticidal, diuretic, and anticonvulsant41–43. Additionally, they exhibit a strong inhibitory effect on a variety of 
enzymes, including tumor-associated carbonic anhydrase, ACHE, aromatase, xanthine oxidoreductase, adeno-
sine deaminase, and lipoxygenase44 (Fig. 1). The purpose of this research was to identify a new physiologically 
active marcapto of 1,2,4-triazole amide that might provide as a strong lead for NEK7 inhibitor development.

The approach of structure-based in-silico drug design was utilized to produce novel inhibitors of the NEK7 
protein that may be employed as a powerful and specific therapy option for cancer patients. Overall, docking 
programs obtained a success rate of 65–70%45, which means that employing several docking programs and 
combining the findings of many docking methods provides a more accurate and comprehensive assessment 
of protein–ligand interaction. Additionally, various docking techniques result in more consistent and accurate 
conformation rankings46,47. To improve the accuracy of docking algorithms, the current work utilized two alter-
native docking programs: the academically accessible Autodock 4.248 and the commercially available Molecular 
Operating Environment (MOE) 2015.1049. Both docking applications employ distinct force fields and docking 
methods. Additionally, the results were confirmed by using comprehensive quantum chemistry calculations, 
including density functional theory (DFT) calculations of frontier molecular orbitals (FMOs), global and local 
reactivity descriptors, and molecular electrostatic potential (MEP). Moreover, stability of protein ligand complex 
was determined by Molecular dynamic simulations. To determine the drug likeness and physicochemical features 
of compounds, detailed drug like properties, i.e. ADMET properties, were determined. This is the first complete 
computational analysis to advise future molecular exploration of these derivatives in order to identify an optimal 
candidate for therapeutic innovation in breast cancer and other linked malignancies.
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Results and discussion
Chemistry.  Synthesis of phenylcarbamoylpiperidine‑1,2,4‑triazole amide derivatives.  Figure  2 depicts the 
principal synthesis method for the production of Phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives 
(M1–15) which has been reported in our previous work39.

Density function theory (DFT).  In current study, quantum chemical calculations have been carried out 
to optimize the structures of title compounds using DFT/B3LYP method with the SVP basis set implemented in 
Gaussian 09W50. All derivatives were optimized in gas and solvent (methanol) phases. The electronic properties51 
of title compounds like EHOMO, ELUMO and energy gap of HOMO and LUMO was calculated. In addition, elec-
trophilicity (Δω±), electronegativity(X), chemical hardness (η), chemical softness (S), chemical potential (μ) 
and ionization potential (eV) was also calculated. The energetic parameters of all derivatives i.e., dipole moment 
(Debye), polarizability (α) and optimization energy (hatree) was also calculated in gas and solvent phases as 
listed in Table 1. The Dipole moment is a global measure of the accuracy of the electron density of a polar mol-
ecule. It affects the interactions of a molecule with other molecules as well as electric fields. Dipole moment is 
the source of understanding and enumerating intermolecular interactions. The values of dipole moment for 
compounds M7, M8 and M12 were 3.7, 2.62 and 3.8 Debye in gas respectively and these were 4.5, 4.75 and 3.9 
Debye in solvent respectively. Polarizability is chief parameter in molecular electronics which corresponds to 
softness of the compounds.

 

Figure 1.   (A) Depiction of the most potent inhibitors of NEK7 which were previously identified as the potent 
inhibitors of lipoxygenase enzyme39. (B) Binding scores and binding affinity (ki) of potent derivatives against 
NEK7 (C) showing the Binding scores of Dabrafenib against NEK7: reported anti-cancer drug38.
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Optimized structures.  The DFT calculations of potent derivatives were performed in gas and solvent 
phases. The geometry of title compounds were optimized in a lowest energy singlet ground state using B3LYP/
SVP level of theory. The optimized structures of potent derivatives along with standard are shown in Fig. 3.

Frontier molecular orbital (FMOs).  The quantum chemical methods are useful in obtaining information 
about electro chemical behavior and molecular structures of compound. The FMOs were analyzed to obtain 
information about electronic and optical properties of the compounds. The energy values of highest occupied 
molecular orbital (HOMO) can act as electron donor whereas energy values of lowest unoccupied molecular 
orbital (LUMO) can act as electron acceptor. It was observed that the energies of HOMO orbitals for compound 
M7, M8 and M12 were same in gas and solvent phase i.e., − 0.218 eV and − 0.221 eV respectively. These energies 
were comparable to standard Dabrafenib which showed EHOMO value of − 0.233 eV and − 0.231 eV in gas and sol-
vent phase respectively. The ELUMO for compounds M7, M8 and M12 were − 0.023, − 0.022, and − 0.019 eV in gas 

 

Figure 2.   Synthesis of phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives39.

Table 1.   Energetic parameters and quantum chemical descriptors for all compounds by using DFT /B3LYP/
SVP method in both gas and in solvent (methanol).

Code

Gas Methanol

Optimization energy 
(hatree) Polarizability a.u (α) Dipole moment (Debye)

Optimization energy 
(hatree) Polarizability a.u (α) Dipole moment (Debye)

M1 − 1729.47 307.65 4.7185 − 1733.80 386.54 4.6784

M2 − 1690.26 295.88 3.6836 − 1694.52 370.69 4.6750

M3 − 1806.52 326.91 15.220 − 1811.18 410.64 4.6946

M4 − 1846.78 325.99 4.2327 − 1846.85 423.65 11.901

M5 − 1841.83 338.56 3.0369 − 1846.84 427.11 4.3704

M6 − 1841.91 344.24 2.5975 − 1846.85 432.95 4.6478

M7 − 1881.07 350.22 3.7622 − 1886.13 441.32 4.5226

M8 − 1881.14 358.28 2.6269 − 1886.13 448.97 4.7564

M9 − 1881.07 351.64 3.6355 − 1886.13 443.31 3.5743

M10 − 1886.08 347.30 5.0251 − 1886.15 448.42 8.7084

M11 − 1881.07 352.88 2.5585 − 1886.14 444.23 4.3105

M12 − 1880.89 350.27 3.8524 − 1886.14 442.80 3.9705

M13 − 1880.96 358.78 3.7244 − 1886.14 450.77 5.0522

M14 − 1802.67 330.53 3.3577 − 1807.55 415.91 4.3180

M15 − 1886.08 339.73 4.6083 − 1886.15 443.93 6.2092

Dabrafenib − 2407.20 319.25 6.6827 − 2407.22 434.53 9.1625
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phase receptively. ELUMO value for Dabrafenib was − 0.074 eV in gas phase. It was observed that ELUMO value of 
compound M12 and standard Dabrafenib was relatable. The HOMO/LUMO energy gap (∆Egap) is an important 
parameter in determining molecular electrical transport properties and it showed susceptibility of compound to 
react with other molecules51. A molecule with small energy gap is more polarizable and is usually related with 
a high chemical reactivity and low kinetic stability. The ∆Egap gap value for M7, M8, M12 and Dabrafenib was 
0.194, 0.195, 0.198 and 0.159 eV in gas phase respectively. Whereas, it was 0.197, 0.195, 0.199 and 0.158 eV in 
solvent phase respectively. These ∆Egap values indicating the relatable reactivity indices of 1,2,4 triazole aceta-
mide derivatives with standard Dabrafenib. Moreover EHOMO, which is the outer orbital holding electrons, act 
as an electron donor and thus the ionization potential (I) is directly related to the energy of the HOMO. On the 
other hand, ELUMO can accept electrons and the electron affinity (A) is directly related to LUMO energy. The 
energetic parameters of potent compounds and standard Dabrafenib are given in Table 2.

Another important parameter to determine the reactivity of the compound is global reactivity descriptors. 
The HOMO/LUMO energies are used to determine these global reactivity parameters. The Global reactivity 
descriptors like molecular Hardness, Softness, Chemical potential, Electronegativity and Electrophilicity index 
of the potent derivatives and Dabrafenib is tabulated in Table 2. Compound M7 and M8 showed high value for 
chemical softness i.e., 5.1. Whereas Dabrafenib showed highest reactivity with softness value of 6.28 in gas phase.

Moreover, FMOs analysis revealed that HOMO orbitals of potent derivatives in gas and solvent phases were 
localized to benzene ring, nitrogen atom of N-phenylcarbamyl part and piperdinyl ring of the compound M7, 
M8 and M12 (Fig. 4) which means charge transfer from HOMO to LUMO was due to contribution of π bonds 
and lone pairs of nitrogen atoms. Whereas, LUMO orbitals of M7 and M12 in gas and solvent phases were local-
ized to N substituted acetamide part of compound which exhibited that electron accepting ability of compounds 
were due to involvement of substituted aralkyl ring.

Molecular electrostatic potential.  The MEP (molecular electrostatic potential) shows the electron den-
sity of a molecule and it is used to identify sites of positive and negative electrostatic potentials for nucleophilic 
and electrophilic attacks52. Electrostatic potential is widely used to determine distribution of electronic charge. 

Figure 3.   Optimized structure of potent compounds along with standard using B3LYP/SVP level of theory.
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It is very important tool to identify electrophilic and nucleophilic attack on a molecule. It is also powerful tool 
to identify biological recognition process and hydrogen bonding interactions. Surface and contours provide an 
idea about interaction of different geometries. Electrostatic potential and electron density of compounds M7, 
M8, M12 and Dabrafenib are shown in the Fig. 5. It can be seen that electron density is localized uniformly 
throughout titled molecules but as per ESP bar data, negative ESP is localized only to specific areas of a mol-
ecule. This result is obvious because ESP co-relates with partial charges and electronegativity of a molecule. 

Table 2.   Energetic parameters of M7, M8, M12 and Dabrafenib in gas and solvent phase.

Compound EHOMO (eV) ELUMO (eV) ∆Egap (eV)
Potential ionization 
I(eV) Affinity A(eV)

Electron donating 
power (ω−)

Electron accepting 
power (ω+)

Electrophilicity 
(Δω±)

M7

Gas − 0.218 − 0.023 0.194 0.218 0.023 0.147 0.027 0.174

Sol − 0.221 − 0.023 0.197 0.221 0.023 0.150 0.027 0.177

M8

Gas − 0.218 − 0.022 0.195 0.218 0.022 0.147 0.026 0.173

Sol − 0.220 − 0.025 0.195 0.220 0.025 0.152 0.028 0.180

M12

Gas − 0.218 − 0.019 0.198 0.218 0.019 0.143 0.024 0.168

Sol − 0.221 − 0.021 0.199 0.221 0.021 0.147 0.026 0.172

Dabrafenib

Gas − 0.233 − 0.074 0.159 0.233 0.074 0.236 0.082 0.318

Sol − 0.231 − 0.073 0.158 0.231 0.073 0.233 0.081 0.313

Compound Hardness (η) Softness (S)
Electronegativity 
(X)

Chemical potential 
(μ)

Electrophilicity 
index (ω)

M7

Gas 0.097 5.135 0.121 − 0.121 0.075

Sol 0.099 5.072 0.123 − 0.123 0.076

M8

Gas 0.098 5.126 0.121 − 0.121 0.074

Sol 0.098 5.123 0.123 − 0.123 0.078

M12

Gas 0.099 5.042 0.119 − 0.119 0.071

Sol 0.100 5.01 0.121 − 0.121 0.074

Dabrafenib

Gas 0.080 6.28 0.154 − 0.154 0.149

Sol 0.079 6.34 0.152 − 0.152 0.147

Figure 4.   Calculated HOMO and LUMO orbitals of potent derivatives at B3LYP/SVP level of DFT calculations.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6404  | https://doi.org/10.1038/s41598-022-10253-5

www.nature.com/scientificreports/

Electrostatic potential values are indicated by different colors as shown in ESP bar. Highly negative electrostatic 
potential is represented by red color which is related to electrophilic reactivity whereas blue color is indicating 
highly positive potential relating to nucleophilic reactivity and green color elaborates the zero potential region53. 
It can be seen that highly negative potential was localized to triazole ring of compound M7 and M12. Whereas, 
compound M8 showed negative potential at oxygen atoms. These findings are important to relate electrophilic 
and nucleophilic reactivity of a compound.

Molecular docking.  In-silico molecular modeling studies are important part in drug discovery and drug 
development process; these studies are carried out in order to evaluate binding interactions between top ranked 
hits and targeted protein. So, the selected Phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives were 
docked into active pocket of NEK7 using MOE and Autodock which evaluated their binding capacity. Among 
them, six compounds with binding affinity ranges from − 25.81 to − 31.38 kJ/mol had shown better and com-
parable binding energies in both docking software. Interestingly compounds with best ligand–protein docked 
complex also showed good docking scores (Table 3).

Interpretation of protein–ligand interactions.  Commercially and academically available modelling 
software’s was used for docking of all compounds within active pocket of NEK7 protein. Docking results were 
sorted out and a compound with highest binding energy and best docking pose was selected for further interpre-
tation. Docking protocol used in current study was validated by re-docking of co crystal ligand ADP (Fig. 6) with 
NEK7 protein using MOE and Autodock. ADP was observed to produce good hydrophobic and Hydrophilic 
interactions with important amino acid residues of activation loop i.e., LYS63, LEU111, GLU82, GLY43, SER46 
and GLY112.

The Molecular docking experiment in our current study revealed that certain compounds, such as M7, M8, 
and M12 produced strong bonding and non-bonding interactions with amino acid residues of activation loop 
i.e., ALA61, ALA165, ASP118, GLY117, ALA116, ARG121, LYS63, GLY43, VAL48, GLY41, LEU111, LEU113, 
PHE168, ASP115, ALA114, ASP179, ILE40, ASN166, and ILE40.

Docking conformations of compound M7 revealed strong hydrophobic and hydrophilic interactions with 
active-site amino acid residues. Following amino acid residues were implicated in bonding and non-bonding 
interactions with M7; GLN44, SER46, LYS63, ILE40, ALA61, ASP115, LEU111, GLU112, ILE95, LEU113, 
ALA114, VAL48, ASP179, ARG42, GLY41, VAL48, PHE45, and PHE168. The Acetamide part of the compound 
is substituted with benzene ring bearing ethyl group at ortho position. The hydrophobic interactions between 
the substituted benzene ring and amino acid residues possessed significant importance. The benzene ring was 
involved in π-sigma interaction with PHE45, whereas the ethyl group at ortho position was exposed to van der 
Waals interactions with amino acid residues of active site. In addition, the ethyl group made significant contri-
bution in stabilizing the protein–ligand complex by donating electrons and exerting a positive mesomeric effect 
(+ M). The 1,2,4 triazolyl-3-thiol ring was engaged in π-alkyl and carbon hydrogen bonding with VAL48 and 
GLY41 respectively. The π-alkyl interaction contribute significantly in stabilizing the protein–ligand complexes. 
Furthermore, the Phenyl ring of N-phenylcarbamyl part was implicated in strong alkyl and π-alkyl interactions 

Figure 5.   Electrostatic potential of most potent derivatives and Dabrafenib.
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with ALA61, LEU111, and ALA114. LEU111 is a component of the protein’s gate keeper residues, which maintain 
active conformation of the NEK7 protein. Compound M7 formed three hydrogen bonds with distinct amino 
acids of the active site. The acetamide part of M7 was involved in hydrogen bonding with SER46, which is the 
part of DFG motif. Furthermore, electronegative oxygen atom of acetamide part was forming a hydrogen bond 
with LYS63. Another hydrogen bonding was formed between ALA114 and the electropositive hydrogen atom 
of N-phenylcarbamyl component of compound M7. These hydrogen bonds have significant effect on stabilizing 
the protein–ligand complex. Moreover, the piperdinyl ring was involved in hydrophobic interactions with ILE40 
and VAL48. Furthermore, ASP115, PHE168, ASP179, ILE95, GLU112, LEU113, GLN44, VAL65, GLY43, and 
ARG42 were also involved in 10 van der Waals interactions with compound M7. These interactions were play-
ing important role in altering the protein active conformation and stabilizing the protein–ligand complex. The 
docking scores of MOE and Autodock was found to be − 29.56 and − 29.66 kJ/mol, respectively.

The docked conformation of compound M8 with NEK7 exhibited potent interactions with the following 
amino acids: LYS63, GLY41, ILE40, ALA61, ASP115, PHE168, LEU111, GLU112, ILE95, LEU113, ALA114, 
VAL48, ASP179, and ASN166. The N-substituted acetamide part of compound M8 has an ethyl substituted 
benzene ring. Ethyl group was present at para position of benzene ring. Although the ethyl group is an electron 
donor, but its substitution at the para position might have decreased the binding score and binding affinity of 
compound M8 in comparison to M7. However, ethyl group was involved in hydrophobic interactions with 

Table 3.   Docking scores of phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives.

Compound MOE docking score (kJ/mol) Autodock docking score (kJ/mol)

Predicted Autodock inhibitory 
constant value (µM), Experimental 
IC50; µMa

M1 − 30.45 − 25.52 33.94

M2 − 29.37 − 22.88 98.41

M3 − 30.37 − 26.61 21.74

M4 − 29.83 − 23.05 91.03

M5 − 29.74 − 26.10 26.69

M6 − 31.08 − 25.81 29.87

M7 − 29.53 − 29.66 6.39

M8 − 29.32 − 28.36 10.69

M9 − 29.99 − 25.85 29.36

M10 − 29.99 − 25.56 33.16

M11 − 28.61 − 26.98 18.81

M12 − 29.70 − 31.38 3.16

M13 − 29.87 − 26.94 18.88

M14 − 30.91 − 24.97 42.28

M15 − 29.03 − 27.94 12.69

ADP (co-crystal ligand) − 16.40 − 13.76 3.90 (mM)

Dabrafenib (standard) − 34.39 − 33.22 1.54 (nM)a

Figure 6.   Crystal structure of NEK7 bounded to ADP; ADP bound in activation loop of NEK7 which is shown 
as green and pink clouds.
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ALA114, ILE95 and PHE168 respectively. The benzene ring was involved in important hydrophobic interactions 
i.e., π–π T-shaped interaction with PHE168, π-alkyl and alkyl-alkyl interactions with ALA61, LEU113 and ILE40 
respectively. Another significant interaction was π-donor hydrogen bonding was observed between benzene ring 
and ALA114. Moreover, It was observed that three important hydrophilic interactions were produced by M8 i.e., 
Carbon hydrogen bond was formed between electronegative oxygen atom of phenylcarbamyl part and LYS63 
residue of active site. The electropositive hydrogen atom of acetamide and phenylcarbamyl part were involved in 
formation of strong hydrogen bonding with ASP115 and ASP179, respectively. Hydrogen bonding is important 
molecular interactions which maintain stability of the protein–ligand complex. The hydrophobic interactions 
were also significant in maintaining stability of the complex. Among hydrophobic interactions, it was noticed 
that 1,2,4 triazolyl-3-thiol ring formed π-lone pair bonding with ILE40. Whereas, piperdinyl ring of compound 
M8 was producing π-alkyl interaction with VAL48 residue. All these interactions ultimately disturbing the active 
conformation of NEK7 protein. Furthermore, 4 van der Waals interaction were also observed with LEU111, 
GLU112, ASN166 and GLY41. Docking score of M8 compound was found to be − 29.33 and − 28.36 kJ/mol 
obtained from MOE and Autodock, respectively.

Docked conformation of compound M12 showed potent interactions and formed most stable complex 
through bonding and non-bonding interactions with following amino acids; ALA61, ILE95, ALA114, LEU111, 
PHE168, VAL48, ASN166, SER46, PHE45, VAL65, CYS79, LEU180, LYS63, ASP179, ILE40, LEU113 and 
GLU112. Compound M12 exhibited excellent binding energy and binding affinity (ki) of 3.12 µM. It might be 
due to substitution of benzene ring along with two methyl groups at ortho position. It is discussed that position 
of alkyl froup was playing great role in determining the inhibitory potential of the compound. Two methyl groups 
was imparting strong mesomeric effect (+ M) by donating electrons and increasing the resonance of benzene 
ring. It was observed that aromatic ring present in acetamide part of compound was involved in strong π-sulfur 
interaction with CYS79. π-sulfur interaction formed between sulfur atom of amino acid and π-electronic cloud 
of aromatic ring. Meanwhile same aromatic ring was also involved in π-alkyl interaction with VAL65. Second 
aromatic ring present in N-phenylcarbamyl part was also involved in major stabilizing electrostatic interac-
tion. It was involved in 4 π-alkyl interactions with ALA61, ILE95, ALA114 and LEU111 respectively. Another 
important interaction was π-anion bonding with ASP179. It was observed that important amino acid residues 
of NEK7 protein was engaged in interactions by these two aromatic rings. In addition, single carbon hydrogen 
bond was formed between ethyl group of 1,2,4 triazolyl ring and ASP179. The triazolyl ring was also involved in 
two π-cation interactions with LYS63 and ASP179. The single hydrogen bond was observed between oxygen atom 
of acetamide part and LYS63. All these interactions were corresponding to stabilized protein–ligand complex. In 
addition, piperdinyl ring of M12 was producing π-alkyl interaction with VAL48 residue. Total 8 van der Waals 
interactions was observed with ASN166, SER46, PHE45, LEU180, PHE168, ILE40, LEU113 and GLU112. Dock-
ing scores of M12 was found to be − 29.70 and − 31.38 kJ/mol from MOE and Autodock respectively. Docking 
scores of compound M12 was comparable to standard Dabrafenib.

In order to determine the inhibition potential of compound with reference to standard FDA approved inhibi-
tor, we have docked Dabrafenib within activation loop of NEK7. Docking score from both software’s was obtained 
as − 33.22 and − 33.51 kJ/mol, respectively. The 2D and 3D interactions were visualized using discovery studio 
visualizer. Docked conformation of Dabrafenib showed potent hydrophobic and hydrogen boding interaction 
with primary amino acid residues of active site. Hydrophobic interactions were included π-cation interaction 
with ARG50, halogen interaction with ILE40, one π-alkyl, two π–π T shaped and one π-sulfur interaction with 
PHE168. Moreover, aromatic rings of Dabrafenib were involved in π-donor hydrogen bonding with ALA114. 
In addition to these interactions, standard was producing three conventional hydrogen bonds with ASP115, 
GLU112 and ASP179. Other amino acids involved in 6 van der Waals interactions were LEU113, ILE95, LEU111, 
GLY117, ALA165 and LYS38. Most probable 2D and 3D interactions of compound M7, M8, M12 and standard 
Dabrafenib is shown in Fig. 7.

SeeSAR analysis.  SeeSAR analysis of most potent derivatives was carried out which provided virtual dis-
play of binding affinities. The structural components of compounds which were contributing favorably were 
indicated as blue colored coronas whereas those components having negative impact on binding affinities were 
shown as red colored coronas. Structural components having no contribution were colored as colorless coronas. 
Size of corona is predictive of contribution of structural component54. SeeSAR visualizations of potent deriva-
tives (Fig. 8), which shows that approximately all structural features were contributing favorably but only thiol 
group of 1,2,4 triazolyl ring and piperdinyl ring was contributing negatively (indicated by red coronas) due to 
high desolvation energy. Approximately all structural features of Dabrafenib show positive contribution (blue 
coronas). In addition, Hyde energies of favorable coronas (blue colored) for compound M7, M8 and M12 were 
comparable to standard Dabrafenib i.e., − 23.43 kJ/mol.

Molecular dynamic simulation.  Analysis of RMSD and RMSF.  Calculating the RMSD of each system’s 
backbone served as a preliminary study of the trajectories. Figure 9 shows the RMSD of NEK7 and the NEK7-
M12 complex as a function of time. Throughout the simulation period, both systems showed small variances but 
stayed rather steady. During MD modelling, the RMSD of both systems stayed less than 2 Å, showing that they 
are highly stable under aqueous environments55. The average RMSDs of the NEK7 and NEK7-M12 complexes 
were found to be 1.27 Å and 1.22 Å, respectively.

Calculating the RMSF provided more insight into the MD simulation results. Figure 10A shows the RMSF of 
Cα atoms in each NEK7 residue in the absence and presence of M12. The RMSF of virtually all NEK7 residues 
was less than 2 Å, indicating that both systems are generally stable56. Some residues in NEK7 alone and in the 
NEK7-M12 complex showed higher\volatility, which might be owing to their terminal location or because they 
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are part of random coils or turns that fluctuate. The RMSF of individual atoms of M12 was also calculated to 
analyze its dynamics and the result is presented in Fig. 10B. Majority atoms of the ligand fluctuate which indicate 
the dynamical shift from its initial position57. Moreover, the fluctuation in atoms of the ligand shows the move-
ment of ligand within the binding site which was confirmed by visualizing the trajectory in VMD.

Figure 7.   Most probable 2D and 3D interactions of compound M7, M8, M12 and Dabrafenib.
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ADMET properties.  Determination of biochemical process from drug administration to elimination plays 
important role in lead optimization. Most of the compounds had excellent pharmacological activity but cannot 
be accepted due to their poor absorption, distribution, metabolism, excretion, and toxicity issues, which are 
known as ADMET properties. An ideal drug candidate should be administered and absorbed properly into sys-
temic circulation and must be non-toxic and eliminate without affecting the biological activity. These processes 
are seems to be distinct but they are closely interrelated, so determination of ADMET properties have prime 
importance in drug discovery process. Since traditional methods were time consuming and many researches 
till 1990 went into vain due to appearance of undesirable effects in the middle of drug discovery process. So, 
physicochemical properties, absorption, distribution, metabolism, toxicity, excretion and medicinal proper-
ties of 1,2,4 triazole acetamide derivatives were calculated through online web server ADMETlab 2.0. It is an 
integrated online platform for accurate and comprehensive prediction of ADMET properties. ADME factors 

Figure 8.   SeeSAR analysis of potent derivatives and standard; (A) M7, (B) M8, (C) M12, D) Dabrafenib, red 
colored coronas are indicating unfavorable features whereas blue colored coronas are indicating favorable 
contributions and colorless coronas are showing no contribution of structural components.

Figure 9.   Root mean square deviation (RMSD) of backbone of NEK7 and NEK7-M12 complex as function of 
time.
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that were considered were physicochemical properties, blood brain barrier(BBB), Caco-2 permeability, volume 
of distribution(VD), P-glycoprotein (PGP) substrate, P-glycoprotein (PGP) substrate, plasma protein binding, 
Human intestinal absorption (HIA), MDCK permeability, Clearance (CL), Half-life (T1/2), eye corrosion, eye 
irritation, respiratory toxicity, AMES toxicity, carcinogenicity and synthetic accessibility score. Total 15 deriva-
tives were subjected ADMET study using online web server ADMETlab 2.0. It was observed that all compounds 
had a positive computed value of human intestinal absorption (HIA), indicating that they can penetrate the 
intestinal membrane more easily. Furthermore, compound M7 and M12 had a greater value for HIV than stand-
ard Dabrafenib. A substance with a positive blood brain barrier value has a higher lipophilicity profile and can 
easily absorb from plasma membranes. The calculated value for the blood brain barrier (BBB) and blood placen-
tal barriers (BPB) were shown to have a high likelihood of being BBB positive. In terms of plasma glycoprotein 
(PGP) substrate and inhibitor, it was discovered that the output value of all compounds had probability of being 
a PGP substrate or inhibitor specifically compound M7, M8 and M12. PPB (plasma protein binding) is a sig-
nificant component in determining drug safety, since compounds with a high PPB value (> 90%) have a narrow 
therapeutic index, whereas treatments with a low PPB value are considerably safer. Only compound M2 had low 
PPB values in this investigation, indicating that these drugs have a broad therapeutic index. PPB values of more 
than 93 percent were found in all compounds, indicating that they have a narrow therapeutic index. Compre-
hensive ADMET properties are given in “Supplementary Data S1”. It was observed that physicochemical prop-
erties of all compounds were meeting the criteria of drug like rule i.e., Lipinski rule of five as listed in Table 4.

Cell viability assay.  To support the in-silico studies, the preliminary screening of the most potent deriva-
tives was carried out using in-vitro cell viability assay (MTT assay). The Human HepG2 liver cancer cells were 
treated with four different concentrations of the selected compounds i.e., 5 µM, 10 µM, 15 µM and 20 µM. The 

Figure 10.   (A) Root mean square fluctuation (RMSF) of Cα atoms of NEK7 in the absence and presence of 
M12. (B) RMSF of each atom of M12.

Table 4.   Physicochemical properties of compounds.

Physicochemical properties

Molecular weight Density nHA nHD TPSA LogS LogP LogD

M1 444.23 0.994 8 1 83.36 − 2.714 2.431 2.201

M2 430.22 1.001 8 2 92.15 − 2.764 2.218 2.477

M3 470.25 0.994 8 2 92.15 − 4.044 3.296 3.156

M4 478.22 0.991 8 2 92.15 − 3.877 2.789 2.822

M5 478.22 0.991 8 2 92.15 − 4.075 3.155 2.832

M6 478.22 0.991 8 2 92.15 − 4.813 3.649 3.228

M7 492.23 0.985 8 2 92.15 − 4.636 3.751 3.236

M8 492.23 0.985 8 2 92.15 − 5.34 4.135 3.433

M9 492.23 0.985 8 2 92.15 − 4.625 3.797 3.089

M10 492.23 0.985 8 2 92.15 − 4.431 3.706 3.084

M11 492.23 0.985 8 2 92.15 − 4.527 3.782 3.152

M12 492.23 0.985 8 2 92.15 − 3.849 3.076 2.958

M13 492.23 0.985 8 2 92.15 − 5.231 4.251 3.447

M14 464.2 0.998 8 2 92.15 − 4.475 3.063 2.937

M15 492.23 0.985 8 2 92.15 − 4.527 3.782 3.152
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concentrations were selected based on the predicted inhibitory values obtained during docking studies. A linear 
response of cell death was observed by each derivative. Derivative M12 showed maximum cell death justifying 
the computational studies where this compound was found best inhibitor of NEK7. The single concentration 
taxol was used as positive control. The results were calculated by comparing with the total activity control (with-
out inhibitor) i.e., un-treated cells. The % viability graph was generated via graph pad Prism software and is given 
in the Fig. 11.

Conclusion
The current work used a thorough in-silico strategy to find strong and selective NEK7 protein inhibitors. The 
chemical reactivity and stability of the compounds were measured using density functional theory studies. In 
addition, FMOs and MEP were computed, confirming the chemical reactivity of the compounds. Two docking 
software’s, MOE and Autodock, were used to conduct molecular docking investigations in order to improve the 
accuracy of in-silico molecular modelling. The majority of compounds produced stable protein–ligand complexes 
with high binding energies, specifically compound M7, M8, and M12 were forming the most stable complexes 
with the highest binding energies. The most stable compound with the highest binding energy was then subjected 
to MD simulation experiments, which provided information on the complex’s stability over time. MD simula-
tions demonstrated that the complex was in stable state. To establish the physicochemical attributes and toxicity 
profile of compounds, thorough ADMET studies were conducted, which investigated the compounds’ toxicity, 
drug similarity, and synthetic accessibility. At the end, the results were supported by cell viability assay where 
the M12 was identified as the best inhibitor of NEK7. Conclusively, all the compounds had a low toxicity profile 
and acceptable synthetic accessibility score. NEK7 is a potential and selective target for 1,2,4 trizole acetamide 
derivatives, according to findings of current study.

Materials and methods
Phenylcarbamoylpiperidine‑1,2,4‑triazole amide derivatives.  A general procedure for the synthe-
sis of phenylcarbamoylpiperidine-1,2,4-triazole derivatives has been reported in our previous work39. The goal 
of this research is to look at the in-silico inhibitory potential of novel amide analogues of phenylcarbamoylpi-
peridine-1,2,4-triazole with diverse substituents (M1–M15). Phenylcarbamoylpiperidine-1,2,4-triazole amide 
derivatives along with their previous anti-inflammatory activity against 15-LOX are listed in Table 5.

Computational studies.  Comprehensive in-silico investigations were performed with the NEK7 protein 
to examine the anti-cancer potential of 1,2,4 triazole acetamide derivatives. Molecular docking research, exten-
sive density functional theory investigations, including global and local reactivity descriptors, chemical softness, 
chemical hardness, and electrostatic potential and Molecular dynamic simulations were among the computa-
tional studies. ADMET characteristics were computed using ADMETlab 2.0 to establish the ADME profile of 
all derivatives58.

Density function theory (DFT).  The density functional theory was used to optimize the gas phase geom-
etries of the investigated compounds in both gas and solvent phases (DFT). The molecular geometry parameters, 
frontier molecular orbital (FMO), global and local reactivity descriptors, and molecular electrostatic potential 
were all collected using DFT (MEP). All of these computations were done with the Gaussian0959 software, which 
used the Becke-3-Parameter-Lee–Yang–Parr50 (B3LYP) method. For all calculations, the SVP basis sets were 
employed. Gauss View 6 was used to visualize the output files60.
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Figure 11.   % Cell viability of HepG2 cells after treatment with potent derivatives (M7, M8 and M12) by 
using Taxol as Positive Control. The cells were treated with four different concentrations (5 µM, 10 µM, 15 µM 
and 20 µM) for 48 h and cell viability was measured by MTT assay. Data were analyzed as mean of three 
experiments ± S.D. (n = 3) by using PRISM 5 (GraphPad, San Diego, California, USA).
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Molecular modeling.  Preparation of protein.  The protein data bank (www.​rcsb.​org, PDB: 2WQN, resolu-
tion: 2.30) was used to derive the crystal structure of human NEK7 protein. The downloaded protein was gener-
ated independently in both docking softwares, Autodock48 and MOE49. The Autodock suite was used to prepare 
the protein, which involved removing water molecules, adding polar hydrogen atoms, and assigning partial 
charges to each atom. Autodock tools were also used to prepare missing residues. During the protein produc-
tion procedure, complexed adenosine diphosphate (ADP) and het atoms were removed from NEK7. Following 
protein preparation, previously synthesized 1,2,4 triazole acetamide derivatives were selected as testing ligands 
and docked with NEK7. The active site was selected using rectangular coordinates based on the co-crystal ligand 
ADP. Grid box XYZ dimensions were set to − 12.348, − 33.512, and − 48.605, respectively. The search spacing 
was adjusted at 0.55 Å in order to cover the largest number of amino acids in the activation loop. The number 
of points in the X, Y, and Z dimensions, on the other hand, were set to 60, 60, and 60, respectively. The number 
of docking postures was set to 100 with a population size of 300 to cover all potential ligand binding locations. 
Following the establishment of the necessary parameters, ligands were docked with protein in order to identify 
probable hits and generate reliable binding poses. The binding poses of the compound with the highest docking 
score were visualized using Discovery Studio Visualizer 17.2.

MOE’s protein preparation module was used to inspect the protein structure for any missing atoms or residues 
and make any necessary adjustments. MOE’s protein preparation process comprised applying gas tier charges 
through the MMFF94x forcefield, adding hydrogen atoms, removing water molecules, 3D protonation of the 
structure, and minimizing the protein structure to a chosen gradient. The binding site of NEK7 was defined using 
the original co-crystal ligand (ADP). The dummy atoms were generated at the binding location using MOE’s 
site finder program. The docking algorithm was configured to use the triangle matcher placement approach61. 
Furthermore, the induced fit refinement approach was applied to generate docking positions. The triangular 
match algorithm was programmed to create 100 poses, but the induced fit refinement approach produced ten 
poses. Furthermore, the default GBVI/WSA dG technique was used as a docking function in MOE62. Autodock 
and MOE docking conformations with the lowest binding energies were chosen for further study.

Preparation of ligands.  Ligand databases were created by generating the structures of N-alkyl/aralkyl/aryl 
acetamide triazole derivatives from Saima, Muzaffar et al.39. These molecules were previously tested for their 
ability to inhibit the 15-lipoxygenase enzyme. Chemdraw Ultra 12.063 was used to draw the structures of all 
derivatives based on the IUPAC name of the compounds. The aryl ring was replaced with an ethyl group, and 3D 
optimization and energy reduction were performed at 0.1 gradient using Chem3D pro 12.064. Compounds were 
saved to SDF format after energy reduction. These SDF files were then transformed into the appropriate format 
for the docking programme, such as PDBQT for Autodock and SMILES for SeeSAR analysis. These modifica-
tions were carried out with the help of the OpenBabel GUI65.

Molecular docking protocol.  The Autodock and MOE docking modules were used to perform docking-
based virtual screening on the targeted NEK7 protein. Compounds were docked into a protein’s active pocket. 
For visualization and posture creation, the compound with the highest binding energy was chosen.

Visualization.  Autodock docking conformations were displayed using Discovery studio visualizer 17.266. 
The best docked conformation’s 2D and 3D interactions were generated using the Discovery Studio visualizer. 

Table 5.   Chemical formula and 15-LOX inhibitory profile of all derivatives.

Compound Chemical formula 15-LOX inhibitory profiles (IC50 µM)

M1 C22H32N6O2S 45.62

M2 C21H30N6O2S 17.5

M3 C24H34N6O2S 36.24

M4 C25H30N6O2S 45.67

M5 C25H30N6O2S 35.61

M6 C25H30N6O2S 97.64

M7 C26H32N6O2S 36.52

M8 C26H32N6O2S 42.95

M9 C26H32N6O2S Inactive

M10 C26H32N6O2S 97.62

M11 C26H32N6O2S Inactive

M12 C26H32N6O2S 98.63

M13 C26H32N6O2S 105.43

M14 C26H32N6O2S 89.56

M15 C24H28N6O2S 108.73

Dabrafenib C23H20F3N5O2S2 –

Quercetin C15H10O7 4.86

http://www.rcsb.org
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MOE, on the other hand, has an inbuilt visualizer tool that may be used to visualise 2D and 3D interactions of 
the best docked conformation.

Furthermore, to identify a persuasive rationale for NEK7 inhibitor binding affinity, SeeSAR analysis of the 
most active and least active ligands was performed using SeeSAR software67, which gives a visual depiction of 
binding affinity. The structural features of ligands that were not contributing favourably to overall binding affinity 
were indicated by red coloured coronas, whereas structural features of ligands that were contributing favourably 
were indicated by blue coloured coronas; the larger the corona, the greater the contribution. No-contribution 
structural elements were not coloured. SeeSAR was used to create a total of ten docking postures for each ligand54.

Validation.  Validation of docking protocol was done by redocking co-crystal ligand and Dabrafenib into the 
active pocket of NEK7 protein. Assessment was done on the basis of calculated RMSD value. Only those dock-
ing poses were considered successful whose RMSD value of docking pose and the experimentally determined 
conformation of a ligand was less than 2.0 Å68.

Molecular dynamic simulation.  Molecular dynamics (MD) simulations were used to investigate the sta-
bility and interaction of the hit molecule (M12) acquired from prior research. Gromacs-2018.1 was used to run 
the MD simulations, which used the amber99sb-ILDN force field69,70. For simulation investigations, the docked 
complex was used as the starting point. The topology of M12 was created using AmberTools21’s Antechamber 
and the AM1-BCC charge model71. TIP3P water model was used to solvate NEK7 and its complex with M12, 
and then the energy of each system was reduced using steepest descent minimization to eliminate the weak Van 
der Waals connections. Both systems were then equilibrated in two processes. First, NVT was equilibrated at 
constant temperature and volume for 1 ns using a V-rescale thermostat72. The Parrinello-Rahman barostat was 
used to produce the second equilibration for NPT at constant pressure and temperature for 1 ns73. The equilibra-
tion coordinates were used to run a 100 ns MD simulation, with 10,000 frames of each system stored from their 
individual trajectories. Before analysis, both trajectories were treated to PBC adjustments. Gromacs tools were 
used to conduct all of the analyses.

ADMET properties.  The determination of ADMET characteristics is critical for rolling out unfavorable 
effects of a drug candidate at the early stages of the drug development process. For the in-silico estimation of 
ADMET characteristics, efficient and accurate online prediction models were constructed. The online in-silico 
prediction model ADMET lab 2.058 was used to determine ADMET attributes such as absorption, distribution, 
metabolism, excretion, toxicity, and physicochemical properties of all chemicals, and drug similarity properties 
were assessed using the Lipinski rule of five58. Chemdraw Ultra was used to convert all compounds to SMILES 
format, and these SMILES structures were then uploaded to the ADMET lab 2.0 web server. It also makes using 
the JMSE editor to create desired structures easier. Within loading the SMI structure, the submit button was 
used to submit the data, and it returned ADMET attributes in pdf and spreadsheet format, which could be 
downloaded after a few minutes.

Cell viability measurement (MTT assay).  In order to determine the anticancer effect of the most 
potent compounds, the Human HepG2 liver cancer cells were cultivated in Dulbecco’s Modified Eagle’s Medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, and 100 g/ml streptomycin 
and kept at 37 °C in a humidified environment with 5% CO2. Cells were treated with compounds dissolved in 
DMSO with the final concentration of DMSO (0.05%). The MTT assay was performed as discussed earlier74. In a 
brief, HepG2 cells were treated for 48 h with various doses of the potent derivatives. Then 10 µl solution of MTT 
(5 mg/mL) was added to each well after 48 h of post-incubation. The plate was covered with aluminium foil and 
kept in the incubator at 37 °C for about 4 h. The medium was taken out and replaced with 150 µL of DMSO to 
dissolve the remaining purple formazan precipitate that was still there. A microplate reader (Thermo Scientific) 
was used to record the absorbance at 570 nm. This colorimetric assay looked at how the mitochondrial enzymes 
of the metabolically active cancer cells reduced MTT to purple formazan, which made the cancer cells look more 
alive. The Cell viability was determined as a percentage. The experiment was done three times, and the results are 
shown in standard deviation and mean values.
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