
Methods 65 (2014) 263–273
Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth
Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking,
ligation and sequencing of hybrids) data
1046-2023 � 2013 The Authors. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.ymeth.2013.10.015

⇑ Corresponding author.
E-mail address: gkudla@gmail.com (G. Kudla).

Open access under CC BY license.
Anthony J. Travis a,b, Jonathan Moody c, Aleksandra Helwak a, David Tollervey a, Grzegorz Kudla c,⇑
a Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
b Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
c MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 6 November 2013

Keywords:
CLASH
RNA–RNA interactions
Bioinformatics
High-throughput sequencing
Associations between proteins and RNA–RNA duplexes are important in post-transcriptional regulation
of gene expression. The CLASH (Cross-linking, Ligation and Sequencing of Hybrids) technique captures
RNA–RNA interactions by physically joining two RNA molecules associated with a protein complex into
a single chimeric RNA molecule. These events are relatively rare and considerable effort is needed to
detect a small number of chimeric sequences amongst millions of non-chimeric cDNA reads resulting
from a CLASH experiment. We present the ‘‘hyb’’ bioinformatics pipeline, which we developed to analyse
high-throughput cDNA sequencing data from CLASH experiments. Although primarily designed for use
with AGO CLASH data, hyb can also be used for the detection and annotation of chimeric reads in other
high-throughput sequencing datasets. We examined the sensitivity and specificity of chimera detection
in a test dataset using the BLAST, BLAST+, BLAT, pBLAT and Bowtie2 read alignment programs. We
obtained the most reliable results in the shortest time using a combination of preprocessing with Flexbar
and subsequent read-mapping using Bowtie2. The ‘‘hyb’’ software is distributed under the GNU GPL
(General Public License) and can be downloaded from https://github.com/gkudla/hyb.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
1. Introduction

RNA molecules are abundant in all living cells, but, like football
fans around the world, they never walk alone. Protein–RNA bind-
ing is essential for the biological function of most RNAs, and pro-
teins accompany RNAs throughout their life cycle, from synthesis
and processing to transport and degradation. Likewise, inter- or in-
tra-molecular RNA–RNA interactions are fundamental to many
processes including splicing, translation, and gene regulation. In
particular, post-transcriptional regulation of gene expression med-
iated by miRNA molecules that base-pair with their RNA targets
has been the focus of intense research efforts in recent years [1].
Other regulatory mechanisms that depend on RNA–RNA interac-
tions include silencing of transposons by piRNAs [2], Staufen-med-
iated decay of mRNAs [3], and gene regulation mediated by sRNAs
in bacteria [4].

The development of CLIP (Crosslinking and Immunoprecipita-
tion) [5,6] has allowed mapping of the RNA interactomes for a
variety of proteins. Several of these proteins form tripartite
protein–RNA–RNA complexes, and the profiling of protein–RNA
interactions can provide useful information about the correspond-
ing RNA–RNA pairing. For example, transcriptome-wide analysis of
AGO–RNA interactions in human and mouse cells has led to the
discovery of many putative miRNA binding sites, a number of
which could be confirmed experimentally [7–9]. Furthermore, re-
cent CLIP studies identified various noncanonical types of interac-
tion, such as the G-bulge sites that accounted for more than 15% of
all AGO–miRNA interactions in the mouse brain [10]. However, the
discovery of non-canonical interactions by CLIP is complicated by
the fact that the identity of interacting partners is not observed di-
rectly and needs to be inferred bioinformatically.

We have recently described CLASH (crosslinking, ligation and
sequencing of hybrids), a method for transcriptome-wide analysis
of RNA–RNA interactions [11,12]. CLASH relies on purification of
RNA–RNA duplexes bound to a protein of choice, ligation between
the two strands of RNA duplexes to form chimeric RNAs, reverse
transcription of these chimeric RNAs, high-throughput sequencing
of the resulting cDNAs, and bioinformatic analysis of the sequence
data to call and annotate chimeric reads. CLASH has many experi-
mental steps in common with the CLIP and CRAC methods, but it is
optimized for recovery of RNA–RNA duplexes. Here we describe
the bioinformatic methods we have developed to carry out the
analysis of sequencing data from CLASH experiments. We also

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2013.10.015&domain=pdf
https://github.com/gkudla/hyb
http://dx.doi.org/10.1016/j.ymeth.2013.10.015
mailto:gkudla@gmail.com
http://dx.doi.org/10.1016/j.ymeth.2013.10.015
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

264 A.J. Travis et al. / Methods 65 (2014) 263–273
present ‘‘hyb’’, a set of command line tools that implements our ap-
proach for Unix/Linux-based computer systems. A detailed exper-
imental protocol of CLASH will be published elsewhere (Helwak
and Tollervey, in preparation).

Whilst primarily designed for the analysis of AGO CLASH data,
our programs can also be used to identify chimeric reads in other
applications of CLASH, as well as for the analysis of CRAC, CLIP,
and RNA-Seq data. The precise interpretation of the chimeras will
depend on the dataset under consideration. For example, analysis
of chimeric reads in RNA-Seq experiments has recently been used
to identify a novel class of RNAs with regulatory potential, the cir-
cRNAs [13,14], and most of these circRNAs can be recovered by
hyb.
2. Overview of the method

In a CLASH experiment, interacting RNA molecules are partially
digested, ligated to each other at one end, ligated to 50 and 30 link-
ers, respectively at their other end, and then subjected to single-
end high-throughput sequencing. The resulting reads contain, in
the following order: part of the 50 linker, the cDNA insert, and part
or all of the 30 linker (Fig. 1a). Our bioinformatics pipeline begins by
preprocessing the reads: removing linker sequences, quality filter-
ing the data, and collapsing identical reads to speed up the compu-
tationally intensive downstream analyses (Fig. 1b).

After preprocessing, we use local alignment tools to map the
reads to a custom database of transcript sequences or to the geno-
mic sequence of the organism concerned. Reads with two non-con-
tiguous matches to the database are identified as chimeras,
whereas reads mapped contiguously are discarded. Mapping reads
to transcript sequences, rather than to the genome, makes it easier
to reject chimeric cDNAs generated by natural splicing events, be-
cause spliced cDNAs from mature mRNAs will generally be
mapped contiguously to known mRNA transcripts.

After the chimeras are called, we fold them computationally to
predict the exact pattern of basepairing between the interacting
RNA molecules. Although folding algorithms cannot accurately
predict the structures of long RNA molecules, they are nevertheless
reliable in predicting interactions between short fragments of RNA,
such as those identified by CLASH. We then use the folding predic-
tions to annotate and classify the RNA–RNA interactions recovered.
RNA-RNA ligation

ligation of 5’ and 3’
linkers

cDNA sequencing

protein

RNA1

RNA2

5’ linker 3’ linkerRNA1 RNA2

a

lis

Fig. 1. Schematic of CLASH experim
3. CLASH data analysis

3.1. Prerequisites
b

t o

en
(a)
sequ

f RNA

t and
cDNA sequencing data in FASTQ or FASTA format.

(b)
 DNA sequence of the 30 linker used.

(c)
 DNA sequences of 50 barcodes, if present.

(d)
 Database of relevant transcript sequences, or genomic

sequence. A human transcript sequence database is
included in our distribution. Transcript sequences can be
conveniently downloaded from the Ensembl Biomart or
from other specialist repositories such as mirBase or
genomic tRNA database.
(e)
 Computer with a Unix or Linux-based operating system
conforming to POSIX (Portable Operating System
Interface). The ‘‘hyb’’ pipeline was implemented under
Bio-Linux 7 (based on 64-Bit Ubuntu 12.04 LTS) [15].
(f)
 External dependencies. In addition to the internal
programs developed as part of hyb, external programs
are required to run the complete hyb pipeline. The
complete list of dependencies is shown in Table 1, and
the minimum requirements are: an adapter trimming
program (FASTX toolkit or flexbar) [16,17], a read aligner
(for example, bowtie2 or blast) [18,19], and an RNA
folding program (UNAFold hybrid-min, or vienna RNAup)
[20,21]. Many of these programs are pre-installed and
supported by Bio-Linux.
3.2. Preprocessing reads

3.2.1. Trimming of 50 adapter sequences
Depending on the experimental design, 50 linkers may contain a

variable-length barcode for sample multiplexing and a random
nucleotide prefix for monitoring of PCR amplification artefacts
(Fig. 2). We trim the 50 barcode allowing for 0 (default) or 1
nucleotide substitutions and no indels. Our program builds a
lookup table of all the 50 ends of reads compatible with the presence
of a barcode, and then it performs one sub-string extraction and no
string comparisons for each read. This allows us to process as many
as 13 million reads per minute on a single CPU core. The multiplex-
ing part of the 50 barcode is used to split the input FASTQ format file
calling chimeras

encing data

demultiplexing

quality filtering,
collapsing identical reads

basepairing prediction
(UNAFold)

adapter trimming
(Flexbar, fastx-clipper)

mapping to transcript sequences
(blast, blat, bowtie2)

Calling and annotation
of interactions

-RNA interactions

hyb analysis pipeline.

random
barcode cDNA insert

multiplexing
barcode

AAA ACT AAGATAAA
AAA ACT AAGATAAA
AAA ACT AAGATAAA
AAA CCA AAGATAAA
AAA TAG AAGATAAA
GGG GAT CCCTTTCC

AAA_comp.fasta:

GGG_comp.fasta:

>1-3_5
AAGATAAA

>1-1_1
CCCTTTCC

ACT AAGATAAA
ACT AAGATAAA
ACT AAGATAAA
CCA AAGATAAA
TAG AAGATAAA

GAT CCCTTTCC

file_AAA:

file_GGG:

Fig. 2. Processing of 50 barcodes. The multiplexing parts of barcodes are used to
split input data into appropriate files, whereas the random parts of barcodes are
used to monitor PCR amplification artefacts. The sequence identifiers (FASTA
headers) of collapsed reads are in the format ‘‘K-L_M’’, where K is the frequency rank
of the sequence in the input file, L is the number of unique random barcodes
associated with the sequence, and M is the number of times the sequence has been
found in the input file. When 50 barcodes are absent, the identifiers of collapsed
reads are in the format ‘‘K_M’’.

A.J. Travis et al. / Methods 65 (2014) 263–273 265
into separate files for each sample, but is then discarded. The ran-
dom part of the 50 barcode is appended to the sequence identifiers
in the FASTQ header of each read for future reference. This part of
analysis can be skipped if no 50 barcodes have been used. Typical
usage for demultiplexing as a separate step is:

hyb demultiplex in=data.fastq code=barcodes.txt

where:
in=file (or in=file.gz) contains FASTQ format reads; code=file con-

tains barcodes used to multiplex samples. "hyb" commands are nor-
mally entered on one line, but long commands can be continued
onto the next line using a ‘\’ escape character at the end of a line.
The escape characters are omitted from the printed examples.

3.2.2. Trimming of 30 adapter sequences and quality filtering of reads
In a typical CLASH library, many of the recovered RNA frag-

ments are shorter than the read length, resulting in part or all of
the 30 linker sequence to be included in the reads. Accurate 30 lin-
ker removal is important to prevent mapping errors, but overly
permissive criteria for linker recognition may result in the loss of
Table 1
External dependencies of the hyb pipeline.

Package name Reference URL

FASTX Toolkit [30] http://hannonlab.cshl

Flexbar [17] http://sourceforge.net
FastQC [16] http://www.bioinform
BLAST [19] http://www.ncbi.nlm.

BLAT [31] http://users.soe.ucsc.e
PBLAT [32] http://code.google.com
Bowtie2 [18] http://bowtie-bio.sou
Unafold [20] http://mfold.rna.alban
Vienna [21] http://www.tbi.univie
bona fide genomic sequences. We have tested two linker trimming
programs, flexbar and fastx-clipper, and we adopted flexbar as de-
fault. Following 30 linker trimming, we filter the reads by insert
length and by nucleotide qualities. The ‘‘preprocess’’ task runs this
part of the analysis:

hyb preprocess qc=flexbar trim=30 len=17

in=data.fastq

where:
qc=flexbar selects Flexbar preprocessing; trim=30 trims reads from
3’ end to Phred Qual=30; len=17 specifies minimum read-length 17.

3.2.3. Removal of PCR duplicates
The complexity of CLASH libraries typically ranges from a few

hundred thousand to a few million cDNA molecules [11]. Following
cDNA synthesis, the libraries are amplified by PCR and then se-
quenced, often yielding tens or hundreds of millions of reads. If
the number of reads is larger than library complexity, many cDNA
molecules will be sequenced multiple times. To remove potential
PCR duplicates and speed up downstream analysis, we collapse
identical reads while retaining information about the numbers of
reads collapsed. Numbers of collapsed reads are appended to the
sequence identifiers (Fig. 2). The random barcode prefixes are used
to distinguish artificial PCR duplicates from mRNA fragments nat-
urally present in the library in multiple copies. Counts of these ran-
dom barcodes, if present, are also encoded in sequence identifiers
of collapsed reads (Fig. 2). The reads are collapsed as part of the
‘‘preprocess’’ task described above. The ‘‘check’’ task uses the pre-
processing results to analyse length distributions of uncollapsed
and collapsed reads:

hyb check in=data.fastq
3.3. Mapping reads and calling chimeras

3.3.1. Mapping of reads
In the previously published analyses, we used the blastall

program to find high-scoring local matches between the reads
and a database of transcript sequences [11,12]. In hyb, we imple-
mented additional options for mapping reads using blastn (the
C++ based distribution of blast), blat, pblat (parallel blat), and
bowtie2. By default, hyb uses bowtie2 with the –local option to
map reads against a precompiled database of human transcript
sequences, included in the distribution. To create mapping dat-
abases based on a custom FASTA file, the following command
may be used:

make_hyb_db genome.fasta

The default location of the reference database is specified by the
HYB_DB environment variable, as described in Section 3.7. Reads
can be mapped to transcriptome or genomic databases, but
Programs used

.edu/fastx_toolkit/ Fastq_quality_trimmer
Fastq_quality_filter
Fastx_clipper

/projects/flexbar/ Flexbar
atics.babraham.ac.uk/projects/fastqc/ Fastqc

nih.gov/guide/data-software/ Blastall (legacy BLAST)
Blastn (BLAST+)

du/~kent/src/blatSrc35.zip Blat
/p/pblat/ Pblat

rceforge.net/bowtie2/ Bowtie2
y.edu/ Hybrid-min
.ac.at/~ronny/RNA/RNAup.html RNAup

http://hannonlab.cshl.edu/fastx_toolkit/
http://sourceforge.net/projects/flexbar/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/guide/data-software/
http://users.soe.ucsc.edu/~kent/src/blatSrc35.zip
http://code.google.com/p/pblat/
http://bowtie-bio.sourceforge.net/bowtie2/
http://mfold.rna.albany.edu/
http://www.tbi.univie.ac.at/~ronny/RNA/RNAup.html

Table 2
Default settings used for read alignment.

Program Command line arguments

Blastall -p blastn -W 11 -e 0.1 -m 8
Blastn -Evalue 0.1 -num_threads 16 -word_size 11 -outfmt 6
Blat -Stepsize = 5 -tileSize = 11 -minScore = 15 -out = blast8
Pblat -Stepsize = 5 -tileSize = 11 -minScore = 15 -out = blast8
Bowtie2 -D 20 -R 3 -N 0 -L 16 -k 20 –local -i S,1,0.50 –score-min L,18,0 –ma

1 –np 0 –mp 2,2 –rdg 5,1 –rfg 5,1

266 A.J. Travis et al. / Methods 65 (2014) 263–273
mapping to the genome yields a large background of chimeric
reads formed by splicing, which need to be distinguished from chi-
meras formed by RNA–RNA ligations during the CLASH procedure.
By default, hyb assumes that reads are mapped against a transcript
database, and it rejects reads mapped in the antisense orientation.
To accept antisense reads when mapping to a genomic sequence
database, the ‘‘anti=1’’ option has to be set on the command line.
The default sets of mapping parameters are listed in Table 2. The
‘‘detect’’ task performs the mapping and the chimera calling de-
scribed below:

hyb detect align=bowtie2 in=data.fastq db=hOH7

where:
align=bowtie2 sets the read aligner to bowtie2; db=hOH7 selects
the hOH7 Bowtie2 database.

3.3.2. Identifying candidate chimeric reads
To call chimeras, we examine local matches between each read

and the reference database, starting with the highest-scoring hits.
We record the top-scoring match, all matches with the same map-
ping score as the top match, and all matches for which the gap or
overlap with the previously matched area of the read is at most 4
nucleotides (default). We then identify as candidate chimeras all
pairs of recorded matches with at most 4 nucleotides gap or over-
lap. This procedure rejects any reads with a contiguous full-length
match to the database, since the overlap criterion would not be
met for such reads. Short gaps or overlaps are allowed: gaps can
represent post-transcriptional modification of one of the interac-
tion partners (e.g., oligoadenylation), whereas overlaps frequently
occur if one or more nucleotides in the middle of the read can be
mapped to either chimeric fragment. We found that the small
ambiguity in ligation sites identified, which results from such over-
laps, is well tolerated and does not influence downstream analysis.

3.3.3. Calling chimeric reads
The procedure above yields a list of all chimera calls compatible

with the read sequence. To uniquely call each chimera, we apply a
series of filters and selection criteria to this list. We select the best
chimera call in the list, by considering, in turn, (1) the sum of the
mapping scores of both fragments of the chimera; (2) optionally,
the classes of transcripts to which the read was mapped (to prior-
itize miRNA–mRNA calls in the case of AGO-mediated interac-
tions), and (3) the total number of reads mapped to each of the
transcripts that form the chimera. Mapping reads to a transcript
database sometimes results in ambiguous assignment to several
transcripts, usually originating from the same locus. To resolve
the ambiguity, we rank transcripts by the total number of mapped
reads, to create an alignment reference file. We then use this refer-
ence to assign ambiguous reads to the transcript with the largest
number of mapped reads. To generate consistent chimera calls
across a set of related experiments, we rank transcripts according
to the total number of reads across all experiments, using a com-
mon alignment reference file. The following command line illus-
trates the available options for identifying chimera candidates
and calling chimeras:
hyb detect type=all pref=none hval=0.1 hmax=10

gmax=4 in=data.fastq db=hOH7

where:
type=all sets the search for chimeras in all classes of transcripts;
pref=none do not prioritize miRNA–mRNA (mim) hybrids;
hval=0.1 sets threshold e-value for hybrid fragments; hmax=10
sets maximum number of mapped locations of hybrid bits;
gmax=4 sets maximum length of gap/overlap between hybrid bits.

For a test input file with 31 million reads (9 million unique
reads), including >400,000 chimeras, the chimera-calling part of
the analysis takes approximately 12 min on a single CPU core,
and it uses 45 MB of memory, when run with default parameters.

3.3.4. Bioinformatic extension of chimeric reads
At the last stage of chimera calling, for miRNA-target chimeras,

we optionally extend the miRNA fragment to cover the entire miR-
NA sequence retrieved from our custom database, and we extend
target coordinates by 25 nucleotides to make sure that the entire
interaction site is included within the called region. This type of
adjustment improves chimera calls for sequencing reads that do
not cover the entire length of the chimeric cDNA. The same adjust-
ment was used in the original AGO1 CLASH study [11].

hyb detect type=mim pref=mim in=data.fastq db=hOH7

where: type=mim sets the search for miRNA–mRNA (mim) hybrids
and bioinformatically extend miRNA and mRNA fragments; pre-
f=mim prioritize miRNA-mRNA (mim) hybrids.

Finally, all chimeras are written to a ‘‘.hyb’’ file, our gff-related
format that contains sequence identifiers, read sequences, 1-based
mapping coordinates, and annotation information for each chimera
(Table 3).

3.4. In silico folding and merging of chimeras

We use the mapped coordinates of chimeras to extract the cor-
responding transcript or genomic sequences, and we use these se-
quences for RNA folding analysis. We fold transcript sequences
extracted from a database, rather than read sequences, because
reads may contain crosslinking-induced substitutions and dele-
tions [22–24], which are not relevant for in vivo folding of RNA.

We use UNAFold hybrid-min with default parameters to fold
RNA, and we convert the hybrid-min outputs to the commonly used
dot-bracket notation, as defined in the Vienna RNA package. Option-
ally, the RNAup program from the Vienna package can be used for
chimera folding. The dot-bracket file is then annotated with RNA se-
quences and coordinates to facilitate subsequent analysis.

Overlapping chimeras are then merged, similar to the bedtools
merge operation [25], except that an overlap between both frag-
ments of the two chimeras is required for merging the chimeras.
This results in a list of RNA–RNA interactions, each annotated with
the number of supporting chimeric reads, identifiers of supporting
reads, and average folding energy. The ‘‘analyse’’ task runs this part
of the analysis:

hyb analyse fold=UNAfold in=data.fastq db=hOH7

where:
fold=UNAfold sets hybrid-min as the RNA folding program.

3.5. Running the entire analysis as a single command

Each of the example ‘‘hyb’’ commands above can be executed
separately or as one command-line for a single sample. For exam-
ple the following command runs the entire analysis for a non-mul-
tiplexed dataset:

Table 3
Example .hyb dataset.

44480_39 TGAGGTAG... �12.1 let-7b 1 22 1 22 2e-04 ACTB 22 44 1614 1636 4e-05
72356_23 TGAGGTAG... �21.2 let-7a 1 22 1 22 2e-04 CCNB2 23 49 399 425 2e-07
77750_22 ACTCTGTC... �21.2 EIF2C1 1 27 1882 1908 2e-07 let-7a 28 49 1 22 2e-04
160269_10 TCCAACCT... �18.7 EIF2C1 1 20 1888 1907 0.003 let-7a 21 42 1 22 2e-04
175997_9 TGAGGTAG... �23 let-7b 1 22 1 22 3e-04 BAZ1B 23 60 916 953 8e-14
176006_9 TGAGGTAG... �16.8 let-7a 1 22 1 22 2e-04 WIPI2 21 47 2704 2730 2e-07
180999_9 GTGAGGTA... �12.1 let-7a 2 21 1 20 0.003 ZNF629 22 47 3264 3289 8e-07
193821_9 AATTCCCC... �14.2 ARPP19 1 26 4702 4727 8e-07 let-7b 27 48 1 22 2e-04
199610_8 TCTGTCCA... �21.2 EIF2C1 1 24 1884 1907 1e-05 let-7a 25 46 1 22 2e-04
211629_8 CTCTGTCC... �21.2 EIF2C1 1 25 1883 1907 3e-06 let-7a 26 47 1 22 2e-04
220663_8 AGCCACCA... �16 BAG4 1 41 546 586 1e-15 let-7b 42 63 1 22 3e-04
220664_8 AGCCACCA... �17.8 NME4 1 29 724 752 1e-08 let-7b 30 51 1 22 2e-04
221833_8 ACTCTGTC... �21.2 EIF2C1 1 26 1882 1907 8e-07 let-7a 27 48 1 22 2e-04
224142_8 AATCCACA... �17.6 IPO7 1 26 2519 2544 8e-07 let-7b 27 48 1 22 2e-04
226595_8 AAACCAGA... �18.3 SNUPN 1 21 663 683 7e-04 let-7c 22 43 1 22 2e-04
228636_7 TTCCAATA... �16 LTA4H 1 28 655 682 6e-08 let-7a 29 50 1 22 2e-04
231753_7 TGAGGTAG... �22.2 let-7b 1 22 1 22 2e-04 TSPAN3 23 49 1175 1201 2e-07
231779_7 TGAGGTAG... �18.9 let-7e 1 22 1 22 2e-04 NCBP1 22 48 1657 1683 2e-07
231783_7 TGAGGTAG... �21.6 let-7e 1 22 1 22 2e-04 RPL27A 20 40 1334 1354 7e-04
236865_7 TCCAACCT... �18.7 EIF2C1 1 21 1888 1908 7e-04 let-7a 22 43 1 22 2e-04

Column 1, unique sequence identifier.
Column 2, read sequence (truncated here for clarity).
Column 3, predicted binding energy in kcal/mol.
Columns 4–9, mapping information for first fragment of read: name of matched transcript, coordinates in read, coordinates in transcript, mapping score.
Columns 10–15, mapping information for second fragment of read.
Column 16 (optional, not shown here), list of annotations in the format: ‘‘feature1=value1; feature2=value2;..."

A.J. Travis et al. / Methods 65 (2014) 263–273 267
hyb preprocess qc=flexbar trim=30 len=17 min=4 check

detect align=bowtie2 word=11 analyse fold=UNAfold

in=data.fastq db=hOH7 id=bow_flex_UNA

Hyb evaluates at runtime which tasks need to be performed for
a given analysis, and it uses default parameter values where
needed. The same analysis as above can be run using the minimal
command line below:

hyb analyse in=data.fastq db=hOH7

It is possible to run the entire ‘‘hyb’’ pipeline on a multiplexed
sample file using the barcode file to identify each sample, as
follows:

hyb demultiplex code=barcodes.txt preprocess

qc=flexbar trim=30 len=17 min=4 check detect

align=bowtie2 word=11 analyse fold=UNAfold

in=data.fastq db=hOH7

It is also possible to reuse the mapping data from a previous run
of hyb, and run only the chimera calling part of the pipeline:

hyb analyse in=data_comp_hOH7.blast format=blast

align=none id=new
3.6. Further analysis of chimeras

The main outputs of hyb are: a file with coordinates of all the
chimeras (‘‘.hyb’’), a file with the folding analysis of chimeras
(‘‘.viennad’’), and a number of intermediate files that can be used
when re-running parts of the pipeline with varying parameters,
and for troubleshooting. Output file formats are described in the
hyb documentation. The output files can be used to further analyse
the patterns of RNA–RNA interactions. For example, in a previous
study, we have used information from the ‘‘viennad’’ files for clus-
tering of miRNA–mRNA interactions, and the information from the
‘‘hyb’’ files to analyse the sequence motifs found in the targets of
particular miRNAs [11].

To facilitate downstream analyses, we provide several stand-
alone scripts: hyb_merge for clustering chimeras, hyb2gff for con-
verting a ‘‘hyb’’ file to the commonly used ‘‘gff’’ format (splitting
each chimera into two entries), and enst2genome for converting
from transcript to genomic coordinates. We refer the reader to
the hyb documentation for additional information about these
scripts.

3.7. Configuring environment variables

The execution of hyb can be configured using ‘environment’
variables in the Unix/Linux interactive command-line ‘shell’ (e.g.,
‘‘bash’’) used to invoke the program. By default, hyb sets the envi-
ronment variables internally, relative to the directory ‘‘HYB_-
HOME’’ where hyb has been installed. For example, the default
location for hyb data files is ‘‘HYB_DATA’’ and the directory con-
taining all the alignment databases is ‘‘HYB_DATA/db’’. If a user
prefers to use their own database ‘‘my_db’’ in their own folder
‘‘my_db_dir’’, they can override the defaults using e.g.:

HYB_DB=~/my_db_dir hyb in=reads.txt db=my_db

id=my_analysis analyse

In this case, the ‘‘HYB_DB’’ variable is only set for a single hyb
run as specified on the command-line. The environment variable
can also be ‘exported’ to the shell environment for all hyb runs
done during the same login session using e.g.:

export HYB_DB=~/my_db_dir

hyb in=reads.txt db=my_db id=my_analysis analyse

Alternatively, the hyb environment variables can be set auto-
matically by adding the ‘export’ statements to a start-up file that
is read at by the shell at login (e.g., .profile when using ‘‘bash’’ un-
der Bio-Linux). A full list of the environment variables is available
in the hyb documentation and can be obtained after installing hyb
using the Linux ‘‘man’’ command:

man hyb
3.8. Implementation

Hyb is implemented as an executable ‘Makefile’ that orchestrates
the execution of a number of internal and external programs such as

Fig. 3. Benchmarking of preprocessing and mapping parameters. Numbers of miRNA–mRNA chimeras recovered from the E6 test dataset (from Ref. [11]) as a function of
preprocessing and mapping parameters. The following parameters were explored: the choice of adapter trimming program (flexbar or fastx-clipper), the choice of mapping
program (blastall, blastn, blat, pblat, bowtie2), the base quality threshold (0, 10, 20, or 30), and linker length threshold (4, or 0 which indicates no linker trimming).

268 A.J. Travis et al. / Methods 65 (2014) 263–273
the read aligners and RNA folding software. Internal scripts are writ-
ten in Perl, Python and Awk. Although designed for managing the
compilation of computer software from large and complicated
source-code contained in many different files, GNU make is
well-suited to the requirements of bioinformatics analysis, which
involves the manipulation of large text files and their transforma-
tion into other formats. Many bioinformaticians are familiar with
software development and routinely use Makefiles, which capture

Fig. 4. Effects of preprocessing and mapping parameters on analysis times. Data and parameter choices as in Fig. 3.

A.J. Travis et al. / Methods 65 (2014) 263–273 269
the provenance of their analysis. Makefiles consist of goals (or tasks)
and rules about how to create one file from another according to its
dependencies or prerequisites. The hyb pipeline was developed as a
Makefile and could be invoked using the GNU ‘‘make’’ command:

make -f hyb

To create an executable Makefile, the following line was used as
the first line in a plain-text file:
#!/usr/bin/make -rRf

This invokes make with no built-in rules (-r) or built-in vari-
ables (-R) on the current script file (-f). The rest of the script is a
conventional Makefile, but it is not necessary to invoke make
explicitly on the command-line to run it. Although a minor change
from the way that Makefiles are conventionally used, this makes
hyb considerably more flexible and easier to parameterise.

 500

 1000

 1500

 2000

 2500

-30 -25 -20 -15 -10 -5 0

blastall
blastn
blat
bowtie2

0 5000 10000 15000

bowtie2

blat

blastn

blastall

canonical seed
noncanonical seed
9nt stem
other binding

dG (kcal/mol)

nu
m

be
r o

f c
hi

m
er

as

number of chimeras

a b

c d

0.0

0.5

1.0

1 2 3 4

fra
ct

io
n

of
 c

hi
m

er
as

number of mapping programs

Fig. 5. Characteristics of chimeras recovered as a function of the mapping program used. (a) Distribution of folding energies of miRNA–mRNA chimeras identified with
blastall, blastn, blat, and bowtie2. (b) Types of RNA–RNA interactions recovered with each mapping program. (c) Numbers of chimeras recovered with different combinations
of mapping programs, analysed with VENNY [29]. A total of 12762 interactions are found with all four mapping programs, whereas 21537 interactions are found with at least
one of the programs. (d) Fractions of chimeras recovered with one or more, two or more, three or more, and four mapping programs, respectively. Analyses were performed
on dataset E4 (Ref. [11]), with the following parameters: trim = 0 filt = 0 min = 4 len = 17.

270 A.J. Travis et al. / Methods 65 (2014) 263–273
Make has been used in other bioinformatics pipelines. For
example, the ‘‘PredictProtein’’ server [26] invokes Make program-
matically by a Perl driver script to process jobs submitted via a
web GUI interface. This is done primarily because make is able to
utilise the available server resources efficiently by evaluating a
dependency graph according to rules specified in the Make pro-
gramming language and running any independent tasks it identi-
fies concurrently. In addition, Make will minimise the amount of
unnecessary work by tracking the time and date stamps of depen-
dencies. This has been used to great effect in the parallel short-read
assembler ‘‘ABySS’’ [27]. The ABySS paired-end assembler is, in
fact, and executable Makefile.
4. Parameter optimization

4.1. General considerations

We used the published AGO1 CLASH data [11], available on GEO
as GSE50452, to benchmark hyb and establish parameter sets that
maximize the total number of interactions recovered, minimize
recovery of false positive miRNA–mRNA interactions, and reduce
the overall time of analysis. In the context of our analysis, false
positives might arise both from calling of non-chimeric reads as
chimeric, and from the recovery of chimeric reads that do not
represent RNA–RNA interactions. The latter could result, for
example, from splicing, trans-splicing, reverse transcriptase tem-
plate switching, or chromosomal rearrangements. Because it was
difficult to obtain a representative dataset of true positive interac-
tions, we adopted a computational approach to distinguish true
from false positives. Specifically, we assume that true positive
miRNA–mRNA interactions can be distinguished from false posi-
tives by the following characteristics:
(1)
 Average predicted folding energy of chimeras (stronger
folding expected in true positives);
(2)
 Fraction of miRNA–mRNA chimeras with seed match
between miRNA and mRNA (larger fraction expected in
true positives).
(3)
 Fraction of chimeras with no gap or overlap between the
two fragments (larger fraction expected in true
positives).
(4)
 Upregulation of the target mRNA following experimental
depletion of the corresponding miRNA.
4.2. Recovery of simulated fusion and nonfusion reads

We constructed an in silico microRNA–mRNA fusion dataset to
evaluate the performance of hyb. 10,000 30-nucleotide segments
of mature mRNAs were extracted from Refseq and concatenated
with mature microRNA sequences from miRBase. 84–91% of chi-
meras were recovered by hyb using default parameters depending
on the aligner used. Blastn recovered the fewest, and pblat the
most chimeras. Most reads not recovered were seen to align to
more than 10 entries so were excluded by hyb; this is due to multi-
ple transcripts for some genes being present in the database. Addi-
tionally, several mRNA fragments had sequences flanking the
breakpoint which matched the end of the microRNA they were
concatenated to, giving the alignments a larger overlap than al-
lowed by hyb with default settings.

nu
m

be
r o

f c
hi

m
er

as

0

8k

16k

fo
ld

in
g

en
er

gy
 (-

dG
)

19.2

18.8

20.0

19.6

24.5

25.5

26.5

se
ed

 in
te

ra
ct

io
ns

 (%
)

ga
pl

es
s

in
te

ra
ct

io
ns

 (%
)

57

50

100

64

ta
rg

et
 u

pr
eg

ul
at

io
n

2.8

2.4

3.2

de
fa

ul
t 0 2 4 6 8 10 25 50

0.
01 0.
1 1

pr
ef

=n
on

e
sh

uf
fle

d
re

f

gmax hvalhmax

Fig. 6. Benchmarking of chimera-calling options. Dataset E4 was analysed with
default parameter values, except for the indicated options, which were individually
changed. The resulting chimera counts and quality parameters are reported. The
percent log2 transcript enrichment values used in the bottom panel are from [8].

A.J. Travis et al. / Methods 65 (2014) 263–273 271
Conversely, when 50-nucleotide segments of mature mRNAs
from Refseq were analysed, no chimeras were called. This was ex-
pected, since the 50-nucleotide segments are mapped contiguously
to mRNA sequences in the database.

4.3. Optimization of preprocessing parameters

We first aimed to establish optimal parameters for read prepro-
cessing by comparing two read trimming programs (fastx-clipper
and flexbar), with a range of 30 adapter (linker) length and base
quality thresholds. Flexbar with a 4-nucleotide linker length cutoff
and base quality cutoffs between 0 and 30 gave reliable results.
Fewer chimeras were recovered using fastx-clipper with low linker
length cutoffs (Fig. 3), probably because transcript sequences were
mis-identified as linkers and truncated. Conversely, up to ten per-
cent more chimeras were found when the linker removal step was
omitted. However, such excess chimeras were typically incorrect,
as evidenced by their significantly weaker predicted folding (not
shown), and by the fact that mapped regions of such chimeras
frequently extended into the linker. Incorrect chimeras were also
observed when the linker removal criteria were too stringent.
Trimming reads to remove low-quality bases at the end reduced
the numbers of chimeras by a few percent, but it did not increase
the mean folding energy of chimeras detected.

4.4. Optimization of mapping parameters

The choice of the mapping program had a large effect on the
time of analysis (Fig. 4). For a test dataset of �34 million reads,
including�100 thousand chimeras, total hyb analysis times ranged
from less than one hour to 15 h in wall-clock time. Bowtie2 was
the fastest mapping program, followed by pblat, whereas blastn
and blastall were slowest. However, blastn and blastall each recov-
ered 5–10% more chimeras than bowtie2. To check whether the
choice of mapping program affected the reliability of chimeras,
we performed more detailed analyses of the chimeras recovered
with each program. The distributions of folding energies and
counts of seed-mediated interactions were similar for all programs
tested (Fig. 5a, b). All the programs identified similar sets of chime-
ras, and the majority of chimeras were identified by each of the
mapping programs (Fig. 5c, d). When compared to the other read
aligners, blat yielded slightly more chimeras with no gap or over-
lap between the two fragments, suggesting that it may be the
method of choice when precise identification of ligation sites is re-
quired (not shown).

We also tested how the choice of mapping program influenced
the degree to which the targets recovered for individual miRNAs
are upregulated upon miRNA inhibition. We used two miRNA inhi-
bition datasets: one with simultaneous depletion of 25 miRNAs [8]
and one with depletion of miR-92a [11]. In each of the miRNA inhi-
bition datasets, targets recovered by bowtie2 appeared to be most
strongly upregulated, albeit the difference with the other programs
is not statistically significant. However, cutoff e-value has an effect
in this test (see below).

4.5. Optimization of chimera calling parameters

We tested the impact of chimera calling options on the number
and reliability of interactions recovered. Reliability was estimated
from average folding energy, proportion of seed interactions, pro-
portion of chimeras in which both fragments were directly adja-
cent in the read, and the extent of target upregulation upon
mRNA depletion. Of all the parameters examined, the chimera e-
value threshold (hval) had the largest effect (Fig. 6). Chimeras
recovered with hval < 0.01 scored consistently higher than chime-
ras recovered with lower stringency. However, the number of chi-
meras recovered was lower by 20% with hval = 0.01, as compared
to hval = 0.1. The optimum allowed gap or overlap between chi-
mera fragments (gmax) appeared to be between 2 and 4. Lower
or higher values tended to decrease the number of chimeras or de-
crease their reliability. Surprisingly, a cutoff of gmax = 0 also re-
sulted in a lower fraction of seed interactions and lower
upregulation of inferred targets. Disabling the mRNA–miRNA chi-
mera preference decreased the number of called chimeras by 6%,
but it did not consistently improve chimera quality. Disabling the
preference of abundantly recovered transcripts (Section 3.3.3)
had no effect on the number or quality of chimeras.

4.6. Influence of read and insert lengths

Applying hyb to the data from Helwak et al. [11], we noticed
that the same cDNA library (E4) yields a much larger fraction of
chimeras when sequenced with 100 nucleotide-long reads than
with 55-nt reads. This prompted us to examine the effect of RNA
insert length on the recovery of chimeras. As expected, very few

1

10

102

103

104

105

106

25 30 35 40 45 50 55 60 65 70 75 80 85 90

reads
chimeras

read length (nt)

nu
m

be
r o

f r
ea

ds

Fig. 7. Numbers of chimeric and non-chimeric reads as a function of read length. Dataset E4 was analysed with default parameters.

-30 -25 -20 -15 -10 -5 0

hyb
tophat
shuffled

dG (kcal/mol)

nu
m

be
r o

f c
hi

m
er

as

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Fig. 8. Comparison of hyb and tophat fusion. Distribution of folding energies of
miRNA–mRNA chimeras recovered with hyb, tophat fusion, and in randomly re-
associated miRNA–mRNA pairs from the tophat fusion analysis.

272 A.J. Travis et al. / Methods 65 (2014) 263–273
chimeras can be found in cDNAs of 35 nt or shorter, and the frac-
tion of chimeras increases to more than ten percent when inserts
of 80 nt or longer are considered (Fig. 7). The fraction of miRNA–
mRNA chimeras among all reads also increases steadily with RNA
insert length. We therefore recommend using 40 nt as minimum
RNA insert length and 75 nt as the minimum read length in CLASH
experiments.
4.7. Mapping chimeras with TopHat2 fusion

We compared hyb with the TopHat2 fusion-search algorithm,
the most widely used tool for detecting fusion transcripts due to
chromosomal rearrangements [28]. TopHat2’s fusion-search utilis-
es Bowtie2, first storing initially unmapped reads which cannot be
aligned to the genome end-to-end. These reads are cut into seg-
ments (default 25 bp), and individually aligned to the genome
end-to-end. Reads with segments mapping to separate chromo-
somes, or further than 100 kb apart on the same chromosome
are used to find the exact fusion point and create ‘spliced fusion
contigs’. The initially unmapped reads are then re-aligned to these
spliced fusion contigs with fusions being called if at least one align-
ment is spanning the read. We applied TopHat2 fusion-search to
the E4 dataset from Helwak et al. [11] using segment lengths of
20 bp aligning to the human genome hg19. This identified 8231
microRNA–mRNA hybrids, in silico folding of which found the
mean folding energy to be �10.3 kcal/mol, as compared with
�8.7 kcal/mol with the miRNA–mRNA pairs were randomly re-
associated (shuffled). By contrast, the mean folding energy of chi-
meras recovered with hyb was much lower: �18.2 kcal/mol from
13,493 hybrids (Fig. 8). This suggests that Tophat2 fusion identifies
many chimeras that do not originate from RNA–RNA interactions.
We hypothesize that many microRNA-containing reads are not
aligned when Tophat2 cuts reads to fixed length segments fol-
lowed by end-to-end mapping.

5. Application of hyb to CRAC, CLIP and RNA-Seq data

Chimeric reads corresponding to bona fide RNA–RNA interac-
tions have previously been found in sequencing data generated
by CRAC [12]. Although CRAC was not explicitly designed to ligate
RNA–RNA hybrids and generate chimeras, we believe that chimeric
RNAs are formed fortuitously during the 30 linker addition step.
This raises the question whether CLIP-Seq datasets might also con-
tain chimeras indicative of RNA–RNA interaction. We have exam-
ined four AGO CLIP-Seq datasets [7–9,13], and found very few
examples of microRNA–mRNA chimeras. There are several possible
explanations why almost no chimeric reads are found in the CLIP-
Seq data we analysed. First, reads used in each of the CLIP datasets
are only 32–39 nt in length, which might preclude the identifica-
tion of chimeras. Second, some CLIP protocols include polyacryl-
amide gel purification of AGO–RNA complexes before linker
ligation. Non-crosslinked RNAs will most likely be lost during elec-
trophoresis, transfer to nitrocellulose membrane, or proteinase K
treatment of the membrane. Any of these events would result in
the loss of RNA–RNA duplexes before chimeras can be formed. By
contrast, in CRAC and CLASH protocols ligation precedes electro-
phoresis, making it possible to recover RNA–RNA duplexes as chi-
meric sequences.

In principle, hyb can also be applied to RNA-Seq data, and our
initial analyses recovered significant numbers of chimeric se-
quences in RNA-Seq datasets. To assess the biological significance
of such chimeras, we applied hyb to RNA-Seq data from HEK293
cells, used previously to discover circular RNAs [13]. Memczak
et al. used an algorithm which identified head-to-tail (acceptor site
followed by donor site) splice junctions by taking 20 bp from the
termini of unaligned reads to map independently and screen for
unique mappings which could be extended to cover the read with
the breakpoint flanked by canonical splice sites. We applied hyb
with alignment by blastall to reads annotated by Memczak et al.
as covering 239 head-to-tail splice junctions. Aligning to the gen-
ome we identified 190 of these circular RNAs at the same location
as Memczak et al. However, in aligning to our transcriptome data-
base we identified reads corresponding to 32 circular RNAs which
aligned to a transcript variant along at least 65-nucleotides of the
80-nucleotide read, such that the remaining read fragment could
not be uniquely mapped. This suggests that some of the 239 candi-
date circular RNAs were variants of alternative splicing. Of the 26
circRNAs not identified as hybrid reads or seen with alignments
across >65 nt, 5 were excluded due to gaps of >4 nucleotides

A.J. Travis et al. / Methods 65 (2014) 263–273 273
between the alignments and the remaining 21 had better scoring
individual alignments than each of those which would form a hy-
brid, and are therefore not called by hyb. We conclude that hyb can
be used to reliably identify chimeric reads in CLASH, as well as in
other next-generation sequencing datasets.

Acknowledgments

A.J.T. was supported by the BBSRC Grant BB/J001279/1 awarded
to D.T. and Amy Buck. J.M. and G.K. were supported by the Well-
come Trust Grant 097383 to G.K., and A.H. and D.T. were supported
by the Wellcome Trust Grant 077248 to D.T. Research in the Kudla
lab is supported by the MRC. The authors gratefully acknowledge
discussions with Sander Granneman and Amy Buck.

References

[1] W. Filipowicz, S.N. Bhattacharyya, N. Sonenberg, Nat. Rev. Genet. 9 (2008)
102–114.

[2] A.A. Aravin, G.J. Hannon, J. Brennecke, Science 318 (2007) 761–764.
[3] C. Gong, L.E. Maquat, Nature 470 (2011) 284–288.
[4] H. Aiba, Curr. Opin. Microbiol. 10 (2007) 134–139.
[5] D.D. Licatalosi, A. Mele, J.J. Fak, J. Ule, M. Kayikci, S.W. Chi, T.A. Clark, A.C.

Schweitzer, J.E. Blume, X. Wang, J.C. Darnell, R.B. Darnell, Nature 456 (2008)
464–469.

[6] J. Ule, K.B. Jensen, M. Ruggiu, A. Mele, A. Ule, R.B. Darnell, Science 302 (2003)
1212–1215.

[7] S.W. Chi, J.B. Zang, A. Mele, R.B. Darnell, Nature 460 (2009) 479–486.
[8] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A.

Rothballer, M. Ascano Jr., A.C. Jungkamp, M. Munschauer, A. Ulrich, G.S.
Wardle, S. Dewell, M. Zavolan, T. Tuschl, Cell 141 (2010) 129–141.
[9] A.K. Leung, A.G. Young, A. Bhutkar, G.X. Zheng, A.D. Bosson, C.B. Nielsen, P.A.
Sharp, Nat. Struct. Mol. Biol. 18 (2011) 237–244.

[10] S.W. Chi, G.J. Hannon, R.B. Darnell, Nat. Struct. Mol. Biol. 19 (2012) 321–327.
[11] A. Helwak, G. Kudla, T. Dudnakova, D. Tollervey, Cell 153 (2013) 654–665.
[12] G. Kudla, S. Granneman, D. Hahn, J.D. Beggs, D. Tollervey, Proc. Natl. Acad. Sci.

USA 108 (2011) 10010–10015.
[13] S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S.D.

Mackowiak, L.H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M.
Landthaler, C. Kocks, F. le Noble, N. Rajewsky, Nature 495 (2013) 333–338.

[14] T.B. Hansen, T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, J.
Kjems, Nature 495 (2013) 384–388.

[15] D. Field, B. Tiwari, T. Booth, S. Houten, D. Swan, N. Bertrand, M. Thurston, Nat.
Biotechnol. 24 (2006) 801–803.

[16] S. Andrews, <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>,
2010.

[17] M. Dodt, J.T. Roehr, R. Ahmed, C. Dieterich, MDPI Biol. 1 (2012) 895–905.
[18] B. Langmead, S.L. Salzberg, Nat. Methods 9 (2012) 357–359.
[19] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, J. Mol. Biol. 215

(1990) 403–410.
[20] N.R. Markham, M. Zuker, Methods Mol. Biol. 453 (2008) 3–31.
[21] R. Lorenz, S.H. Bernhart, C. Honer Zu Siederdissen, H. Tafer, C. Flamm, P.F.

Stadler, I.L. Hofacker, Algorithms Mol. Biol. 6 (2011) 26.
[22] S. Granneman, G. Kudla, E. Petfalski, D. Tollervey, Proc. Natl. Acad. Sci. USA 106

(2009) 9613–9618.
[23] W. Wlotzka, G. Kudla, S. Granneman, D. Tollervey, EMBO J. 30 (2011) 1790–

1803.
[24] C. Zhang, R.B. Darnell, Nat. Biotechnol. 29 (2011) 607–614.
[25] A.R. Quinlan, I.M. Hall, Bioinformatics 26 (2010) 841–842.
[26] B. Rost, G. Yachdav, J. Liu, Nucleic Acids Res. 32 (2004) W321–W326.
[27] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, I. Birol, Genome Res.

19 (2009) 1117–1123.
[28] D. Kim, S.L. Salzberg, Genome Biol. 12 (2011) R72.
[29] J.C. Oliveros, <http://bioinfogp.cnb.csic.es/tools/venny/index.html/>, 2007.
[30] A.H. Gordon, G.J. Hannon, <http://hannonlab.cshl.edu/fastx_toolkit/>, 2010.
[31] W.J. Kent, Genome Res. 12 (2002) 656–664.
[32] M. Wang, <http://code.google.com/p/pblat/>, 2012.

http://refhub.elsevier.com/S1046-2023(13)00418-0/h0005
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0005
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0010
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0015
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0020
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0025
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0025
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0025
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0030
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0030
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0035
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0040
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0040
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0040
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0045
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0045
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0050
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0055
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0060
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0060
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0065
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0065
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0065
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0070
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0070
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0075
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0075
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0085
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0090
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0095
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0095
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0100
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0105
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0105
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0110
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0110
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0115
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0115
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0120
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0125
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0130
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0135
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0135
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0140
http://refhub.elsevier.com/S1046-2023(13)00418-0/h0155

	Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data
	1 Introduction
	2 Overview of the method
	3 CLASH data analysis
	3.1 Prerequisites
	3.2 Preprocessing reads
	3.2.1 Trimming of 5' adapter sequences
	3.2.2 Trimming of 3' adapter sequences and quali
	3.2.3 Removal of PCR duplicates

	3.3 Mapping reads and calling chimeras
	3.3.1 Mapping of reads
	3.3.2 Identifying candidate chimeric reads
	3.3.3 Calling chimeric reads
	3.3.4 Bioinformatic extension of chimeric reads

	3.4 In silico folding and merging of chimeras
	3.5 Running the entire analysis as a single command
	3.6 Further analysis of chimeras
	3.7 Configuring environment variables
	3.8 Implementation

	4 Parameter optimization
	4.1 General considerations
	4.2 Recovery of simulated fusion and nonfusion reads
	4.3 Optimization of preprocessing parameters
	4.4 Optimization of mapping parameters
	4.5 Optimization of chimera calling parameters
	4.6 Influence of read and insert lengths
	4.7 Mapping chimeras with TopHat2 fusion

	5 Application of hyb to CRAC, CLIP and RNA-Seq data
	Acknowledgments
	References

