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Simple Summary: Transgenic applications have largely focused on constitutive promoters in plants.
However, strong and continuous over-expression of certain genes may be redundant and even
harmful to plant growth. Thus, tissue-specific promoters are the most suitable for regulating target
gene expression. Although several tissue-specific promoters have been identified, the regulatory
mechanism of tissue-specific gene expression remains unclear. By a series of GUS staining of 5′ and
3′ deletions, we uncover tissue-specific cis-acting elements in GSX7R, including ten light-responsive
elements. The results reveal that GSX7R is a reverse green tissue-specific promoter, except in
endosperm. In contrast, strong tissue-specific promoters that can be used for rice improvements are
limited. In this study, we successfully showed that the GSX7R promoter can drive the Cry1Ab gene to
resistant rice yellow stem borer. In addition, our study demonstrates an effective promoter to drive
foreign genes for crop improvement.

Abstract: Plant promoters play a vital role in the initiation and regulation of gene transcription. In this
study, a rice protein/gene of unknown expression, named Os8GSX7, was gained from a rice T-DNA
capture line. The semi-quantitative RT-PCR analysis showed that the gene was only expressed in root,
glume, and flower, but not in stem, leaf, embryo, and endosperm of japonica rice. The GUS activity
analysis of the GSX7R promoter showed that it was a reverse green tissue expression promoter, except
in endosperm. The forward promoter of GSX7 cannot normally drive the expression of the foreign
GUS gene, while the reverse promoter of GSX7 is a green tissue-specific expression promoter, which
can drive the expression of the foreign GUS gene. The region from −2097 to −1543 bp was the key
region for controlling the green tissue-specific expression. The regulatory sequences with different
lengths from the 2097 bp reverse sequence from the upstream region of the Os8GSX7 were fused
with the GUS reporter gene and stably expressed in rice. Furthermore, transgenic rice plants carrying
Cry1Ab encoding Bacillus thuringiensis endotoxin, regulated by GSX7R, were resistant to yellow
stem borer. The analysis suggested that 10 light responsive elements of tissue-specific expression
were found, including ACE, Box4, CAT-box, G-Box, G-box, GATA motif, GC motif, I-box, Sp1, and
chs-unit1 M1. In addition, the results of 5′ and 3′ deletions further speculated that ACE and I-box
may be the key elements for determining the green tissue-specific expression of GSX7R promoter.

Keywords: promoter; green-tissue specific expression; cloning; agrobacterium; RT-PCR

1. Introduction

Promoters are the key regulators of plant genetic engineering, during the process of
gene transcription [1]. They are mainly divided into three types, i.e., constitutive, inducible,
and tissue-specific. Constitutive promoters are usually used to analyze gene function
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and character modification, which can cause foreign genes to obtain a stable expression
level in plants [2]. There are three most commonly used constitutive promoters in genetic
engineering, such as 35S, actin, and ubiquitin [3–5]. However, a large number of efficient
promoters which are continuously driving the expression of foreign genes are not only
unnecessary for plant growth, but also consume a lot of nutrients in plants, so far as to have
a negative impact on plant growth and development [6]. The transcription of constitutive
promoters often inhibits plant growth [7]. Tissue-specific promoters are generally a 5′-
UTR of genes expressed in specific tissues, organs, or specific development stages, which
can effectively avoid negative effects on plant growth and development [1]. Although
some tissue-specific expression promoters have been cloned, mostly including root [8],
leaf sheath [9], phloem [10], pollen grain [11], embryo [12], endosperm [13] and green
tissue [14–17], but only a small part of cis-acting regulatory elements are recognized [18].
In addition, the cloned green tissue-specific expression promoters are mainly some genes
closely related to light induction and photosynthetic system, which participate in plant
photosynthesis and realize the function of converting light energy into sugar [19], such
as RBCs [20], DX1 [14], D540 [21]. Isolation and identification of rice green tissue specific
expression promoters related to the non-photosynthetic system are helpful to avoiding the
influence of light effect, and have a wider range of applications.

The broader expression pattern mainly focuses on the forward promoter [22]. The
reverse promoter mainly means that its forward promoter cannot drive the expression
of foreign genes. However, a few studies are reported on plant reverse promoters, most
of the studies are focused on bi-directional promoters, such as BEAP [23], Cab1/2 [24]
and BDDP [25]. Rice is one of the most important food crops in the world [26,27]. The
application of strong specific promoters is very important for rice genetic improvement [28].
In this study, a green tissue-specific promoter was obtained through the screening of the
T-DNA capture line. The gene information and regulation of the promoter have not been
unknown. The reverse promoter fragment 2097 bp upstream of the Os8GSX7 gene was
obtained by the PCR cloning method. Furthermore, the 5′ and 3′ end deletion of the
reverse promoter GSX7R was analyzed, and the corresponding plant expression vectors
were constructed. Through agrobacterium-mediated genetic transformation of rice and GUS
tissue staining, we characterized a core region of green-specific control of gene expression.
It also provides a reference theoretical basis for the expression and regulation function of
the unknown protein. More importantly, due to its strong tissue-specific expression, it can
provide an application basis for transgenic safety in the future.

2. Materials and Methods
2.1. Experimental Materials

Japonica rice (Oryza sativa subsp. Japonica), a fine variety was used as a receptor.
An independently constructed rice T-DNA insertion mutant library promoter (Figure 1),
Escherichia coli strain DH5α, and Agrobacterium tumefaciens strain LBA4404 were preserved
in the laboratory. The promoter expression verification vector pCXGUS-P was constructed
and provided by Dr. Chen Songbiao [29].
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2.2. Expression Analysis of Candidate Genes in Rice Organs

An unknown expression gene (LOC_Os01g35580) was obtained by T-DNA capture line,
named Os8GSX7, and its promoter was reverse promoter GSX7R. Using RNA extraction kit
(Tiangen Biotech Co., Ltd., Beijing, China), total RNA was extracted from various tissues
and organs of japonica rice, including root, stem, leaf, leaf sheath, glume, flower, embryo,
and endosperm. A total of 2 µg sample of RNA was reverse transcribed into cDNA (Tiangen
Biotech Co., Ltd., Beijing, China).

Using the cDNA obtained from the above reverse transcription as the template, RT-
PCR semi-quantitative analysis was carried out, and primers were designed using primer
6.0 software to detect the expression of genes (Table 1). The PCR reaction conditions were:
94 ◦C denaturation for 3 min, 94 ◦C 15 s, 58.5 ◦C 15 s, 72 ◦C 30 s, 28 cycles, extension at 72 ◦C
for 5 min, and storage at 4 ◦C. Os8GSX7 and GUS genes were amplified with rice actin
gene as internal reference. The amplified fragments were 114 bp and 203 bp respectively.
PCR products were analyzed by 1.5% agarose gel electrophoresis.

Table 1. PCR primers used in the study.

Primer Name Sequence(5′-3′) Usage

GSX7-2097F GGTTACATATGTTTATTACTAAGC Full-length cloning of forward promoter
GSX7-2097R GGGTTTGAGGCGACCGGCGACCGGC

GSX7R-2097F GGGTTTGAGGCGACCGGCGACCGGC Full length cloning of reverse promoter
GSX7R3R GGTTACATATGTTTATTACTAAGCA

GSX7R-1765F ATGGCGCATGATTATATTCCGATTA
5′ deletion cloningGSX7R3R GGTTACATATGTTTATTACTAAGCA

GSX7R-1198F GTCTCCGTGGGCTGCGCTAGCTTGC
5′ deletion cloningGSX7R3R GGTTACATATGTTTATTACTAAGCA

GSX7R-554F ACTTGTACTTAGAAAATAACATGTT
5′ deletion cloningGSX7R3R GGTTACATATGTTTATTACTAAGCA

GSX7R-2097F GGGTTTGAGGCGACCGGCGACCGGC
3′ deletion cloningGSX7R-1543R GGAGATAGACATTATTTGGAAATGA

GSX7R-2097F GGGTTTGAGGCGACCGGCGACCGGC
3′ deletion cloningGSX7R-1212R CGCGCCTGCCGTTGCCGCCGGTCCT

hptF ACACAGCCATCGGTCCAGA hpt maker gene identification
hptR TAGGAGGGCGTGGATATGTC

Os8GSX7F GCTCGACGCATGCATGGCACAG
RT-PCROs8GSX7R GTCCAATATGTGGAATCTGATC

GUSF GAACTGGCAGACTATCCCGCCGG
RT-PCRGUSR CCTGCCAGTCAACAGACGCGTGG

ActinF CATGCTATCCCTCGTCTCG Reference gene
ActinR CGCACTTCATGATGGAGTTG

2.3. Promoter Cloning and Cis-Acting Element Analysis

Using the 2097 bp sequence truncated from the upstream region of the coding gene
sequence ATG of japonica rice, primer 6.0 software was used for primer design (Table 1).
Primer design PCR method was used to construct the 5′ and 3′ deletion promoters of
forward promoter GSX7F and reverse promoter GSX7R series.

The 5′ and 3′ deletion fragments were cloned into the promoter cloning vector
pCXGUS-P by TA cloning through PCR (Figure 2). Agrobacterium tumefaciens LBA4404 was
transformed by electric shock, and the mature embryo callus of rice was transformed by
Agrobacterium tumefaciens and introduced into Nipponbare.
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Figure 2. Schematic diagram of the T-DNA region of binary vector pCXGUS-P with GSX7R or
GSX7R deletions.

2.4. Construction of Plant Expression Vector

PCR system (50 µL): 2× Phanta Max Buffer 25 µL, dNTP Mix (10 mM each) 1 µL,
template DNA (100 ng/µL), upstream primer (10 µM) 2 µL, downstream primer (10 µM)
2 µL, Phanta Max Super-Fidelity DNA Polymerase 1 µL, insufficient supplement ddH2O to
50 µL. PCR double stress condition: 95 ◦C 3 min; 95 ◦C 15 s, 60 ◦C 15 s, 72 ◦C for 2 min 30 s,
35 cycles; 72 ◦C for 5 min. After adding a tail to the PCR product, it was constructed on the
skeleton vector pCXGUS-P digested by XcmI and sent to Xiamen Boson Biotech Co., Ltd.,
Xiamen, China for sequencing verification.

The p1300GSAb vector was constructed by one step cloning kit (Vazyme Biotech,
code: C112). The pCAMBIA1300 vector was designed by enzyme digestion by HindIII and
EcoRI. GSX7R promoter, Cry1Ab and Tnos were amplified by PCR, and then connected to
pCAMBIA1300.

2.5. Analysis of Genetic Transmission and Transgenic Detection

After mechanical shelling of Nipponbare seeds, they were pretreated with 75% ethanol
for 2 min, soaked in 3% sodium hypochlorite for 20 min, rinsed with sterile water for
4–5 times, and placed on an N6 medium containing 3 mg/L 2,4-D, dark cultured at 25 ◦C
to induce callus, transformed by Agrobacterium-mediated rice genetic transformation
method, and regenerated rice plants [30]. The PCR amplification product of HPT gene was
832 bp [31].
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2.6. GUS Histochemical Staining

GUS chemical staining was performed on different tissues and organs of transgenic
positive plants according to the previously described method [14]. The roots, stems, leaves,
leaf sheaths, glumes, and seeds of positive transgenic plants were cut into appropriate
sizes with blades, and put into EP tubes. An appropriate amount of GUS dye was added
to make them fully colored [GUS dye composition: 50 mM sodium phosphate (pH 7.0),
10 mmol Na2EDTA, 0.1% Triton X-100, 1 mg/mL x-gluc, 100 µg/mL chloramphenicol,
1 mM potassium ferricyanide, 1 mm/L potassium ferrocyanide and 20% methanol]. The
treating samples were placed at 37 ◦C overnight. After dyeing, it was decolorized with
absolute ethanol and 70% (v/v) ethanol for about 1 h. At least 10 repetitions were set for each
transformation event, and the photos were taken with a stereomicroscope (OLYMPUS-SZ61,
Olympus Corporation, Tokyo, Japan).

3. Results
3.1. The Expression Pattern Analysis of Candidate Gene Os8GSX7 in Rice

The cDNA was obtained by double transcription of total RNA from different tissues
and organs of japonica rice. It was used as a template for PCR double correspondence.
The expression pattern of candidate gene Os8GSX7 was analyzed by semi-quantitative
RT-PCR. The results showed that the Os8GSX7 gene was only expressed in roots, glumes,
and flowers (Figure 3A). The reverse promoter GSX7R-2097 derived the expression of
exogenous GUS gene in the green tissue of rice, stem, leaf, glume, flower, and embryo, as
well as in root but not in the endosperm (Figure 3B).
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positive lines of GSX7R-2097 by RT-PCR analysis. The rice Actin gene was used as an internal control.

3.2. Isolation and Cloning of the Full-Length Promoter GSX7R and Its Deletion Fragment

Using the genomic DNA of Nipponbare rice as the template, a reverse 2097 bp pro-
moter fragment from the upstream region of the gene was cloned by PCR and named
GSX7R. Using pCXGUS-GSX7R as a template, other 5′ and 3′ deletion fragments were
cloned respectively (Figure 4). The fragment was connected to the plant expression vector
by the TA cloning method, and Agrobacterium tumefaciens was transformed into rice callus.
All transgenic plants with positive fragments were identified by hygromycin marker gene
detection PCR and planted in a greenhouse.

3.3. Bioinformatics Analysis of Reverse Promoter GSX7R Sequence

Through the promoter prediction software plantCARE cis-acting element database, the
promoter GSX7R sequence of 2097 bp reverse fragment upstream of the Os8GSX7 gene was
analyzed. There were mainly 46 elements. In addition to the core elements of the CAAT box
and TATA box of the promoter, it was found that there were 10 potential key cis-regulatory
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elements specifically expressed by green tissue (Table S1, Figure 5), including ACE, Box4,
CAT box, G-Box, G-box, GATA motif, GC motif, I-box, Sp1, and chs-unit1 M1 components.
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The reverse 5′-region of the Os8GSX7 gene containing the 2097 bp promoter sequence from the
translational start site. The transcription initiation site is defined as +1. The GC-motif, G-box, and
other key cis-acting elements are underlined with and indicated by black frame as shown in the
legend and different colors outside. The position of each element is also indicated by schematic
diagrams; (b) The schematic diagrams of the truncated GSX7R constructs. The numbers to the left of
these diagrams indicate the position of the 5′-deletion or 3′-deletion.

3.4. Molecular Detection of Transgenic Rice

The screening marker hygromycin gene (hpt) was used to detect the genes of rice-
positive transgenic plants with different vector skeletons. The results showed that the
positive progeny plants were isolated from different transformed plants (Figure 6). The
size of the hygromycin gene was in line with the expected 832 bp.

3.5. GUS Activity Analysis of GSX7R and Truncated Promoter

The roots, stems, leaves, leaf sheaths, glumes, and seeds of transgenic positive plants
were selected for GUS staining analysis. The GUS gene driven by constitutive act promoter
was positive. The results showed that the forward GSX7 full-length promoter could
not start GUS protein expression, while the reverse GSX7R full-length promoter could
start GUS protein expression, so GSX7R was a reverse expression promoter. The GSX7R
promoter was positive in other green tissues except for the expression of GUS protein in
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the endosperm (Figure 7a), which further confirmed that the reverse promoter GSX7R was
a green tissue-specific expression promoter.
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Figure 7. GUS staining and quantification of GUS mRNA transcript of transgenic rice containing
different 5′ and 3′-deletion. (a) Histochemical analysis of transgenic rice plants containing various
GSX7R promoter fragment/GUS fusions in different tissues; (b) GUS mRNA expression in the leaf
of various rice transformants. Quantitative qRT-PCR analysis of GUS transcripts from the leaf in
transgenic rice plants. Data are shown as mean ± SD (n = 3), Student’s t-test. *** indicates highly
significant differences from all tested tissues for each transgenic plant. Relative expression was
calculated as lg2

−∆∆Ct.

The results showed that GSX7R-1765, GSX7R-1198, and GSX7R-554 deleted at the 5′

ends could drive the expression of the GUS gene in the stem, leaf, leaf sheath, and glume,
but not in root and seed. However, GSX7R-1543 and GSX7R-1212 with 3′ deletions could
not drive the expression of the GUS reporter gene. Therefore, the promoter element at the
3′ ends is very critical to the function of the promoter. To determine the strength of the
seven GSX7R promoter variants, the quantitative expression of GUS mRNA in leaves was
determined. Compared to the histochemical staining of GUS, the levels of GUS transcript
were designated as “no expression” in GSX7 transformed rice. Compared with the GUS
expression driven by only the Actin promoter of p1300AGS, GSX7R-2097 and GSX7R-1765
had significantly strong expression (Figure 7b). These results demonstrated that the GSX7R
promoter might play an important role in the regulation of gene expression in the green
tissue of plants.

3.6. Evaluation of the Ability of GSX7R Promoter to Drive Foreign Genes

To evaluate the ability of GSX7R promoter to drive foreign genes, a transgenic vector
was constructed (Figure 8a) and insect resistance was carried between transgenic and
wild-type (WT) plants in the greenhouse paddy field. The results showed that WT plants
were severely damaged by yellow stem borer (Figure 8b(B,D)), whereas the transgenic
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plants grew well (Figure 8b(A,C)). It demonstrated that the GSX7R promoter had the strong
ability to drive the expression of foreign genes.
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4. Discussion

The plant promoters have significant importance with respect to plant biotechnol-
ogy [32]. The precise regulation of genes mainly depends on the promoters. The char-
acteristics of promoter elements basically determine the spatio-temporal expression and
transcription level of the gene [33]. Generally, there are significant differences in promoters
within and between genomes, which shows that some promoters contain specific types
of bases, while others have diverse and complex sequence characteristics [34]. In this
study, the surface characteristics of a 2097 bp reverse promoter upstream of the Os8GSX7
(LOC_Os01g35580) gene in rice were studied. The forward promoter could drive the
expression of rice endogenous gene Os8GSX7 in roots, glumes, and flowers, but it could
not drive the expression of the GUS reporter gene. The reverse promoter GSX7R had high
intensity and could drive the specific expression of the GUS reporter gene in rice green
tissue (Figure 7a). Compared with the constitutive promoter p1300AGS, except that the
expression was not detected in endosperm and was detected in the root, other green tissue
parts were expressed, including stem, leaf, leaf sheath, glume, and embryo.

In order to further study the function of green tissue-specific expression cis-acting
elements, we analyzed the 5′ and 3′ deletion truncation of GSX7R promoter, constructed
seven different full-length and deletion promoter expression vectors, transformed them
into rice, and obtained their transgenic positive plants by hygromycin resistance screening
and PCR detection of resistance genes. In addition to the promoter core element TATA box,
CAAT box, and GC motif that enhance transcription efficiency, 10 elements closely related
to the specific expression of light-response were found e.g., ACE, Box4, CAT box, G-Box,
G-box, GATA motif, GC motif, I-box, Sp1, and chs-unit1 M1. From the distribution position,
they were mainly distributed in the −1021 to −1621 region of the promoter. When GSX7R
promoter 5′ was deleted to −1765, −1198, and −554, GUS expression was not detected
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in roots and embryos, but was still strongly expressed in stems, leaves, leaf sheaths, and
glumes. When the 3′ ends were deleted to −1212 and −1543, the promoter lost the activity
of driving foreign genes and GUS expression was not detected (Figure 7a). Combined
with the GUS mRNA expression of the 3′ end fragment (Figure 7b), it can be shown that
ACE, SP1, GC motif, GATA motif, I-box, and Box4 elements are very important for the
tissue-specific expression of promoter GSX7R. Analysis together with the results of 5′ end
fragment deletion showed that ACE and I-box may play a decisive role in the expression of
green tissue promoter GSX7R. Previous studies have shown that the ACE element in the
promoter is regulated by HY5, and the lack of HY5 will widely reduce the accumulation of
other photosystem proteins except for PSII protein [35]. I-box elements mainly regulate the
activity of promoters in leaves, not fruits, and can control light regulatory genes [36,37]. In
addition, I-box and G-box elements act as light response enhancers of CMA5 activity in
plants [38,39].

In addition to light response-related elements, the promoter GSX7R also had meristem
element (CAT box), MYBHv1 binding site (CCAAT box), MYB transcription element (MBS,
MYB, MYB recognition site, MYB-like, and MYB binding site), seed-specific expression
element (RY-element), auxin response element (TGA element), jasmonic acid response
element (CGTCA motif), etc. Studies have shown that genes with MYB cis-acting elements
can combine with jasmonic acid response to improve cold tolerance in rice [40]. In addition,
the rice OsMYB4 transcription factor can directly or indirectly regulate the tolerance of
target genes by interacting with transcription factors such as the CCAAT box and MYB [41].
The combination of MYB binding site element and TIMYB2r-1 protein can improve the
disease resistance of wheat [42]. Therefore, the functional study of these elements may
provide a research direction for revealing the unknown functional genes of Os8GSX7
(LOC_Os01g35580).

5. Conclusions

In this study, a rice reverse promoter (OsCGX7R) was obtained through T-DNA capture
line screening. The expression intensity of the reverse promoter was higher than that of
the forward promoter, and the reverse promoter was a green tissue efficient expression
promoter. Compared with the green tissue-specific expression promoter related to the
traditional photosynthetic system, it can avoid the influence of light regulation and has
wider application. The results of this study can provide a new basis for the application and
development of green tissue-specific expression promoters in transgenic safety.
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