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The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are

crucial for various metabolism investigation, including toxicity, disease, and pre-clinical

testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses

of bile are used to explain drug clearance and related effects and are thus important for

toxicology and pharmacokinetic research. Bile fluids collection is extensively performed

in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to

success is the technology involved, which needs to satisfy multiple criteria. To ensure

the accuracy of subsequent chemical analyses, certain amounts of bile are needed.

Additionally, non-invasive and continuous collections are preferable in view of cell culture.

In this review, we summarize recent progress and limitations in the field. We highlight

attempts to develop advanced liver cultures for bile fluids collection, including methods

to stimulate the secretion of bile in vitro. With these strategies, researchers have used a

variety of cell sources, extracellular matrix proteins, and growth factors to investigate

different cell-culture environments, including three-dimensional spheroids, cocultures,

and microfluidic devices. Effective combinations of expertise and technology have the

potential to overcome these obstacles to achieve reliable in vitro bile assay systems.

Keywords: in vitro, bile fluids collection, liver culture, liver function analyses, cell-based assay

INTRODUCTION

The liver is one of the largest glands in the body and is pivotal to various metabolic functions,
including blood glucose regulation, protein synthesis, and detoxification. These functions are
mainly performed within the hepatocyte parenchymal cells. Hepatocytes are responsible for 40–
70% of the xenobiotic liver metabolism (Almazroo et al., 2017). Therefore, analyses of hepatocyte
functions can be used for toxicities assay.

Presence of liver diseases or injuries also frequently alters the amount and composition of liver
secretions (Luo et al., 2018). A functional liver produces bile, a secretion containing 95% water
that dissolves bile acids (BAs), bilirubin, ions, hormones, and other metabolites. BAs are major
organic solutes, mainly consisting of cholic acid and chenodeoxycholic acid. BAs and bile are
secreted into the canaliculi structure of hepatocytes prior to entering the biliary system in the
liver (Boyer, 2013; Chiang, 2013). Although bile formation is a common process in normal livers,
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it is impaired in cases of cholestatic liver disease (Boyer, 2013).
The presence of drugs or liver injuries (Luo et al., 2014; Ni et al.,
2016) has been widely reported to alter the amount as well as
the composition (Luo et al., 2014) and perturbation of BA in the
bile fluids (Rodrigues et al., 2014). Thus, bile is used as a source
for enzymatic assays (Cell Biolabs Inc, 2017), profiling (Samer
et al., 2013; Luo et al., 2014; Bathena et al., 2015), and uptake-
efflux testing (Yang et al., 2017). Many bile tests have employed in
vivo collection using both non-invasive and invasive procedures.
Non-invasive procedures include urine (Griffiths and Sjövall,
2010; Hofmann and Hagey, 2014; Bathena et al., 2015), fecal
recovery (Ghibellini et al., 2006; Griffiths and Sjövall, 2010),
and Entero R© testing (Bloomer et al., 2013). Meanwhile, invasive
procedures employ serum collections (Luo et al., 2014), biliary
sphincterotomies (Navaneethan et al., 2014), duodenal fluid
collection, nasobiliary drainage, and cholecystectomies (Bloomer
et al., 2013).

In vitro liver research has been subjected to long-term projects
for the establishment of standard preclinical assays that are still
widely implemented in pharmaceutical studies. The in vitro liver
model offers time efficient results and is flexible for human tissues
(Soldatow et al., 2013). It is simple, controllable (Xu et al., 2014),
allows for intensive analyses (Fatehullah et al., 2016), and exhibits
accurate dose–response relationships related to drug analyses
(Soldatow et al., 2013). However, bile fluids collection and testing
is rarely constructed in an in vitromodel. The low amount of bile
yields, as represented by the BA concentrations from recovered
culture media (Marion et al., 2012) and auto-toxic conjugated-
BA produced in culture (Woolbright et al., 2015, 2016) has
hindered its further consideration. In this paper, we discuss
the current research that both directly and indirectly addresses
liver-functional bile production in vitro.

BILE COLLECTION FROM IN VITRO LIVER
CULTURE

Characterization of Drug-Induced Liver
Toxicity Mechanism Through Biliary
Secretion
Elucidation of the biliary excretion process is important because
it leads to an understanding of drug-induced liver toxicity. BAs
are often used as an index for this purpose and are found
in blood samples collected from test subjects. They can be
evaluated as a biomarker in vivo (Wolenski et al., 2017; Luo
et al., 2018; Liu et al., 2020). This biomarker can be used to
predict biliary excretion because some drugs inhibit the bile
salt export pump (BSEP). BSEP is an excretion transporter
of hepatocytes for Bas, which induces perturbations of biliary
excretion (Funk et al., 2001; Kemp and Brouwer, 2004; Wolenski
et al., 2017). Conversely, the use of an in vitro liver culture
system could provide amore detailed understanding of the biliary
excretion process from a molecular biological perspective. For
example, it can better detect the transporters involved in bile
excretions and their inhibitions caused by drugs (Funk et al.,
2001; Kemp and Brouwer, 2004). However, with in vitro liver
models, because there are no outlets for biliary metabolites in

most cases, biliary metabolites accumulate in the bile canaliculi
between adjacent hepatocytes, preventing accurate evaluation of
drug-induced hepatotoxicity. Additionally, the lack of outlets
for biliary metabolites restricts development of in vitro models
for studying the effects of enterohepatic circulation of biliary
metabolites, which have the potential to amplify drug toxicity.

Increase in New Drug Development
Because the development of a new drug generally takes more
than 10 years and can cost more than USD 1B (Hughes et al.,
2011), it is desirable to have a system that could evaluate
pharmacokinetics more accurately and at a lower cost. To
predict the pharmacokinetics of drugs in the human body,
experimental animals (e.g., mice and rats) are often used. The
advantages of doing so are two-fold. First, one can understand
the pharmacokinetics (i.e., absorption, distribution, metabolism,
and excretion) in the whole body and not just at specific
locations. Second, one can implement realistic toxicity studies of
oral and inhalation exposures (Barré-Sinoussi and Montagutelli,
2015). However, the problem of species differences cannot be
overcome. Moreover, there have been some cases where side
effects and immune responses that were not seen in non-clinical
animal studies were found in clinical studies in humans (van
Norman, 2019). Another issue is the cost and labor required for
animal breeding, breeders, and proper breeding environments.
Conversely, the use of human cells cultured on Petri dishes
can solve these issues while elucidating the local mechanism of
pharmacological action (Funk et al., 2001; Kemp and Brouwer,
2004). Development of physiologically relevant in vitro liver
models is desired because the liver plays a central role in drug
metabolism. For the accurate prediction of pharmacokinetics, an
in vitro liver model should be able to distinguish whether the
parent’s metabolized drugs were excreted into the blood or bile.
In these models, biliary metabolites could be collected directly.

Need for Enhancing Bile Collection in vitro
Bile fluids collection in vitro has limitations. The amount
of fluids collected from the culture medium is suggestively
low, as presented by BA concentrations in the bile at <1
µg/L per 106 hepatocyte culture (Einarsson et al., 2000). An
enzymatic immunoabsorbent assay generally has a concentration
limit of 1–5 µg/L BAs (Cell Biolabs Inc, 2017). Additionally,
methods for extracting bile fluids from cultures are also quite
limited. Bile extraction from harvested hepatocyte cultures is
commonly performed to increase bile yield (Setchell et al.,
1997; Ramaiahgari et al., 2014). However, these methods require
hepatocyte extraction, often resulting in culture damage and
shortening of the culture’s age.

To date, liquid chromatography (LC)–mass spectrometry
(MS) is widely utilized as an analytical method to quantify solutes
in bile fluids. It has a rapid bile profiling and a detection limit
of 10 ng/L (Perwaiz et al., 2001; Scherer et al., 2009), showing a
higher precision of 5 ng/L for ultraperformance LC-MS (Sarafian
et al., 2015). Another common method is to calculate the
fraction of hepatocytes with and without the canaliculi network
(Boyer, 2013). Both methods hardly allow direct quantification
of the solutes secreted into the bile. Appropriate clearance is

Frontiers in Toxicology | www.frontiersin.org 2 June 2021 | Volume 3 | Article 657432

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


Rizki-Safitri et al. Prospect of in vitro Bile Collection

a preferable method that would provide direct secretion while
preventing tissue extraction. It may also prolong the culture age,
which is suitable for chronic models.

IDEAL BILE PRODUCTION AND
COLLECTION FOR IN VITRO LIVER
TOXICITY ANALYSES

Numerous studies have been performed to develop advanced bile
fluids collection methods and enhance bile assays in vitro. These
attempts included alterations in the culture model, integration
with microtechnology, and bile recovery methods (see Figure 1,
Table 1).

Cell Source for Producing Bile
Primary hepatocytes are the most ideal cell source to represent
major liver functions. In both academia and the pharmaceutical
industry, the utilization of primary human hepatocytes (PHHs)
has been accepted as the gold standard to access human liver
function (Hirano et al., 2004; Yamashiro et al., 2006; Maeda and
Sugiyama, 2010; Izumi et al., 2017). Donor to donor variations
in functions of PHHs can provide valuable information on
individual differences in actual human population. However, we
should pay attention to some drawbacks to the use of PHHs.
In the process of cell preparation, the viability of prepared
PHHs is largely dependent on individual batches (Levy et al.,
2015; Ruo et al., 2020). Moreover, donor-to-donor variations
in the in vitro functions of PHHs cannot always correspond
to the individual differences in liver functions among actual
human population since they come from not only intrinsic
hepatic functional variations but other artifacts such as the
different situations of cell isolation from donors (e.g., elapsed
time from the death of donor to the isolation of PHHs, warm
ischemic time, efficiency of collagenase perfusion in the liver)
(Olinga et al., 1998; Shitara et al., 2003; Godoy et al., 2013). In
academia, the variations could impair the reproducibility and
reliability of results. Besides, the cost and limited availability
of PHHs sometimes impose a burden on basic research.
From this perspective, development of alternative cell sources
has been an issue. The establishment of an oncostatin M
(OSM)-dependent expansion of PHH-overexpressed human
papillomavirus (HPV) oncogenes increases the PHH availability
for in vitro cultures. It expresses E6 and E7 oncogenes, which
are responsible for hepatocyte immortality, as activated by OSM
addition. The OSM addition stimulates the proliferation of PHH-
overexpressed HPV oncogenes up to 40 populations (doubling),
whereas OSM removal results in proliferation and triggers
differentiation into mature PHH (Levy et al., 2015). Several
groups have reported the generation of chimeric mice with
transplantation of human hepatocytes into immunodeficient
mice [e.g., urokinase-type plasminogen activator/severe
combined immunodeficiency (uPA/SCID) mice (Tateno et al.,
2004), Fah−/−/Rag2−/−/Il2rg−/− mice (Azuma et al., 2007),
and TK-NOG mice (Yamasaki et al., 2010)]. In these chimeric
mice, large parts of the liver were replaced with transplanted
human hepatocytes. The functions of isolated hepatocytes were

reported to be comparable with PHHs (Nishimura et al., 2005).
Additionally, these chimeric hepatocytes can be maintained with
external oxygen supplies, hierarchical cocultures with 3T3 cells,
or additions of ECM (Kimura et al., 2019). These studies increase
the availability of fresh PHHs instead of cryopreserved cells.

The use of hepatocyte cell lines is also expected to be a
suitable alternative to PHH for in vitro bile analyses. HepaRG is a
bipotent cell line established from hepatocarcinoma that has been
extensively utilized for cytochrome P450 (CYP) induction assays
and bile analyses (Andersson et al., 2012; Takahashi et al., 2015;
Woolbright and Jaeschke, 2015;Woolbright et al., 2015; Susukida
et al., 2016). It demonstrates superior BA transport and drug
metabolite disposition, as opposed to other common hepatic
cell lines (e.g., HepG2) (Takahashi et al., 2015; Woolbright and
Jaeschke, 2015; Ni et al., 2016; Susukida et al., 2016; Penman
et al., 2019). It also exhibits a similar response to the relevant
dose of BA-induced toxicity as PHH (Woolbright et al., 2015). An
evaluation of bile metabolites using HepaRG demonstrated that
the influx and efflux bile transporters were properly distributed
to apical (BSEP, MRP2, MDR1, MDR3) or basolateral (NTCP,
MRP3) sites. However, in comparison to PHHs, there are
some drawbacks that need to be considered. First, the cost of
HepaRG cells per vial is comparable to PHHs. Second, some BA
transporter expressions, such as BSEP andNTCP, and the amount
of bile secretion in HepaRG were still less compared to that of
PHH (Bachour-El Azzi et al., 2015). In addition, some drug-
metabolizing enzymes, such as CYP1A2, CYP2A6, and CYP2D6,
were reported to have a significantly lower level of expression in
HepaRG cells than in PHHs (Andersson et al., 2012). Third, as is
true with all cell lines, it is derived from a single donor and thus
not suitable to assess the effect of diverse genetic background in
actual human population.

Additionally, protocols for liver-cell differentiation have been
widely established (Si-Tayeb et al., 2010; Miyajima et al.,
2014). Human-induced pluripotent stem cell (iPSC)-derived
hepatocytes (hiHeps) are genetically more closely related to PHH
than are hepatoma cell lines (Gao and Liu, 2017). The hiHeps
have demonstrated the capacity for bile production in sandwich
culture, as shown by total BA syntheses and responses toward
hepatoprotective substances (Ni et al., 2016). Regardless of the
transcriptomic study conducted (Gao and Liu, 2017), hiHeps
still exhibit inferior drug metabolic properties compared with
HepaRG (Kvist et al., 2018). An in vitro experiment validated
that hiHeps possess lowered CYP protein, particularly CYP7A1,
which decreased the amount of total BA by 30% PHH (Ni et al.,
2016). Additionally, it expressed low BSEP activities as opposed
to MRP2 (Sakai et al., 2019). Thus, optimummodulation of iPSC
differentiation toward liver cells is necessary, considering that
hiHeps has a high potential for bile testing.

Modulation in Tissue-Culture Method
Methods for culturing liver tissue have been known to
create an ideal environment to support liver-cell physiology,
including bile production. Such bile production can be
sustained through the maintenance of bile canaliculi between
adjacent hepatocytes where bile is first secreted. One approach
maintains the oxygen supplies toward culture system to
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FIGURE 1 | Strategies developed for improving bile production and recovery for liver cell-based assay including (A) utilization of various cell sources for optimum bile

production; (B) modulation of culture model that is efficient for bile secretion and production; (C) integration with microfabrication, modulation of bile production, and

recovery methods using (D) agents and chelates; and (E) integration of liver tissues to enable autologous bile recovery.

support high hepatocyte metabolism rates (Giglioni et al.,
2018). Hepatocyte culture has been established on oxygen-
permeable polydimethylsiloxane to maintain hepatocyte bile
canaliculi. This culture model exhibits favorable morphology
and function of hepatocytes over hepatocyte cultures on
polystyrene surfaces (Matsui et al., 2010; Xiao et al., 2014, 2015).
Additionally, continuous direct oxygenation can be achieved
using a collagen Vitrigel membrane chamber (Oshikata-Miyazaki
and Takezawa, 2016). Hepatocyte cultures have shown active
bile-conjugate secretion into both bile canaliculi networks and
extracellular solutions.

Extracellular matrices (ECMs) have been shown to maintain
bile canaliculi. Sandwich configurations have been thoroughly
explored to reestablish the specific transporters on the canalicular
and sinusoidal membrane domains significant for bile-based
analyses (Levy et al., 2015; Yang et al., 2017). They employ various
kinds of ECM proteins, including collagen (Swift et al., 2010;
Chatterjee et al., 2014; Keemink et al., 2015; Deharde et al., 2016;
Zeigerer et al., 2017), Matrigel (Deharde et al., 2016; Sun et al.,
2019), laminin (Watanabe et al., 2016), or combinations (Swift
et al., 2010; Marion et al., 2012; Fukuda et al., 2014; Keemink
et al., 2015; Xiao et al., 2015; Deharde et al., 2016; Ni et al., 2016;

Susukida et al., 2016; Ogimura et al., 2017). Notably, distinct
ECM compositions, including layering, have had diverse impacts
on liver culture. The cellular arrangement and morphology of
liver cells are mainly governed by underlay ECM, whereas the
canalicular network and bile secretions are affected by the overlay
ECM (Deharde et al., 2016). A combination of collagen underlay–
Matrigel overlay appears to be the ideal sandwichmixture needed
to simulate a hepatocyte architecture and functions related to bile
production. These sandwich cultures can preserve the optimum
bile canaliculi network and CYP1A1/2 activity for 1 week while
maintaining the culture for 2 weeks (Xiao et al., 2015; Lauschke
et al., 2016). This culture model is flexible and can be combined
with other culture modifications, owing to its simplicity.

A self-organized three-dimensional model in a spheroid
configuration successfully improved bile production and toxicity
assays. Spheroids increase cell density, cell-contact polarity, and
culture plasticity, including coculture modulation and ECM
inclusion (Soldatow et al., 2013; Ramaiahgari et al., 2014;
Fatehullah et al., 2016). Unlike sandwich configurations, liver
cultures in spheroid configurations allow multiple canalicular
sites, thus maintaining superior phase I and II enzyme activities
(Soldatow et al., 2013; Ramaiahgari et al., 2014) with a culture age
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TABLE 1 | Recent studies that significant on the advancement of bile production and collection from liver in vitro model.

Target of modulation Type of modulation Ideal design for bile production and

collection

Organism/s Degree of

modulation

Bile amount

collected

Relevancy for bile

fluids collection

References

Cell source Long-term primary

hepatocytes

OSM-dependent human primary

hepatocytes, human hepatocyte-chimeric

mice

Human, mouse Moderate–high Low–higha,b,c High Tateno et al., 2004; Nishimura

et al., 2005; Azuma et al., 2007;

Yamasaki et al., 2010; Levy

et al., 2015; Kimura et al., 2019;

Ruo et al., 2020

Hepatocytes cell line HepaRG Low Low–higha,b,c Moderate–High Andersson et al., 2012;

Bachour-El Azzi et al., 2015;

Takahashi et al., 2015;

Woolbright and Jaeschke, 2015;

Woolbright et al., 2015;

Susukida et al., 2016

iPSCs-derived cells hiHeps Moderate–High Low-Moderateb Moderate–

Potentially

high

Ni et al., 2016; Kvist et al., 2018;

Sakai et al., 2019

Culture design Oxygenated culture PDMS permeable membrane, Vitrigel

membrane

Human, rat Lowc,b Moderate–High Moderate–High Matsui et al., 2010; Xiao et al.,

2014, 2015; Oshikata-Miyazaki

and Takezawa, 2016

Sandwich culture Collagen–Matrigel sandwich (thick gel and

supplementation)

Human, rat,

mouse

Lowa Moderate–High Moderate–High Swift et al., 2010; Marion et al.,

2012; Chatterjee et al., 2014;

Fukuda et al., 2014; Keemink

et al., 2015; Xiao et al., 2015;

Deharde et al., 2016; Lauschke

et al., 2016; Ni et al., 2016;

Susukida et al., 2016; Watanabe

et al., 2016; Ogimura et al.,

2017; Yang et al., 2017; Zeigerer

et al., 2017; Sun et al., 2019;

Ruo et al., 2020

3D spheroid Coculture of 3D spheroid, liver

organoid, spheroid encapsulation,

and bioprinting

Low–Moderatea Moderate–High Moderate–High Tamai et al., 2013; Astashkina

and Grainger, 2014; Rebelo

et al., 2015; Takahashi et al.,

2015; Ware et al., 2015; Yamada

et al., 2015; Bells et al., 2016;

Chan et al., 2016; Lauschke

et al., 2016; Ni et al., 2016;

Ahmed et al., 2017; Kizawa

et al., 2017; Vorrink et al., 2017;

Baze et al., 2018; Underhills and

Khetani, 2018; Fiorotto et al.,

2019

(Continued)
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TABLE 1 | Continued

Target of modulation Type of modulation Ideal design for bile production and

collection

Organism/s Degree of

modulation

Bile amount

collected

Relevancy for bile

fluids collection

References

Micropattern ECM-Based micropattern Moderate–Highb,d Potentially

moderate–High

Moderate–High Matsui et al., 2012

Integration with devices Canaliculi fluidic channel Rat Highc Potentially

moderate–High

Moderate–

Potentially

high

Nakao et al., 2011; Wang et al.,

2018

Transporter activities Ca2+/Mg2+ depletion B-Clear® Technology Human, rat Low–Moderatea,c Moderate–High Moderate–High Swift et al., 2010; Marion et al.,

2012; Fukuda et al., 2014;

Bachour-El Azzi et al., 2015; Ni

et al., 2016; Yang et al., 2016;

Yan et al., 2017; Ying et al., 2018

Bile salts inducer Addition of PGE2 Mouse Moderatec Potentially

moderate–High

Moderate Fu et al., 2010; Brouwer et al.,

2013

Multi-tissue interactions Development of bile

duct structure

Micropattern cyst-tube making, bile duct

differentiation, bile duct in vitro

morphogenesis

Human, rat,

mouse

Higha,c,d Potentially high Potentially high Tanimizu et al., 2007, 2012; Kido

et al., 2015; Sampaziotis et al.,

2015; Miura et al., 2018;

Rizki-Safitri et al., 2018, 2020;

Funfak et al., 2019; Du et al.,

2020; Hafiz et al., 2021

Hepatobilary model Hepatobiliary spheroid, collagen

membrane, ECM-based scaffold

Human, rat Moderate–

Higha,b,c
Potentially high Potentially high Katsuda et al., 2013; Vyas et al.,

2018; Wu et al., 2019

Integrated multiorgans Liver–intestine model, multiorganoid chip

system

Human Highd –* Potentially high Maschmeyer et al., 2015; Chen

et al., 2017; Choe et al., 2017;

Skardal et al., 2020

Direct collection of bile Oil injector Rat Highd Moderate–High Potentially high Matsui et al., 2012

aCombined with oxygenation.
bCombined with organoid culture.
cOften combined with sandwich culture.
dCombined with micropattern or microfluidics.

*Bile salts directly transported and affect the organ of interest.
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of up to 5 weeks (Bells et al., 2016; Lauschke et al., 2016). Liver
spheroids have been reported to amplify drug metabolism and
bile-related performances of various cell sources, including PHH
(Vorrink et al., 2017), HepaRG (Sun et al., 2019), HepG2 (Tamai
et al., 2013; Yamada et al., 2015), and hiHeps as liver organoids
(Lauschke et al., 2016; Ni et al., 2016; Fiorotto et al., 2019). It can
also enhance BSEP expression in HepaRG cells (Sun et al., 2019).
A study using 56 endogenous compounds demonstrated a 3-week
stability of endogenous and xenobiotic metabolites in the PHH
spheroid. Notably, the BA composition excreted by the PHH
spheroid contained higher glycine-conjugated BA compared with
freshly isolated PHH (Vorrink et al., 2017). Cocultures with liver
non-parenchymal cells, such as fibroblasts (Tamai et al., 2013;
Ware et al., 2015; Underhills and Khetani, 2018), Kupfer cells,
bile duct cells, and stellate cells (Bells et al., 2016; Baze et al.,
2018; Underhills and Khetani, 2018) stabilize the PHH function.
They also support the PHH culture for long-term exposure
toxicity tests. These cocultures displayed a three-fold higher BA
accumulation as a response to chlorpromazine in cholestatic
presence (Bells et al., 2016).

Although liver spheroids display merits for in vitro liver
cultures, the model has several limitations. First, the greater
the size and density of the liver spheroid, the more susceptible
it is to necrotic core development (Astashkina and Grainger,
2014). Only spheroids having diameters of ∼200µm (1.5–2
× 103 cells/spheroids) receive adequate oxygenation that can
reach the spheroid core (Bells et al., 2016; Ahmed et al.,
2017). ECM incorporation of spheroid collagen fibrils (Tamai
et al., 2013), collagen microparticles (Ahmed et al., 2017),
encapsulations (Rebelo et al., 2015; Chan et al., 2016), and
bioprinting techniques (Kizawa et al., 2017) have reportedly
permitted greater oxygenation. The BA production increases
two-fold on day 4 from the prior day in PHHs (Kizawa
et al., 2017). Second, liver spheroids possess multiple canalicular
networks, yet they serve as a close system for bile fluids
collection. A micropatterned collagen gel can organize liver
aggregates in their spheroid formation while sustaining their
metabolic function. Notably, these spheroids have an enlarged
bile canaliculi site that is openly exposed to the culture medium,
enabling direct bile fluids collection. The bile canaliculus
accumulates a bile analog that is successfully recovered using
an oil injector. The quantity of recovered bile is 27× greater
than that of the sandwich culture (Matsui et al., 2012). Based
on this study, the presence of an outlet that feasibly extends
the canalicular network can realize the bile fluids collection
in vitro.

A dynamic culture liver model employing microfluidic
technology (Nakao et al., 2011; Zhou et al., 2015; Haque et al.,
2016; Wang et al., 2018) has drawn attention for bile canaliculi
and as a bile outlet establishment. A sinusoidal-like fluidic
chamber effectively aligns hepatocytes and controls the bile
canaliculi formation corresponding to the hepatic cord structure
(Nakao et al., 2011). Furthermore, the microfluidic platform
enhances the maturation of hiHeps organoids (Wang et al.,
2018). Although it has not been demonstrated, this system
can feasibly provide continuous bile fluids collected from the
chamber outlet.

Utilization of Inducing Agent for Bile
Secretion and Opening of Bile Canaliculus
Manipulating the gradient concentration in a culture medium
can facilitate the bile outlet from a canalicular network. A
gradient difference generated by Ca2+/Mg2+ stimulates the bile
canaliculi opening to release bile into the culture medium.
A well-established method is the B-Clear R© technology. This
technology has been broadly used to calculate bile excretion
and accumulation from hepatocyte sandwich cultures (Marion
et al., 2012; Fukuda et al., 2014; Bachour-El Azzi et al., 2015;
Ni et al., 2016; Yan et al., 2017). This method creates a Ca2+ or
Mg2+ concentration difference between the hepatocyte culture
and the culture medium, and the depletion disrupts the bile
canaliculi tight junction. It involves the utilization of Hank’s
balanced salt solution as a carrier buffer of Ca2+/Mg2+. A bile
fraction collected from the disrupted bile canaliculi is obtained
from the accumulation difference between buffer Ca2+/Mg2+

and buffer-free Ca2+/Mg2+, as presented by the biliary excretion
index (BEI). This method can also be used to assess the
basolateral and canalicular efflux of bile and the substance
of interest by measuring the mass difference in the absence
and presence of Ca2+/Mg2+ (Swift et al., 2010; Ying et al.,
2018). A long-term Ca2+/Mg2+ incubation may lead to cell
toxicity and irreversible bile canaliculi disruption. Postclearance
treatment using AMP-activated protein kinase activators (e.g.,
2-deoxyglucose, 5-aminoimidazole-4-carboxamide-1-b-riboside,
metformin, and forskolin) can induce hepatocyte tissue retention
while maintaining the bile canaliculi network (Ying et al.,
2018). This treatment increases the applicability of long-
term hepatocyte cultures with regular bile clearance. To
maximize bile secretion, bile inducers or chelates can be
utilized to alter bile production. Prostaglandin E2 (PGE2) is
a lipid inflammatory mediator that potentially enhances bile
production. The deficiency of PGE2 receptor subtype 3 (EP3) and
4 (EP4) downregulates the expression of CYP7A1, resulting in
inhibition of BA synthesis and hypercholesterolemia (Fu et al.,
2010; Brouwer et al., 2013).

The BEI determination appears to be the most convenient
approach to predicting bile secretion in vitro. Nonetheless,
this value depends on the amount associated with hepatocytes.
Furthermore, the adequacy of solutes concentration in the bile
canaliculi to draw water flow, which also acts as a driving force,
remains unclear. Under such conditions, drug concentrations
with or without bile canaliculi must be determined to
estimate the amount of bile solutes secreted into the
bile canaliculi.

Integration of Multiple Tissues for Bile
Transportation
In addition to the bile accumulation in canaliculi, multiple
liver tissues (e.g., bile duct) and other organs (e.g., intestine)
convey bile prior to their excretion from the body. These
tissues and organs are also responsible for the modification of
bile components, including the transformation of primary bile
into secondary bile by gut-resided microbiomes (Ridlon et al.,
2014; Quinn et al., 2020). The bile duct is a liver tissue that
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exclusively regulates the accumulation and transportation of
bile inside the liver, and it consists of intra- and extrahepatic
biliary ducts (Lemaigree, 2009; Boyer, 2013; Chiang, 2013;
Han et al., 2013; Matsui et al., 2018). The inclusion of a
bile duct in vitro not only demonstrates the hepatobiliary
interaction, but it also suggests bile recovery outlet from the
liver culture.

Hepatobiliary organoids established from liver progenitor
cells using multiple apparatuses [e.g., decellularized liver
scaffolds, U-bottom plates, and coated plates (Katsuda et al.,
2013; Vyas et al., 2018; Wu et al., 2019)] are promising
for physiologically collecting bile from hepatocytes. A study
demonstrated bile accumulation in the bile duct sac/cyst that
was situated in the organoid core (Katsuda et al., 2013).
Nonetheless, the location of the bile duct in this organoid
makes bile fluids collection difficult. The development of bile-
duct organization is potentially instrumental in resolving this
hindrance. Some studies have demonstrated that the bile duct
can be independently reconstructed in vitro. Microstructures and
scaffold gels are effective for spatially controlling biliary cells to
form functional bile-duct cysts (Miura et al., 2018; Rizki-Safitri
et al., 2018; Funfak et al., 2019) and tubes (Du et al., 2020) using
cells from rodents. These biliary structures express active bile
transporters under a rich-laminin ECM environment. Laminin is
essential for bile duct polarity and is thus frequently utilized for
bile-duct development from iPSCs (Tanimizu et al., 2007, 2012;
Kido et al., 2015; Sampaziotis et al., 2015). Attempts to integrate
hepatobiliary cultures have demonstrated the transportation of
bile conjugates from hepatocytes to the bile-duct structure. Liver
spheroids comprising hepatocytes, biliary cells, and fibroblasts
have had biliary cyst structures on their periphery. The structures
developed into duct-like structures that connected liver spheroids
while possibly transporting the bile conjugate (Hafiz et al., 2021).
A collagen culture insert has demonstrated the likelihood of
transporting bile conjugate from the hepatocyte to the bile-duct
structure (Rizki-Safitri et al., 2020). The referred study showed
the potential of separate autologous bile clearances suitable
for long-term toxicity testing. Although bile-duct inclusion is
promising for bile fluids collection in vitro, independent bile-
duct structures are unable when demonstrating hepatobiliary
bile fluids transportation. The bile-duct function has always
been associated with bile canaliculus in adjacent hepatocytes.
Furthermore, bile ducts in vitro remain immature. Thus, they are
unlikely to perform optimumbile fluids collection. The technique
for integrating hepatobiliary using membranes also diminishes
direct hepatobiliary contact, resulting in bile leakage.

A multitissue/organ culture that incorporates liver tissue with
other organs might simplify the recovery process. In addition to
the blood stream, the intestine is the subsequent organ where
bile is disembogued and experiences further modification (Boyer,
2013; Chiang, 2013). A microfluidic liver–intestine platform can
demonstrate relations between biological processes in the liver
and intestine, including processes related to bile production
and secretion (Maschmeyer et al., 2015; Chen et al., 2017;
Choe et al., 2017). This system allows the direct impact of

bile, particularly in demonstrating interorgan drug-dependence
studies. However, considering that the intestine displays two-
way interactions with the liver, these intestine–liver platforms
focus on drug absorption in the digestive tract instead of
vice versa. Additionally, an integrated platform that combines
organoids from six organs demonstrates the alteration of liver
metabolites using human-relevant dose drug dependence. This
system exhibits the activation of a prodrug into an active drug
that rarely occurs in the absence of liver organoids. Analyses
of the liver organoid metabolite displays the presence of 5-
fluorouracyl, which is a product of capecitabine metabolism by
the liver. 5-Fluorouracyl is highly toxic and destructive to heart
and lung organoids as downstream organs in a microfluidic
platform (Skardal et al., 2020). Little is known about the bile
composition and whether this metabolite is toxic specifically
toward the heart and lung or merely to adjacent tissues/organs.

CONCLUSION/OUTLOOK

Bile assays may offer numerous advantages to complement
standard in vitro liver function analyses. Recent studies have
shown that the liver-culture model enables in vitro bile
production and collection. In vitro bile fluids collection can
be potentially used as a supportive assay in the liver model.
It can also be used to understand drug effects and secretion
processes. The available bile fluids collection model exhibits
flexibility toward modulations and integration with technologies,
such as microfluidic devices. It allows an integrated liver tissue
that is promising for recreating multitissue organization, which
is advantageous for in vitro bile fluids collection and clearance.
We know that not all types of cells or technology are desirable
for bile analyses. Hence, the determination of appropriate culture
modulations will increase the efficiency and appositeness of in
vitro bile analyses. Altogether, complex liver tissue is substantial
in establishing a relevant in vitro liver applicable for broader
preclinical assays.
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