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Prospective evaluation 
of metabolic intratumoral 
heterogeneity in patients 
with advanced gastric cancer 
receiving palliative chemotherapy
Shin Hye Yoo1,5, Seo Young Kang2,3,5, Jeesun Yoon1, Tae‑Yong Kim1,4, Gi Jeong Cheon2,3 & 
Do‑Youn Oh1,4*

Although metabolic intratumoral heterogeneity (ITH) gives important value on treatment responses 
and prognoses, its association with treatment outcomes have not been reported in gastric cancer 
(GC). We aimed to evaluate temporal changes in metabolic ITH and the associations with treatment 
responses, progression-free survival (PFS), and overall survival (OS) in advanced GC patients. Eighty-
five patients with unresectable, locally advanced, or metastatic GC were prospectively enrolled before 
the first-line palliative chemotherapy and underwent [18F]FDG PET at baseline (TP1) and the first 
response follow-up evaluation (TP2). Standardized uptake values (SUVs), volumetric parameters, 
and textural features were evaluated in primary gastric tumor at TP1 and TP2. Of 85 patients, 44 
had partial response, 33 had stable disease, and 8 progressed. From TP1 to TP2, metabolic ITH was 
significantly reduced (P < 0.01), and the degree of the decrease was greater in responders than in non-
responders (P < 0.01). Using multiple Cox regression analyses, a low SUVmax at TP2, a high kurtosis at 
TP2 and larger decreases in the coefficient of variance were associated with better PFS. A low SUVmax 
at TP2, larger decreases in the metabolic tumor volume and larger decreased in the energy were 
associated with better OS. Age older than 60 years and responders also showed better OS. An early 
reduction in metabolic ITH is useful to predict treatment outcomes in advanced GC patients.

Gastric cancer (GC) is the fifth most common cancer worldwide with high disease burden1, although the inci-
dence and death rate have steadily declined2. GC rates are the highest in Eastern Asia, especially in the Republic 
of Korea, China, and Japan1. In the Republic of Korea, the crude mortality rate and age-standardized mortality 
rate for GC were shown to be 16.2 and 8.3 per 100,000, respectively in 20163. Especially for advanced disease, 
palliative chemotherapy, and targeted therapy are essential to prolong the survival and to improve quality of life4.

In GC, [18F]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography-computed tomography (PET-
CT) is routine tool used to determine baseline staging, as well as CT and endoscopic ultrasound. Although [18F]
PET-CT has higher accuracy rather than CT alone, low sensitivity to primary tumors and lymph nodes limits its 
role in preoperative close examination. On the other hand, the role of [18F]PET-CT in GC is currently regarded 
as beneficial for predicting treatment responses and determining prognostic information5–8, although it was a 
matter of debate5. Previous studies7,9,10 reported that standardized uptake values (SUV) or volumetric param-
eters, such as the metabolic tumor volume and total lesion glycolysis, are associated with treatment responses 
and prognoses. In addition, as intratumoral heterogeneity (ITH) has been reported to be implicated in treatment 
failure, higher metastasis potential, there is a growing interest in the development of new imaging strategies to 
assess intratumoral metabolic heterogeneity using [18F]FDG PET-CT. Recently several studies have reported 
that intratumoral FDG uptake heterogeneity, which represents metabolic ITH, is an important prognostic and 
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predictive factor in several cancer types, such as non-small cell lung cancer, pancreatic cancer and gynecologic 
cancer11–17. However, detailed studies on metabolic ITH in GC patients are lacking. Radiomics studies examining 
the relationships between radiomic features and prognoses, treatment responses, and clinical characteristics in 
GC patients all used computed tomography (CT) imaging13,18. However, metabolic ITH assessed with [18F]FDG 
PET-CT may differ slightly from that measured by CT in that it evaluates the heterogeneity of tumor metabolism.

Therefore, we aimed to evaluate metabolic ITH with [18F]FDG PET-CT in prospectively enrolled advanced 
GC patients receiving palliative chemotherapy. We also sought to investigate the association of metabolic ITH 
with progression-free survival (PFS) and overall survival (OS).

Results
Patient characteristics.  Eighty-five patients were enrolled in the study consecutively from October 2013 
to May 2018 (Fig. 1). Patient baseline characteristics are listed in Table 1. The median age was 59 years (range 
28–81  years), and 64.7% were men. Most tumors were adenocarcinoma (81.2%); poorly cohesive carcino-
mas represented the rest of the tumors (18.8%). HER2 positivity was seen in 16.5% of the patients. Among 85 
patients, 44 were responders with PR, and 41 were non-responders, of which 33 had stable diseases and 8 had 
progressive diseases. The best objective response rate was 51.8% (95% CI 40.7–62.7%), and the disease control 
rate was 89.5% (95% CI 83.0–96.0%). Among 44 with PR, 3 had stable diseases at TP2 and further achieved PR 
at later imaging follow-up. Thus, the objective response rate at TP2 was 48.2% (95% CI 37.3–59.3%). The median 
PFS and OS were 7.3 months (95% CI 5.4–8.2 months) and 11.5 months (95% CI 8.6–14.5 months), respectively.

Distributions of the parameters at TP1 and TP2, and parameter changes during first‑line 
chemotherapy.  From TP1 to TP2, significant changes occurred for most variables except for skewness, 
kurtosis, and sphericity. The values of metabolic and radiomic parameters except for energy, contrastGLCM, cor-
relation, contrastNGLDM and busyness decreased with chemotherapy (Supplementary Table S1).

Comparisons of parameters between responders and non‑responders.  Comparisons of the 
metabolic and radiomic parameters between responders and non-responders were listed in Supplementary 
Table S2. At TP2, significant differences in most variables except skewness, kurtosis, sphericity, contrastGLCM, 
correlation, and busyness were observed between the two groups, whereas no differences were observed at TP1. 
The percent change between TP1 and TP2 for the same variables was also significant. The degree of decrease 
in SUVmax, SUVpeak, total lesion glycolysis, CoV, metabolic tumor volume (MTV), entropyHisto, compacity, 
entropyGLCM, dissimilarity, coarseness, and contrastNGLDM was greater in responders than in non-responders 

Figure 1.   Flow chart of study participant enrollment.
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Variables N %

Age (year), median (range) 59 28–81

≥ 60 42 49.4

< 60 43 50.6

Gender

Male 55 64.7

Female 30 35.3

Initial disease status

Locally advanced, unresectable 3 3.5

Metastatic 82 96.5

T classification

T2 8 9.4

T3 14 16.5

T4 63 74.1

N classification

N0 11 12.9

N1 11 12.9

N2 21 24.7

N3 42 49.4

Comorbidity

Hypertension 23 27.1

DM 6 7.1

The Eastern Cooperative Oncology Group performance status

0 25 29.4

1–2 60 70.6

Body-mass index (kg/m2), median (range) 21.5 15–31.6

≥ 25 14 16.5

20–24.9 47 55.3

< 20 24 28.2

Carcinoembryonic antigen (ng/mL), median (range) 3.05 0.5–5420

Carbohydrate antigen 19–9 (U/mL), median (range) 23.9 1–41,600

White blood cell (× 103/μL), median (range) 7320 4260–19,410

Total bilirubin (mg/dL), median (range) 0.5 0.2–1.4

Albumin (mg/dL), median (range) 3.6 2.2–4.7

Pathology

Adenocarcinoma

Poorly differentiated 36 42.4

Moderately differentiated 30 35.3

Well-differentiated 3 3.5

Poorly cohesive carcinoma (Signet ring cell carcinoma) 16 18.8

HER2 status

Positive 14 16.5

Negative 71 83.5

First-line chemotherapy

Regimen

Capecitabine/Oxaliplatin or Folfirinic acid/Fluorouracil/Oxaliplatin 68 80.0

Capecitabine/Cisplatin/Trastuzumab 13 15.3

Othera 4 4.7

Duration of chemotherapy (month), median (range) 5.4 0.6–58

Number of cycles, median (range) 7 2–57

Overall best response

Partial response 44 51.8

Stable disease 33 38.8

Progressive disease 8 9.4

Best response at TP2

Partial response 41 48.2

Stable disease 36 42.4

Continued
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(Fig. 2). ContrastNGLDM has increased more than fivefold for non-responders, suggesting a significant increase in 
metabolic ITH for non-responders compared to responders.

Progression‑free survival and overall survival as predicted by pathoclinical, metabolic and 
radiomic parameters.  The univariate Cox regression analysis of pathoclinical variables for PFS and OS 
was described at Supplementary Table S3. ECOG, CEA, best response and best response at TP2 were associated 
with poor PFS, while pathology, ECOG, best response and best response at TP2 were correlated with poor OS. 
Especially, patients who achieved partial response showed prolonged PFS and OS compared to those with stable 
disease or progressive disease (Supplementary Fig.  S2). The optimal cut-off values and corresponding AUC 
values for PFS and OS of metabolic and radiomic parameters were shown at Supplementary Table S4. Metabolic 
and radiomic parameters were divided into groups of high and low values according to their optimal cut-off 
values and then the continuous variables were transformed into binary variables. Supplementary Table S5 shows 
multiple significant metabolic and radiomic parameters at TP1, TP2 and delta by the univariate Cox regression 
analysis. Although only one metabolic variable, SUVpeak, were significant at TP1 for PFS, all metabolic variables 
of TP2 and delta for PFS and OS were statistically significant. In addition, a number of radiomics variables were 
also significant at TP2 and delta for PFS and OS, compared to only a few significant ones at TP1. A correlation 
matrix map was used to diagnose collinearity of metabolic and radiomic parameters, and variables with r values 
of 0.8 or higher were excluded (Supplementary Fig. S1). Finally, the following variables remained and were used 
for analysis: SUVmax, CoV, MTV, kurtosis, energy, contrastGLCM, correlation, entropyGLCM, contrastNGLDM, and 
busyness. The predictability of radiomic parameters in TP1, TP2, delta and combined variables was evaluated 
using C-index, and TP2 + delta model showed the best performance (Supplementary Table S6). In addition, it 
was confirmed that the predictive ability was improved when the pathoclinical parameters were included in 

Table 1.   Baseline characteristics of the study population. a Other regimen includes capecitabine (n = 3) and 
folfirinic acid/cisplatin plus pembrolizumab (n = 1).

Variables N %

Progressive disease 8 9.4

Time to best response (month), median (range) 1.44 0.9–5

Cycles till best response, median (range) 3 2–6

Time from TP1 to TP2 (day), median (range) 43 27–68

Progression-free survival (month), median (95% confidence interval) 7.3 5.4–8.2

Overall survival (month), median (95% confidence interval) 11.5 10.1–14.5

Follow-up duration (month), median (range) 11.7 1.8–57.2

Figure 2.   The percentage of changes in metabolic parameters that relate to best responses: SUVmax (a), CoV 
(b), MTV (c), compacity (d), entropyHisto (e), energy (f), dissimilarity (g), and coarseness (h). CoV coefficient of 
variance, Histo histogram, SUV standardized uptake value, MTV metabolic tumor volume.
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this model (Supplementary Table S6; Supplementary Figs. S3 and S4 for PFS and OS, respectively). The trend of 
the performance of the models in 77 patients who did not progress at TP2 was also similar to those in overall 
patients (Supplementary Table S7). The final model for PFS by multivariable Cox regression showed that baseline 
CEA value (HR 2.23; 95% CI 1.19–4.16; P = 0.012), high SUVmax at TP2 (HR 2.7; 95% CI 1.30–5.60; P = 0.007), 
low kurtosis at TP2 (HR 0.42; 95% CI 0.20–0.88; P = 0.022), and the lesser decrease of CoV (HR 3.08; 95% CI 
1.16–8.17; P = 0.024) were independently associated with poor PFS (Table 2; Fig. 3). For OS, age (HR 0.38; 95% 
CI 0.20–0.70; P = 0.002), best response (HR 2.57; 95% CI 1.28–5.14; P = 0.008), high SUVmax at TP2 (HR 2.59; 
95% CI 1.24–5.40; P = 0.011), the lesser decrease of MTV (HR 3.95; 95% CI 1.45–10.74; P = 0.007), and the lesser 
decrease of energy (HR 3.62; 95% CI 1.10–11.88; P = 0.003) were associated with poor survival (Table 2; Fig. 4).
The performance of each models was compared in the Supplementary Table S6.

Discussion
In this prospective study, we found that metabolic parameters decreased during palliative chemotherapy more in 
responders than in non-responders. Post-chemotherapy metabolism and metabolic changes were significantly 
associated with PFS and OS in patients receiving palliative chemotherapy. To our knowledge, this is the first 
study to show the associations of delta-radiomics assessed with [18F]FDG PET-CT with survival in advanced 
GC patients.

We found that most metabolic and radiomic parameters, except skewness, kurtosis, and sphericity had a 
declining trend of metabolism and heterogeneity throughout chemotherapy, which is consistent with the results 
of other studies in advanced pancreatic cancer19 and non-small cell lung cancer11,12. This negative trend over 
time implies that dominant tumor subclones might disappear during treatment, and the heterogeneity of overall 
tumor clones could be decreased20.

In our study, the levels of heterogeneity at TP2, and the percent changes in heterogeneity, but not pretreatment 
heterogeneity, were lower in responders than in non-responders. The associations of metabolic heterogeneity 
assessed using PET-CT with responses to chemotherapy have not been well-studied in GC patients, although a 
few studies have reported that an early metabolic response, using metabolic parameters, is associated with posi-
tive treatment outcomes21 or that responses measured with PET-CT could be helpful for deciding on treatment 
strategies6. Giganti et al. revealed that pretreatment radiomic features such as entropy, ranges, and root mean 
squares predicted the responses to neoadjuvant chemotherapy in GC patients. However, our findings showed 
an association of radiomic features measured at the early assessment time (TP2) or the delta-radiomic features 
with treatment responses, which suggest that responses could be associated with the heterogeneity parameter 
trends, rather than parameters themselves at pretreatment. This association of a change in tumor composition 
with treatment responses could provide useful information, in addition to the early metabolic responses assessed 
by SUV values21. Figure 5 depicts representative cases showing clinical significance of reduction in metabolic 
ITH. Both cases showed similar levels of metabolic ITH before treatment, but metabolic ITH of a patient with 
good post-treatment outcomes manifested significant decrease, while metabolic ITH of patients with very poor 

Table 2.   Pathoclinical and radiomics variables selected by Lasso Cox regression model and identified by 
multivariable Cox regression model. PFS progression-free survival, OS overall survival, SE standard error, HR 
hazard ratio, CI confidence interval, SUV standardized uptake values, CoV coefficient of variation, ECOG The 
Eastern Cooperative Oncology Group, CEA carcinoembryonic antigen, CoV coefficient of variation, MTV 
metabolic tumor volume, GLCM gray-level co-occurrence matrix. Bold values denote statistical significance at 
the P < 0.05 level. *P value was generated by multivariable Cox proportional hazards regression analysis.

Variables

PFS OS

Lasso regression
Multivariable Cox 
regression Lasso regression

Multivariable Cox 
regression

Coefficient SE HR 95% CI P* Coefficient SE HR 95% CI P*

Pathoclinical

Age − 0.24 0.296 0.58 0.32–1.06 0.076 − 0.516 0.416 0.38 0.20–0.70 0.002

ECOG 0.253 0.315 1.5 0.81–2.75 0.194 0.377 0.44 1.8 0.94–3.48 0.078

CEA 0.463 0.348 2.23 1.19–4.16 0.012 0.141 0.348 1.34 0.71–2.51 0.366

Best response 0.41 0.385 2.57 1.28–5.14 0.008

TP2

SUVmax 0.697 0.428 2.7 1.30–5.60 0.007 0.879 0.559 2.59 1.24–5.40 0.011

CoV 0.066 0.444 1.48 0.55–3.96 0.440

Kurtosis − 0.359 0.502 0.42 0.20–0.88 0.022

Delta

CoV 0.881 0.513 3.08 1.16–8.17 0.024 0.82 0.605 1.87 0.89–3.91 0.096

MTV 0.468 0.6 2.18 0.82–5.79 0.118 0.837 0.718 3.95 1.45–10.74 0.007

Energy 0.0684 0.495 1.64 0.58–4.67 0.351 0.679 0.617 3.62 1.10–11.88 0.034

ContrastGLCM 0.231 0.335 1.42 0.55–3.66 0.472

Correlation 0.345 0.447 1.53 0.56–4.15 0.399 0.157 0.562 1.02 0.41–2.55 0.959
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outcomes has not changes much. Similarly, the cases of Supplementary Fig. S5 also illustrate that changes in the 
radiomic features are related to the outcomes of the patients.

To date, the prognostic impact of texture parameters has primarily been investigated in patients with surgically 
resected GCs, using a CT texture analysis. To our knowledge, only one study, including 26 patients diagnosed as 
HER2-positive advanced GC and treated with trastuzumab, focused on advanced GC patients22. In that study, 
patients with higher contrast, correlation, and variance at pretreatment had longer OS than those with lower 
contrast, correlation, and variance. These results were consistent with our findings that pretreatment contrastGLCM 
and entropy was associated with OS. However, these values were excluded from the final model because they 
showed a relatively low C-index compared to other texture parameters of TP2 and delta.

In our study, delta values of CoV were an independent factor for PFS, and MTV and energy were for OS. 
These findings emphasize the importance of delta-radiomics features, especially those that represent ITH changes, 
in addition to MTV and CoV which has already been reported for its importance. The predictive role of delta-
radiomics features on PFS has been consistently observed in studies of other cancer types13,19,23, although the 
association of pretreatment texture features with PFS was only addressed in studies of GC patients24–26. The 
biologic mechanisms connecting ITH changes and tumor progression have not been elucidated to date. Greater 
reductions in metabolic ITH indicate that the tumor and surrounding microenvironment become more unified 
and that variations in grey-level distributions become minimized. Previous reports27,28 suggest that ITH could 
be associated with cell cycling pathways and immune infiltrate distributions so that changes in ITH could reflect 
changes in the tumor microenvironment.

The National Comprehensive Cancer Network guideline29 suggests that [18F]FDG PET-CT can be performed 
as clinically indicated in diagnosis, response assessment, and follow-up and surveillance in GC. Although it 
is premature to change treatment options based solely on the results from our models, this study can suggest 
an additional role of [18F]FDG PET-CT, which can be used for risk stratification of patients, by presenting an 
evaluation method of ITH in GC and proving an important role in prognostic evaluation. Risk stratification of 
progression is crucial before confirming the definitive progression by clinical and radiologic criteria because the 

Figure 3.   Kaplan–Meier survival curves for progression-free survival according to SUVmax at TP2 (a) and the 
percent change in CoV (b). SUV standardized uptake value, CoV coefficient of variance;
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next treatment strategy should be planned in advance. In this context, the potential clinical utility of the model 
could be suggested. When assessing at TP2 and constructing the TP2+ delta model, it is possible to predict those 
who are most likely to ultimately show short PFS in 1st-line palliative chemotherapy. Especially, regardless of 
the patients who progress at TP2, the model is able to predict high-risk group for progression. Although we did 
not calculate radiomics score, several studies using radiomics score and performing risk stratification by the 
score24,25 showed that the patient in high-risk group could be identified. In such a case, assessing the clinical 
symptoms/signs cautiously by close follow-up can be beneficial, and the next treatment plan could be prepared. 
Lack of evidence showing the cost-effectiveness of these models limits the application of our results to general 
treatment schemes. Although our study did not provide the cost-effectiveness analysis, the cost-effectiveness of 
model using radiomics variables needs to be studied to ensure it to provide good value for cost compared with 
the other currently available biomarkers after biological and clinical validation.

This study has several limitations. First, we only assessed the tumor metabolism of primary gastric lesions, 
so spatial metabolic ITH between primary and metastatic lesions was not considered. Next, the patients had 
received different therapies, which might have caused confounding effects. However, an insignificant association 
of the treatment variable in the univariate analysis was observed. Third, SUV and ITH parameters are highly 
dependent on the instrumentation and reconstruction parameters used during the study. Extrapolation of the 
discrete values of data in the study to other scanners and reconstruction would require care. Fourth, motion of 
the tumors (gastric peristalsis) understandably cannot be accounted for in this data, and may have some influ-
ence on measures of heterogeneity. Fifth, we only included a training set without a validation cohort. Further 
external validations are needed.

Despite these limitations, we built a multivariable regression model using pathoclinical and radiomic param-
eters. It has been reported that models with both parameters had better predictive accuracy in patients with 
surgically resected GC than those with either parameter assessed alone24,26. Similarly, the multivariable model 
used in our study could predict PFS and OS in advanced GC patients. Our study also highlighted the predictive 
role of delta-radiomics, whereas previous studies only assessed pretreatment metabolic parameters22, which 

Figure 4.   Kaplan–Meier survival curves for overall survival according to the SUVmax at TP2 (a) and percent 
change in MTV (b). SUV standardized uptake value, MTV metabolic tumor volume.
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suggest that clinicians should consider metabolic ITH changes as a predictive biomarker when deciding on GC 
patient therapies.

In conclusion, our study demonstrated that metabolic ITH levels decreased during palliative chemotherapy, 
and early decreases in metabolic ITH can predict positive responses to palliative chemotherapy, PFS, and OS in 
advanced GC patients.

Methods
Patient enrollment and data measurements.  We prospectively enrolled patients who were diagnosed 
with advanced GC (unresectable locally advanced or metastatic disease) and planned for first-line palliative 
chemotherapy. All patients underwent [18F]FDG PET-CT and contrast-enhanced CT scanning before initiating 
chemotherapy (TP1) and at the time of the first tumor response evaluation (TP2), usually after 2 or 3 cycles of 
chemotherapy, and then, serially for each subsequent response evaluation, when possible. The study protocol was 
reviewed and approved by Seoul National University Hospital Institutional Review Board (H-1307-132-508). We 
conducted the study in accordance with the principles of the Declaration of Helsinki. Informed consent was 
obtained from all individual participants included in the study. Informed consent to publish identifying infor-
mation and images for Fig. 5 was also obtained from the corresponding participants. Cases with primary gastric 
lesions that could not be examined were excluded. Case lost to follow-up before TP2 was excluded (Fig. 1). 
Pathoclinical characteristics, chemotherapeutic responses assessed using the Response Evaluation Criteria in 
Solid Tumors version 1.130, and survival data were collected. Human epidermal growth factor receptor 2 (HER2) 

Figure 5.   Representative cases showing clinical significance of metabolic ITH changes from [18F]FDG-PET-CT. 
Case (a) is a 74-year-old male patient with PFS of 19.5 months and OS of 19.8 months. The histogram and AUC-
CSH showed decreased metabolic ITH after palliative chemotherapy. Case (b) is a 72-year-old male patient 
with PFS of 1.1 months and OS of 2.3 months, suggesting very poor prognosis. The histogram and AUC-CSH 
represent no significant change of metabolic ITH after palliative chemotherapy. AUC-CSH area under the 
curve of the cumulative standardized uptake value volume histogram, [18F]FDG-PET-CT [18F]fluoro-2-deoxy-
d-glucose positron emission tomography-computed tomography, ITH intratumoral heterogeneity, OS overall 
survival, PFS progression free survival, ROI region of interest.
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positivity was defined as HER2 immunohistochemistry 3+ or immunohistochemistry 2+ and FISH-positive 
(HER2/CEP17 (centromere enumerator probe 17) ratio ≥ 2) using the PathVysion HER-2 DNA probe kit (Vysis).

The [18F]FDG PET‑CT protocol.  All patients fasted for at least 6 h prior to the intravenous administra-
tion of [18F]FDG (5.18 MBq/kg), resulting in a serum glucose concentration of 150 mg/dL. [18F]FDG PET-CT 
was performed at 1 h after the injection using a dedicated scanner (Biograph 40 TruePoint; Siemens). After a 
low-dose CT scan for attenuation correction (120 kVp; tube current, 60–210 mA; beam collimation, 40 mm 
(0.625 × 94); pitch factor, 0.516:1; coverage speed, 41.24  mm/s; and tube rotation time, 0.5  s), a consecutive 
emission scan was acquired in 3 dimensions (5–6 bed positions, 2.5 min/bed position, 5 mm slice thickness 
21.6-cm increments). PET images were reconstructed on to a matrix of 128 128 with voxel size 4 × 4 × 4 mm3 
using 3-dimensional ordered-subset expectation–maximization (2 iterations, 21 subsets). For post-processing, a 
5.0-mm Gaussian filter was used to reduce noise and smoothen image quality.

Tumor segmentation and texture analyses.  Our study followed and adhered to the Image Biomarker 
Standardization Initiative (IBSI) guidelines31, and the software LifeX (version 4.0) compliant with IBSI was used 
for analysis32. Tumor delineation, and metabolic parameter and texture analyses were performed by a nuclear 
medicine specialist without knowledge of the clinical information. The volume of interest of the primary gastric 
lesion was automatically defined using PET Edge, a gradient-based delineation tool in MIM Encore (version 
4.1; MIM Software Inc.; Cleveland, OH, USA) used for tumor segmentation. SUV parameters and volumetric 
parameters, including the metabolic tumor volume and total lesion glycolysis, were extracted from the volume 
of interest. The coefficient of variance (CoV) is defined as the standard deviation of the SUVs divided by the 
mean SUV (SUVmean) and correlates positively with the degree of heterogeneity in the volume of interest14. For 
texture analysis, we imported [18F]FDG PET-CT images and delineation data to LifeX. Each [18F]FDG PET-CT 
image was resampled into a 64-level grayscale by a fixed-bin-width method with 0.3-SUV-unit scaling, from 
the minimum to maximum SUV values of 0–20. We included the histogram and shape indices as first-order 
parameters, gray-level co-occurrence matrix (GLCM) indices as second-order parameters, and the neighboring 
gray-level dependence matrix (NGLDM) indices as higher-order parameters13 (Supplementary Table S8). For 
quality assurance a Radiomics Quality Score was calculated33 for this study. The Radiomics Quality Score of 
our study was 13, which was 36% of the ideal score of 36. This was slightly higher than the average score of 11 
assessed in the systemic review34.

Statistical analysis and modeling.  The paired t-test for parametric analyses and the Wilcoxon signed-
rank test for non-parametric analyses were performed to analyze the difference between the TP1 and TP2 
parameters of SUV and texture analyses. The Student t-test or Mann–Whitney test was used to compare varia-
bles between responders (complete response or partial response) and non-responders (stable disease or progres-
sive disease). To reduce the risk of false discovery and correct random events, false discovery rate was calculated 
using Benjamini Hochberg procedure, a statistical approach for multiple comparisons.

OS was defined as the time from initiating first-line chemotherapy until death, and the PFS was defined as the 
time from the initiating first-line chemotherapy to disease progression or any cause of death. Overall response 
was defined as complete or partial responses as their best overall response based on the RECIST. All variables 
were tested using the univariate Cox proportional-hazards model. The optimal cut-off of the SUV and texture 
analysis parameters, discriminating a high or low result in terms of PFS and OS, was determined using time-
dependent receiver-operating characteristic (ROC) curve analyses. It is more appropriate to apply the cumulative 
sensitivity/dynamic specificity definitions when there is a specific time of interest that is used to discriminate 
between individuals experiencing the event and those event-free prior to the specific time. Cumulative sensitiv-
ity/dynamic specificity definition has commonly been used by clinical applications. We used 1-year span as a 
specific time horizon in the time-dependent ROC analysis.

Prior to performing multivariate logistic regression, collinearity diagnostics were performed using a cor-
relation matrix map. In the end, only 30 parameters were included in the further analysis, excluding those with 
an r value of 0.8 or higher. Considering high dimension of variables and model overfitting, the least absolute 
shrinkage and selection operator (LASSO) Cox regression analysis under the bootstrap conditions was performed 
to evaluate the discrimination performances of different models using texture parameters. Five hundred itera-
tions were performed with random data resampling between runs. When comparing predictive models using 
the texture parameters from TP1, TP2, and delta, the model containing the variables from TP2+ delta showed 
the best performance. Therefore, the variables from TP2+ delta were selected for the final regression models. 
To evaluate the predictive ability of combined models using pathoclinical, radiomics, pathoclinical + radiomics 
features, Harrel’s concordance index (C-index) were calculated and compared. Finally, the predictive values from 
pathoclinical and texture parameters were further validated using LASSO multiple regression analysis associated 
with PFS and OS. For subgroup analysis, in order to find out whether the models would predict well when the 
patients with progressive disease at TP2 were removed, the performance of the model of patients who did not 
progress at TP2 was revealed in a same manner of overall patients.

Analyses were performed using STATA, version 15 (StataCorp LP), and R software (version 3.6.0, www.
Rproj​ect.org). The area under the curve (AUC) was calculated by the “survivalROC” package in R. LASSO was 
conducted using the “glmnet” package, and the “boot” package was used for bootstrapping. All statistical tests 
were two-sided, with a significance level of 0.05.

A TRIPOD Checklist in accordance with strict multivariate model building and reporting guidelines (https​
://www.equat​or-netwo​rk.org/repor​ting-guide​lines​/tripo​d-state​ment/) has also been provided in Supplementary 
Table S9, further verifying the integrity of the work35.

http://www.Rproject.org
http://www.Rproject.org
https://www.equator-network.org/reporting-guidelines/tripod-statement/
https://www.equator-network.org/reporting-guidelines/tripod-statement/
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Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.
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