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Abstract: Programmed cell death-1 (PD-1) has demonstrated impressive clinical outcomes in
several malignancies, but its therapeutic efficacy in the majority of colorectal cancers is still low.
Therefore, methods to improve its therapeutic efficacy in colorectal cancer (CRC) patients need further
investigation. Here, we demonstrate that immunogenic chemotherapeutic agents trigger the induction
of tumor PD-L1 expression in vitro and in vivo, a fact which was validated in metastatic CRC patients
who received preoperatively neoadjuvant chemotherapy (neoCT) treatment, suggesting that tumor
PD-L1 upregulation by chemotherapeutic regimen is more feasible via PD-1/PD-L1 immunotherapy.
However, we found that the epigenetic control of tumor PD-L1 via DNA methyltransferase 1 (DNMT1)
significantly influenced the response to chemotherapy. We demonstrate that decitabine (DAC) induces
DNA hypomethylation, which not only directly enhances tumor PD-L1 expression but also increases
the expression of immune-related genes and intratumoral T cell infiltration in vitro and in vivo.
DAC was found to profoundly enhance the therapeutic efficacy of PD-L1 immunotherapy to inhibit
tumor growth and prolong survival in vivo. Therefore, it can be seen that DAC remodels the tumor
microenvironment to improve the effect of PD-L1 immunotherapy by directly triggering tumor PD-L1
expression and eliciting stronger anti-cancer immune responses, providing potential clinical benefits
to CRC patients in the future.

Keywords: colorectal cancer; decitabine; microsatellite instability; anti-PD-L1 immunotherapy;
tumor microenvironment

1. Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide
despite advances in treatment. Until now, combinational chemotherapy FOLFOX regimen [folinic acid,
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5-fluorouracil (5-FU), oxaliplatin (OXP)] has been standardized as the first-line treatment for advanced
CRC after surgery. However, the appearance of chemoresistance in most patients limits the anti-tumor
effect of these combined chemotherapies, leading to tumor escape and distant metastasis within five
years [1,2].

Several common cytotoxic agents such as 5-FU and OXP show immunogenic properties that trigger
immune responses [3–5]. 5-FU remarkably depletes myeloid-derived suppressor cells (MDSCs) within
the tumor microenvironment (TME) [6], and OXP triggers immunogenic cell death (ICD) through the
surface exposure of calreticulin (CRT), and the release of high mobility group box 1 (HMGB1) and
ATP [5,7], which contribute to recruit CD8+ T cell and induce anti-tumor immunity [8]. Moreover,
accumulating evidence supports the finding that the intratumoral infiltration of immune cells is
associated with a favorable prognosis in CRC [9–11]. The clinical efficacies of immunotherapies that
target the immune checkpoint programmed cell death 1 receptor (PD-1) and its ligand programmed
cell death 1 ligand 1 (PD-L1) have been demonstrated in several malignancies, such as non-small cell
lung cancer and bladder cancer [12,13]. However, the majority of CRC patients do not respond to an
immune checkpoint blockade (ICB), especially patients with microsatellite-stable (MSS) tumors [14–16].
Recent studies have highlighted that intratumoral immune contexts may determine the therapeutic
efficacy of the ICB [17,18]. Patients with high intratumoral CD8+T cell infiltration, tumor mutational
load, and tumor PD-L1 expression within the TME are more responsive to immunotherapies [19,20].
Therefore, several clinical trials have aimed to reinvigorate T cell immunity to improve the anti-cancer
effect of the ICB with combinational therapeutics, such as chemotherapeutic agents combined with
radiotherapy, suggesting that desirable ICB efficacy may be expected in CRCs if a suitable immunological
TME is reestablished.

However, the function of PD-L1 expression in CRC has not been fully investigated. Our previous
studies indicated a strong correlation between tumor PD-L1 expression and CD8+ tumor-infiltrating
lymphocytes (TILs), possibly due to the concomitant increase in interferon γ (IFNγ) expression by CD8+

T cells, and the PD-L1 level is positively correlated with favorable prognosis in CRC patients [10,21].
Additionally, the methylation of the PD-L1 promoter has been shown to negative correlate with its
gene expression and is clinically associated with survival, including from prostate cancer, colorectal
cancer, acute myeloid leukemia and melanoma [22–25]. However, the mechanism of the epigenetic
regulation of PD-L1 is poorly defined.

In this study, we aimed to provoke an immunogenic microenvironment to upregulate PD-L1
expression by combinational chemotherapy treatment and increase the therapeutic efficacy of anti-PD-L1
immunotherapy. We found that chemotherapeutic drugs directly upregulate tumor PD-L1 expression,
and its expression might be modulated by direct epigenetic control. Pharmacologically-induced DNA
demethylation or the knockdown of DNA methyltransferase 1 (DNMT1) expression significantly
upregulated the tumor PD-L1 level under OXP treatment. Combinational treatment with OXP and
an food and drug administration (FDA)-approved DNA demethylation inhibitor (decitabine, DAC)
dramatically increased the immunogenicity and PD-L1 expression within the TME in vivo. These
results showed that OXP and DAC synergistically enhanced the therapeutic efficacy of anti-PD-L1
immunotherapy in CRC.

2. Materials and Methods

2.1. Cell Culture and Reagents

The human colorectal cancer cell lines HCT116 and SW480, and mouse colon carcinoma cell line
CT26 were cultured in a complete RPMI 1640 growth medium (Thermo Fisher Scientific, CA, USA)
with 10% fetal bovine serum (Invitrogen, CA, USA), 3.5 g/L glucose (Thermo Fisher Scientific, CA,
USA), 10 mM HEPES (Thermo Fisher Scientific, CA, USA), and 1.0 mM sodium pyruvate (Thermo
Fisher Scientific, CA, USA) at 37 ◦C in an incubator of 5% CO2 and 95% air.
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The following antibodies were used in this study: anti-PD-L1 (ab205921, clone 28-8, Abcam,
Cambridge, UK) anti-PD-L1 (#13684, clone E1L3N, Cell Signaling Technology, MA, USA), anti-β-actin
(sc-8432, Santa Cruz, CA, USA), anti-DNMT3a (sc-365769, Santa Cruz, CA, USA), anti-DNMT1
(sc-271729, Santa Cruz, CA, USA), anti-p-signal transducer and activator of transcription 1 (p-STAT1,
sc-8394, Santa Cruz, CA, USA), anti-STAT1 (sc-464, Santa Cruz, CA, USA), anti-interferon regulatory
factor 1 (IRF1, sc-514544, Santa Cruz, CA, USA), and horseradish peroxidase (HRP)-conjugated
secondary antibodies (Santa Cruz, CA, USA).

Lentiviruses carrying individual shRNA were obtained from the National Core Facility for
Manipulation of Gene Function by RNAi, miRNA, miRNA sponges, and CRISPR/Genomic Research
Center, Academia Sinica, Taipei, Taiwan.

2.2. Western Blot Analysis

Total lysates (30 µg) were separated via 6%–12% SDS-PAGE, transferred onto PVDF membranes
(Millipore, MA, USA) [26,27], blocked with 5% nonfat milk, incubated with specific antibodies (in 1%
non-fat milk) overnight at 4 ◦C, and probed with HRP-conjugated secondary antibodies. The blot
membrane was then incubated with Immobilon Western Chemiluminescent HRP Substrate (Millipore,
MA, USA), analyzed by an ImageQuant™ LAS 4000 biomolecular imager (GE Healthcare, Amersham,
UK), processed with Adobe Photoshop, and quantified by using ImageJ software (NIH, MD, USA).
Each blot was stripped by an immunoblotting stripping buffer (BioLion Tech., Taipei, Taiwan) before
incubating with the other antibodies.

2.3. Evaluation of the Immunogenic TME Induced by Chemotherapeutic Drugs

Six-week-old female BALB/c mice were administrated according to the institutional guidelines
approved by Institutional Animal Care and Use Committee of China Medical University [Protocol
No.: CMUIACUC-2018-167]. Briefly, CT26 cells (1 × 106 cells/mouse) were suspended in 100 µL of
Matrigel, and they were then subcutaneously inoculated into the right flank of the mouse. After 7 days,
oxaliplatin (2.5 mg/kg/mouse, intratumoral injection) and 5-Fu (50 mg/kg/mouse, intraperitoneal
injection) were administered 3 times with 7-day intervals between injections (Figure 1C). The tumor
volume was measured and recorded every 3 days throughout the study. For the combination treatment
of decitabine (DAC) and OXP, 6-week-old female BALB/c mice were subcutaneously inoculated with
CT26 cells (5 × 105 cells/mouse) that were suspended in 100 µL 50% Matrigel in the right flank. After
7 days, oxaliplatin (6 mg/kg/mouse, intraperitoneal injection) was administered 4 times with 3-day
intervals between injections, and decitabine (20 µg/mouse) was administered for 5 consecutive days.
The tumor volume was measured every 3 days and then calculated by the formula: V = (L ×W2)/2. [L:
longest diameter; W: shortest diameter; and V: volume]. The mice were sacrificed at the end of the
experiments for further analysis by immunoblotting and immunohistochemistry.

2.4. Patient Tissue Specimens and Clinicopathological Characteristics and the Construction of a Tissue
Microarray (TMA)

The patient tissue samples used in our study were approved by the Institutional Research
Ethics Committee at the China Medical University Hospital on 21 March 2018 [Protocol number:
CMUH107-REC2-008], and the patients were informed before the use of their clinical material. Nineteen
patients were histologically and clinically diagnosed in the China Medical University Hospital between
2006 and 2014. The patients received FOLFOX-based preoperative neoadjuvant chemotherapy (neoCT)
and then surgery. The collected tissue specimens conformed to the criteria: >70% tumor cells in tumor
tissue (percentage of) and a corresponding normal mucosal tissue with distal region (>5 cm from the
edge of tumor region) [28]. Tissue microarrays (TMA) were constructed from 19 pre-neoCT biopsies
and post-neoCT resected surgical specimens [10]. A maximum of 60 punches were placed in a single
block with 2 mm diameter of each cylinder for embedding and sliding [29,30].
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Figure 1. FOLFOX-based preoperative neoadjuvant chemotherapy significantly upregulated the 
tumor programmed cell death 1 ligand 1 (PD-L1) level. (A) The SW480, HCT116 and LoVo colorectal 
cancer cell lines were treated with oxaliplatin (OXP, 10 M), irinotecan (CPT-11, 5 M), doxorubicin 
(DOX, 1 M) or 5-fluorouracil (5-Fu, 10 mg/mL) for 24 h and then analyzed by immunoblotting. The 
quantification of these results is shown (n = 3); ** p < 0.01 and *** p < 0.001. (B) SW480 cells were treated 
with oxaliplatin (OXP, 10 M), irinotecan (CPT-11, 5 M) or 5-fluorouracil (5-Fu, 10 mg/mL) for 24 h 
and then analyzed by flow cytometry. The quantification of these results is shown (n = 3); ** p < 0.01 
and *** p < 0.001. (C) BALB/c mice were inoculated with CT26 cells (1 × 106 cells/mouse) and then 
treated with OXP (2.5 mg/kg, intratumoral injection) and 5-Fu (50 mg/kg, intraperitoneal injection) 3 
times beginning on day 5, with 7-day intervals between injections. The tumors were resected from 
representative mice, and then they were homogenized and then analyzed by immunoblotting. The 
quantification of these results is shown (n = 3); ** p < 0.01 and *** p < 0.001. (D) The resected tumors 
from representative mice were stained for PD-L1 by immunohistochemistry. The quantification of 
these results is shown (n = 3); * p < 0.05 and *** p < 0.001. (E) Tumor samples from metastatic colorectal 
cancer patients (n = 19) were harvested before and after the patients received FOLFOX-based 
neoadjuvant chemotherapy (neoCT). Representative immunohistochemical images show the results 
from the patients’ pre-neoCT tumor biopsy and post-neoCT surgical tissue sample. Each parameter 
for the individual patients is shown. The histoscores (H-scores) for tumor PD-L1 expression indicated 
that neoCT impacts tumor PD-L1 expression (n = 19, Wilcoxon matched-pairs test, p < 0.001). Case 1: 
PD-L1 level was upregulated in response to FOLFOX regimen; Case 2: PD-L1 level was unresponsive 
to FOLFOX regimen. 

  

Figure 1. FOLFOX-based preoperative neoadjuvant chemotherapy significantly upregulated the tumor
programmed cell death 1 ligand 1 (PD-L1) level. (A) The SW480, HCT116 and LoVo colorectal cancer cell
lines were treated with oxaliplatin (OXP, 10 µM), irinotecan (CPT-11, 5 mM), doxorubicin (DOX, 1 mM)
or 5-fluorouracil (5-Fu, 10 mg/mL) for 24 h and then analyzed by immunoblotting. The quantification of
these results is shown (n = 3); ** p < 0.01 and *** p < 0.001. (B) SW480 cells were treated with oxaliplatin
(OXP, 10 µM), irinotecan (CPT-11, 5 mM) or 5-fluorouracil (5-Fu, 10 mg/mL) for 24 h and then analyzed
by flow cytometry. The quantification of these results is shown (n = 3); ** p < 0.01 and *** p < 0.001.
(C) BALB/c mice were inoculated with CT26 cells (1 × 106 cells/mouse) and then treated with OXP
(2.5 mg/kg, intratumoral injection) and 5-Fu (50 mg/kg, intraperitoneal injection) 3 times beginning on
day 5, with 7-day intervals between injections. The tumors were resected from representative mice,
and then they were homogenized and then analyzed by immunoblotting. The quantification of these
results is shown (n = 3); ** p < 0.01 and *** p < 0.001. (D) The resected tumors from representative
mice were stained for PD-L1 by immunohistochemistry. The quantification of these results is shown
(n = 3); * p < 0.05 and *** p < 0.001. (E) Tumor samples from metastatic colorectal cancer patients (n = 19)
were harvested before and after the patients received FOLFOX-based neoadjuvant chemotherapy
(neoCT). Representative immunohistochemical images show the results from the patients’ pre-neoCT
tumor biopsy and post-neoCT surgical tissue sample. Each parameter for the individual patients is
shown. The histoscores (H-scores) for tumor PD-L1 expression indicated that neoCT impacts tumor
PD-L1 expression (n = 19, Wilcoxon matched-pairs test, p < 0.001). Case 1: PD-L1 level was upregulated
in response to FOLFOX regimen; Case 2: PD-L1 level was unresponsive to FOLFOX regimen.

2.5. Detection of the Surface PD-L1 Level on Tumor Cells

SW480, HCT116 and CT26 cells were treated with the indicated chemotherapeutic drugs for
24 h, and then the cells were collected with a dissociation buffer (Thermo Fisher Scientific, CA, USA).
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The cells were blocked with 5% bovine serum albumin (BSA, Invitrogen, CA, USA) and then stained
with an allophycocyanin (APC)-conjugated anti-PD-L1 antibody (clone 29E.2A3, BioLegend, CA, USA).
All events were acquired by a BD LSR-II flow cytometer (BD Biosciences, Mountain View, CA, USA),
and data were processed with the FlowJo software (TreeStar, Ashland, Oregon, USA).

2.6. Immunohistochemistry (IHC)

The antibodies used for immunohistochemistry (IHC) were as follows: anti-PD-L1 (Abcam,
Cambridge, UK), anti-mouse CD3 (BioLegend, CA, USA), anti-mouse CD8a (BioLegend, CA, USA) and
anti-mouse CD86 (BioLegend, CA, USA). Slides (3 µm thickness) were stained with the HRP-conjugated
Vectastain Elite ABC Kit (Vector Laboratories, CA, USA) according to the manufacture’s protocol,
incubated with DAB chromogen (Vector Laboratories) and counterstained by hematoxylin. The PD-L1
staining patterns were evaluated and scored based on the intensity and percentage of positive cells
for histoscore (H-score), which was calculated by a semiquantitative assessment of both the intensity
of the staining (0: negative staining; 1: weak; 2: moderate; and 3: strong) and the percentage of
immunopositive cells. The range of the H-score was from 0 to 300. The PD-L1 expression status was
categorized as low or high according to the median value of the H-score. Staining for CD3 and CD8a
was positive when detected in the intratumor-infiltrating lymphocytes (TILs) and was evaluated by
using a microscope under 400×magnification (no. of TILs/400X magnification) for evaluation [9].

2.7. RNA Sequencing (RNA-Seq) and Data Analysis

Total RNA was extracted from the resected tumors of the PBS, OXP, DAC, and DAC plus OXP
groups on day 5 (1 day after completing DAC treatment) by using the TRIzol reagent. Message RNA
was extracted from the total RNA and cut into short fragments with ~200 bases as templates for
cDNA synthesis. The cDNAs subsequently used to establish a cDNA library by PCR amplification
and sequenced by using an Illumina HiSeqTM 2500 platform [31]. Clean reads were obtained by
trimming the adaptor sequences from raw reads, and these reads were then were used for further
transcript annotation and calculation bases on the fragments per kilobase per million reads (FPKM)
method. Differential gene expressions (DEGs) were identified with the DESeq software package.
The Benjamini–Hochberg false discovery rate was employed to correct the p values with a significant
level set at 0.05 [31].

2.8. Administration of Mice with DAC Followed by Chemotherapy and PD-L1 Immunotherapy

A total of 5 × 105 CT26 cells in 100 µL of 50% Matrigel were inoculated into the right flank of the
BALB/c mice. The treatments were initiated on day 7 after tumor inoculation: DAC (intraperitoneal
injection, 10 µg/mouse for 3 consecutive days) and OXP (intraperitoneal injection, 2.5 mg/kg/mouse,
5 times with 3-day intervals between administrations). On day 11, a PD-L1 blockade was performed
(100µg/mouse, intraperitoneal injection, 4 times with 3-day intervals between administrations, Bio×Cell
clone 10F.9G2, NH, USA). Tumor volume (V) was calculated by the formula: V = (L ×W2)/2 every
3 days. The mice were sacrificed when the longest diameter reached 20 mm, and the survival of the
tumor-bearing mice was recorded every 3 days.

2.9. Statistical Analysis

All experiments were carried out at least 3 times. The statistical analysis was performed by using
the GraphPad Prism 7 statistical software (San Diego, CA, USA) with a two-way ANOVA followed by
Bonferroni’s post hoc test, a one-way ANOVA followed by Dunnett’s post hoc test, or an unpaired
t-test where appropriate. Data are expressed as mean +SD. A Student’s t-test was used to compare
the differences between two groups. A Kaplan–Meier survival analysis and the log-rank test were
used to compare the survival rates of the mice. p < 0.05 was considered to indicate a statistically
significant difference.
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3. Results

3.1. Preoperative Neoadjuvant Chemotherapy Stimulated Tumor PD-L1 Expression within Tumors in
Colorectal Cancer

Previous studies have demonstrated that DNA damaging agents elicit tumor PD-L1 upregulation,
especially double-stranded DNA (dsDNA) damaging drugs [32]. To evaluate the influences of
chemotherapeutic drugs on tumor PD-L1 expression, we treated human colorectal cancer cell lines
with these agents, which are extensively used in CRC patients. Doxorubicin (DOX), the topoisomerase
II inhibitor that is the dsDNA break inducer, was used as positive control for tumor PD-L1
upregulation [32]. We found that all first-line chemotherapeutic drugs that are used in colorectal cancer,
specifically 5-FU, OXP and irinotecan (CPT-11), provoked tumor PD-L1 expression upregulation to
different extents (Figure 1A). Among these drugs, the topoisomerase I inhibitor CPT-11 and, especially,
the alkylating agent OXP significantly increased tumor PD-L1 levels and surface PD-L1 expression
(Figure 1B). To confirm the effect of OXP on tumor PD-L1 expression in vivo, we analyzed resected
tumors from the BALB/c mice that received an OXP-based or 5-Fu-based chemotherapy regimen
(Figure 1C). We found that both 5-Fu and OXP remarkably increased the diverse extent of tumor PD-L1
expression. However, OXP was more profoundly involved in tumor PD-L1 expression upregulation and
membrane translocation (Figure 1C,D), suggesting that chemotherapeutic drugs efficiently mediated
tumor PD-L1 expression in vitro and in vivo.

To address the immunologic effect of chemotherapeutic regimen on the TME in colorectal cancer
patients, we analyzed 19 tumor tissue samples from patients with stage IV metastatic CRC before and
after received a neoadjuvant FOLFOX regimen (folinic acid, 5-FU and OXP: pre-neoCT biopsies and
post-neoCT surgical tissue samples). The patients’ characteristics are summarized in Table 1. Based
on the results of immunohistochemical analysis, our results showed that tumor PD-L1 expression
was significantly higher in the tissue samples after chemotherapy (pre-neoCT median H-score: 30;
post-neoCT median H-score: 130, p < 0.001, Figure 1E, case 1). Interestingly, FOLFOX chemotherapy
was associated with an increase of CD8+ TILs (Figure 1E, case 1). Taken together, these results support
the conclusion that chemotherapy-induced CD8+ TIL recruitment results in the release of IFNγ, which
upregulates PD-L1 expression, confirming that OXP-based preoperatively neoadjuvant chemotherapy
may provoke immunologic status for the application of immunotherapy in CRC patients.

Table 1. Characteristics of patients with colorectal cancer (n = 19).

Clinicopathological
Parameters

Total No. (%)
Pre-NeoCT Post-NeoCT

High Low High Low

19 2 17 12 7
Age
>65 7 1 6 4 3
<65 12 1 11 8 4
Sex

Female 5 1 4 2 3
Male 14 1 13 10 4

Primary tumor location
Colon 13 2 11 9 4

Rectum 6 0 6 3 3
Lymphovascular invasion

(LVI)
Present 11 1 10 7 4
Absent 8 1 7 5 3

Perineural Invasion (PNI)
Present 15 1 14 8 7
Absent 4 1 3 4 0

Expression level of each component was categorized as low or high according to the median value of the H-score.
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3.2. Pharmacologically-Induced DNA Demethylation Directly Triggered the Upregulation of Tumor
PD-L1 Expression

However, we found that tumor PD-L1 expression was not upregulated by preoperative FOLFOX
chemotherapy in a population of stage IV metastatic CRC patients (post-surgical specimens: tumor
PD-L1H (Figure 1E, case 1) vs. tumor PD-L1L (Figure 1E, case 2): 63% vs. 37%). Similarly, our previous
study indicated that the tumor PD-L1 level was not upregulated by preoperatively neoadjuvant
chemoradiotherapy (neoCRT) in 36% of locally advanced rectal cancer (LARC) patients (tumor PD-L1H

vs. tumor PD-L1L: 64% vs. 36%) [11,21], suggesting that other mechanisms may influence the
PD-L1 induction.

Previous studies have indicated that the DNA methylation of the PD-L1 promoter is associated
with PD-L1 expression [22,23]. Therefore, we aimed to evaluate the effect of DNA methyltransferase
(DNMT) inhibitors 5′-azacitidine (5-AC) and SGI-1027 (SGI) on PD-L1 expression. As shown in
Figure 2A, we found that PD-L1 level gradually increased according to the dose of the DNMT
inhibitor in colorectal cancer (Figure 2A). The surface expression of tumor PD-L1 was also significantly
upregulated by the DNMT inhibitor SGI-1027 (Figure 2B). Moreover, DNMT inhibitors synergistically
enhanced OXP-induced PD-L1 expression (Figure 2C) and membranous PD-L1 protein expression
(Figure 2C).

To investigate which DNMT protein participated in PD-L1 regulation, we overexpressed DNMT1
and DNMT3a, and then we examined the expression of PD-L1 (Figure 2D and Figure S1). These
results showed that the overexpression of DNMT1 clearly reduced PD-L1 expression, but DNMT3a
did not have a significant effect on the PD-L1 level. Furthermore, the overexpression of DNMT1
dramatically alleviated OXP-induced PD-L1 expression (Figure 2E). In contrast, knocking down
DNMT1 expression significantly increased PD-L1 expression (Figure 2F) and enhanced OXP-induced
PD-L1 expression (Figure 2G). Taken together, these results suggest that the tumor PD-L1 level is
directly regulated by DNMT1.

Our previous studies indicated that chemoradiotherapy-damaged tumor cells release IFNγ,
which remarkably promotes the upregulation of PD-L1 expression [21]. Indeed, we found that
the administration of IFNγ resulted in STAT1 phosphorylation and directly increased tumor PD-L1
expression (Figure 3A). Moreover, the effect of IFNγ on PD-L1 upregulation was dramatically increased
when cells were simultaneously treated with 5-AC (Figure 3B). The suppression of DNMT1 by
lentivirus-carrying shRNA against DNMT1 also significantly increased the effect of IFNγ on PD-L1
upregulation (Figure 3C). Conversely, the overexpression of DNMT1 clearly diminished IFNγ-induced
PD-L1 upregulation (Figure 3D). These results indicated that PD-L1 promoter methylation by DNMT1
may decrease IFNγ-induced PD-L1 upregulation.

To evaluate the therapeutic effects of the combination of OXP and DNA methyltransferase inhibitors
(DNMTi), we inoculated BALB/c mice with CT26 cells and treated the mice with the FDA-approved small
molecular DNMT inhibitor 5-aza-2′-deoxycytidine (decitabine, DAC, 20 µg/mouse by intraperitoneal
injection, i.p. injection) and OXP (6 mg/kg by i.p. injection). There was no significant body weight
loss in the DAC and OXP individual groups, but 5%–10% body weight reduction was observed in the
DAC and OXP group. As shown in Figure 4A, OXP alone slightly decreased tumor growth (Dunnett’s
test, p = 0.046), but DAC significantly decreased tumor growth (Dunnett’s test, p = 0.01). A profound
effect was observed in the DAC and OXP group (Dunnett’s test, p < 0.01, Figure 4A). Moreover,
the results of immunoblotting showed that the tumor PD-L1 protein level was highly increased, and the
phosphorylation of STAT1 and its downstream transcription factor IRF1 was significantly increased
in the resected tumors from the DAC and OXP group (Figure 4B). These results show that DNMT1
epigenetically controlled PD-L1 expression in CRC cells in vivo.
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Figure 2. Epigenetic modifications mediated by DNA methyltransferase 1 (DNMT1) directly inhibits 
tumor PD-L1 expression. (A) SW480 and HCT116 cells were treated with the DNA hypomethylation 
inducers 5-azacytidine (5-AC) and SGI-1027 (SGI) for 24 h and then analyzed by immunoblotting. The 
quantification of these results is shown on the right (n = 3); ** p < 0.01 and *** p < 0.001. (B) SW480 cells 
were treated with various concentrations of SGI-1027 for 24 and 48 h and then analyzed by flow 
cytometry. The quantification of these results is shown on the right (n = 3); ** p < 0.01 and *** p < 0.001. 
(C) SW480 were simultaneously treated with OXP (10 M), 5-AC (2.5 M) and SGI (2.5 M) for 24 h 
and then analyzed by immunoblotting. SW480 cells were simultaneously treated with OXP (10 M) 
and SGI (2.5 M) for 24 h and then analyzed by flow cytometry. (D) SW480 and HCT116 cells were 
separately transfected with hemagglutinin (HA)-DNMT1 and HA-DNMT3a for 48 h and then 
analyzed by immunoblotting. The quantification of these results is shown in Figure S1. (E) SW480 and 
HCT116 cells were separately transfected with HA-DNMT1 for 24 h and then treated with OXP (10 
M) for 24 h. Cell lysates were harvested and examined by immunoblotting. (F) SW480 cells were 
infected with a lentivirus carrying a negative control (NC), DNMT1 or DNMT3a shRNA. After 
selecting stable knockdown cells by puromycin selection, the cells were harvested and then analyzed 
by immunoblotting. The quantification of these results is shown on the right (n = 3); * p < 0.05 and ** 
p < 0.01. (G) SW480-shNC and SW480-shDNMT1 cells were treated with OXP (10 M) for 24 h. Cell 
lysates were harvested and then analyzed by immunoblotting. The quantification of these results is 
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Figure 2. Epigenetic modifications mediated by DNA methyltransferase 1 (DNMT1) directly inhibits
tumor PD-L1 expression. (A) SW480 and HCT116 cells were treated with the DNA hypomethylation
inducers 5-azacytidine (5-AC) and SGI-1027 (SGI) for 24 h and then analyzed by immunoblotting.
The quantification of these results is shown on the right (n = 3); ** p < 0.01 and *** p < 0.001. (B) SW480
cells were treated with various concentrations of SGI-1027 for 24 and 48 h and then analyzed by
flow cytometry. The quantification of these results is shown on the right (n = 3); ** p < 0.01 and
*** p < 0.001. (C) SW480 were simultaneously treated with OXP (10 µM), 5-AC (2.5 µM) and SGI
(2.5 µM) for 24 h and then analyzed by immunoblotting. SW480 cells were simultaneously treated
with OXP (10 µM) and SGI (2.5 µM) for 24 h and then analyzed by flow cytometry. (D) SW480 and
HCT116 cells were separately transfected with hemagglutinin (HA)-DNMT1 and HA-DNMT3a for
48 h and then analyzed by immunoblotting. The quantification of these results is shown in Figure S1.
(E) SW480 and HCT116 cells were separately transfected with HA-DNMT1 for 24 h and then treated
with OXP (10 µM) for 24 h. Cell lysates were harvested and examined by immunoblotting. (F) SW480
cells were infected with a lentivirus carrying a negative control (NC), DNMT1 or DNMT3a shRNA.
After selecting stable knockdown cells by puromycin selection, the cells were harvested and then
analyzed by immunoblotting. The quantification of these results is shown on the right (n = 3); * p < 0.05
and ** p < 0.01. (G) SW480-shNC and SW480-shDNMT1 cells were treated with OXP (10 µM) for 24 h.
Cell lysates were harvested and then analyzed by immunoblotting. The quantification of these results
is shown on the right (n = 3); * p < 0.05.
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Figure 3. DNMT1 influenced the IFNγ-mediated upregulation of PD-L1 expression. (A) SW480 cells
were treated with different concentrations of recombinant human IFN-γ (rhIFN-γ) for 24 h and then
analyzed by immunoblotting. The quantification of these results is shown on the right (n = 3); ** p < 0.01
and *** p < 0.001. (B) SW480 cells were cotreated with rhIFN-γ (10 ng/mL) and 5-AC (2.5 µM) for 24 h
and then examined by immunoblotting. The quantification of these results is shown on the right (n = 3);
** p < 0.01 and *** p < 0.001. (C) SW480-shNC and SW480-shDNMT1 cells were directly treated with
IFN-γ (10 ng/mL) for 24 h and then analyzed by immunoblotting. The quantification of these results is
shown on the right (n = 3); * p < 0.05 and *** p < 0.001. (D) SW480 cells were transfected with HA-vector
or HA-DNMT1 for 24 h and then treated with a high-dose of IFN-γ (40 ng/mL) for 24 h. Cell lysates
were harvested and then analyzed by immunoblotting. The quantification of these results is shown
on the right (n = 3); ** p < 0.01 and *** p < 0.001. These data were obtained from three independent
experiments, and the values represent the mean ± S.D.

In addition to the direct impact on PD-L1 expression, DAC has been reported to remodulate
the TME for immunogenicity [33], we conducted an RNA-seq analysis on the resected tumors from
these groups (Figure 4C and Figure S2). RNA-seq results suggested that the mRNA expression profile
was profoundly altered (Figure S2A). Lots of functional immune-related genes were differentially
expressed under DAC administration. Compared to the PBS group, the DAC group included more
than 149 significantly upregulated genes (red) and 15 significantly downregulated genes (Figure
S2B). A similar gene profile was observed in the DAC and OXP group, with 115 genes exhibiting
a significantly upregulated expression (red) and 26 genes exhibiting a significantly downregulated
expression (Figure S2C).

Furthermore, the levels of Ifng, Ifngr1, Irf1, Irf3, stat1, Cd274 (Pdl1) and Pdcd1lg2 (Pdl2) were
dramatically upregulated in the DAC-treated group and highly expressed in the DAC and OXP-treated
group (Figure 4C). The expression of Ifng and Cd274 (Pdl1) was validated by qRT-PCR. The level of
Cd274 (Pdl1) was significantly increased in the DAC-treated group and the DAC and OXP-treated
group. Similarly, an immunohistochemical analysis showed that the level and distribution of PD-L1
was strongly altered in the DAC-treated group and widely increased in the DAC and OXP-treated
group (Figure 4D). These results implied that the DNMTi may remodel the TME to promote PD-L1
expression in vivo.
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Figure 4. Decitabine synergistically increased the therapeutic response to immunogenic chemotherapy
in vivo. (A) Tumor-bearing BALB/c mice (n = 6) were treated with OXP (6 mg/kg, i.p. injection) and
decitabine (DAC, 20 µg/mouse, i.p. injection) at the indicated times shown on the timeline. Tumor
volume was measured and calculated every 3 days. The quantification of these results is shown
(n = 6); ** p < 0.01 and *** p < 0.001. (B) Resected tumors from representative mice were collected
for lysis and then analyzed by immunoblotting. The quantification of these results is shown (n = 3);
* p < 0.05, ** p < 0.01 and *** p < 0.01. (C) After treatment with DAC for 5 consecutive days, tumors were
resected from representative mice, analyzed by RNA-seq (n = 2), and validated by qRT-PCR (n = 3).
(D) Resected tumors from representative mice were analyzed by immunohistochemistry. Bar: 10 µm.
The quantification of these results is shown (n = 4); ** p < 0.01 and *** p < 0.01.

3.3. Decitabine Provokes Immune Signatures for Antitumor Immunity

Furthermore, we found that cytokine-associated genes (Tnfaip3, Ifit3b, Il1a, Isg15, Il1rn, Mx2),
chemokine-associated genes (Ccl6, Ccl2, Cx3cl1, Cxcl1, Cxcl10, Cxcl2, Ccl7, Cxcl9), STAT signaling,
and immune response genes (Sbno2, Icam1, Pf4, Lilrb4a, Spib, Rsad2) were activated after DAC exposure
(Figure 5A). Notably, the genes related to the immune response exhibited a significantly upregulated
expression (Figure 5A), which suggested that tumor immunogenicity may be improved by DAC.

To investigate potentially overactivated pathways, we performed a gene set enrichment analysis
(GSEA) to compare the gene profiles between the untreated and DAC-treated groups. The GSEA
of the untreated and DAC-treated groups revealed that the most enriched pathways were the IFNγ

response (Figure 5B), the IFNα response (Figure S3A), Janus kinase (JAK)/STAT signaling (Figure
S3B), and the inflammatory response (Figure S3C). Similar results were observed in the DAC and
OXP group, and the GSEA results showed the gene profiles for IFNγ response (Figure S4A), the IFNα

response (Figure S4B), JAK/STAT signaling (Figure S4C), and the inflammatory response (Figure S4D)
were significantly upregulated. In comparison with those of the untreated group, the affected genes in
the DAC-treated group were analyzed by Kyoto Encuclopedia of Genes and Genomes (KEGG) gene
ontology analysis (Figure 5C). Significantly dysregulated immune-related genes, such as the tumor
necrosis factor (TNF) signaling pathway, the chemokine signaling pathway, and the cytokine receptor
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pathway, were observed. These results suggested that DAC treatment may modify the transcriptomic
profiles of immune activation and the interferon signaling pathway genes to remodel the TME, and this
remodeling may recruit immune cells such as T cells for antitumor immunity. Indeed, the results of an
immunohistochemical analysis showed that increasing numbers of CD3+ and CD8a+ TILs infiltrated
into the tumor area after DAC treatment (Figure 5D). More intratumoral CD3+ and CD8a+ TILs were
observed in the DAC and OXP group than in any other group. The expression of the immunogenicity
marker CD86 was also increased in the DAC-treated group and the DAC and OXP-treated group,
suggesting that DAC may provoke tumor immunogenicity in vivo.
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Figure 5. Decitabine remodeled the immunogenicity of the tumor microenvironment in colorectal
cancer (CRC) in vivo. (A) Resected tumors from representative mice were analyzed by RNA-seq (n = 2),
and the expression of immune-related genes was significantly upregulated by DAC. (B) The gene
set enrichment analysis (GSEA) plot for the signature “interferon-γ response,” which represents a
set of IFN-γ-related genes that exhibited an upregulated expression after treatment with DAC for 5
consecutive days, is shown. (C) The immune-related gene numbers were plotted based on KEGG
classification, and the p value of each category. (D) Resected tumors from representative mice were
analyzed for CD3+ intratumoral-infiltrating lymphocytes (TILs), CD8a+ TILs, and CD86 expression
by immunohistochemistry (n = 4). Bar: 10 µm. The quantification of these results is shown (n = 4);
* p < 0.01, ** p < 0.01 and *** p < 0.01.

3.4. Improvement of the Therapeutic Effect of PD-L1 Immunotherapy with DAC and OXP

Since DAC could remodel TME immunogenicity to trigger T lymphocyte infiltration and directly
upregulate PD-L1 expression, we assessed the therapeutic response to a PD-L1 blockade (100 µg/mouse
by i.p. injection) with the additions of DAC (10 µg/mouse by i.p. injection) and OXP (2.5 mg/kg
by i.p. injection) (Figure 6A). BALB/c mice who had tumors were administered with various drug
combinations. The results showed that OXP with the PD-L1 blockade (n = 6) had a stronger effect
on tumor growth inhibition compared to PD-L1 blockade alone (Tukey t-test, p < 0.001, Figure 6A).
The relative tumor volume was significantly decreased (71.2% ± 6.0% vs. 47.1% ± 5.6%, respectively,
p = 0.0032, Figure 6B), and the survival rate was improved (Figure 6C, median survival in days: 34 vs.
45.5 days, respectively, log-rank test, p = 0.0207). DAC with the PD-L1 blockade (n = 6) also had a
significant effect on tumor growth compared to PBS with the PD-L1 blockade (Tukey t-test, p < 0.001,
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Figure 6A). The relative tumor volume was profoundly decreased (71.2% ± 6.0% vs. 39.1% ± 8.6%,
respectively, p < 0.001, Figure 6A), and survival times were prolonged (Figure 6C, median survival in
days: 34 vs. 50 days, respectively, log-rank test, p < 0.001) in the DAC with the PD-L1 blockade group
compared to the PBS with the PD-L1 blockade group. Moreover, the combinational treatment of DAC
and OXP with the PD-L1 blockade showed a larger inhibitory effect on tumor growth (Tukey’s t-test,
p < 0.001, Figure 6A) and produced smaller tumor volumes (71.2%± 6.0% vs. 23.8%± 7.8%, respectively,
p < 0.001, Figure 6B) and longer survival times (median survival in days: 34 vs. 59.5 days, respectively,
log-rank test, p < 0.001, Figure 6C) than PBS with the PD-L1 blockade. Therefore, our results suggested
that DAC not only modified the immunogenic TME to recruit more T lymphocytes but also directly
provoked tumor PD-L1 expression, creating a more accessible target for the PD-L1 blockade. Taken
together, DAC enhanced the therapeutic efficacy of the PD-L1 blockade and improved the survival
rate in CRC.
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Figure 6. Decitabine enhanced the therapeutic efficacy of anti-PD-L1 therapy in CRC in vivo.
(A) Tumor-bearing BALB/c mice (n = 6) were treated with OXP (2.5 mg/kg, i.p. injection), decitabine
(DAC, 10 µg/mouse, i.p. injection) and the PD-L1 blockade (100 µg/mouse, i.p. injection) at the indicated
times shown on the timeline. Tumor volume was measured and calculated every 3 days. The results of
the OXP and DAC alone groups are displayed in Figure S3. The quantification of these results is shown
(n = 6); ** p < 0.01 and *** p < 0.001. (B) Relative tumor volume was calculated. The quantification
of these results is shown (n = 6); * p < 0.05 and *** p < 0.001. (C) Mouse survival was assessed with
Kaplan–Meier survival curves (n = 6); * p < 0.05, p < 0.01 and *** p < 0.001.

4. Discussion

In this study, we found that the epigenetic modification on PD-L1 promoter by DNMT1 influenced
PD-L1 expression. Moreover, the inhibition of DNMT1 activity not only upregulated the PD-L1 level
but also remodeled the immunogenicity within the tumor microenvironment in vitro and in vivo.
DAC combined with immunogenic chemotherapy profoundly enhanced the therapeutic efficacy
of anti-PD-L1 immunotherapy in colorectal cancer. Taken together, our results showed that TME
remodulation by DAC profoundly enhanced PD-L1 expression for targeting by the PD-L1 blockade.
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Anti-PD1/PD-L1 immunotherapies have achieved exciting clinical outcomes in several
malignancies, such as non-small cell lung cancer (NSCLC), bladder cancer and melanoma. However,
the overall response rate of PD-1/PD-L1 immunotherapies in solid tumors is less than 30% because the
inhibitory status within the TME largely impairs therapeutic efficacy. The intensity of the immune
response within the TME such as the density of TILs, the PD-L1 status, and the microsatellite instability
(MSI) profoundly determines the efficiency of immunotherapy. Our previous studies demonstrated that
preoperative chemoradiotherapy (neoCRT) promotes CD8+ TIL infiltration for IFNγ secretion, driving
PD-L1 upregulation in tumor cells [9,10,21]. Consistent with our previous studies, this study indicated
that both 5-FU and OXP, the first-line chemotherapeutic drugs for CRC, directly triggered tumor PD-L1
upregulation in vitro and in vivo. Similar phenomena of tumor PD-L1 expression upregulation were
observed in metastatic CRC patients who preoperatively received a FOLFOX-based (Folic acid, 5-FU and
OXP) chemotherapy regimen. These results are consistent with the adaptive immune resistance, which
is defined as a compensatory mechanism of tumor escape within the TME [13,34–36]. The upregulation
of tumor PD-L1 in response to IFNγ from CD8 T cells is an adaptive immune resistance mechanism
that similarly occurs in response to FOLFOX- and Xeloda-based chemotherapy [34,36]. This finding
could represent an adaptive immune resistance mechanism to escape the impact of chemotherapy via
tumor PD-L1 upregulation, which could be easily targeted by the PD1/PD-L1 blockade.

More attractively, our results showed that few patients displayed a low tumor PD-L1 level within
the TME even after neoadjuvant chemotherapy treatment. Therefore, remodeling low immunoreactivity
(cold tumor) into high immunoreactivity (hot tumor) within the TME has become more important for
therapeutic strategies, such as dendritic cell (DC) vaccines and radiotherapy. Recent findings have
shown that hypermethylation of the PD-L1 promoter is associated with poor overall survival (OS)
and recurrence-free survival (RFS) and can be considered an independent prognostic factor in
several malignances such as colorectal cancer, prostate cancer, acute myeloid leukemia (AML) and
melanoma [22–25]. In addition, the expression of PD-L1 is regulated by DNA methylation in response
to transforming growth factor-β (TGF-β) or nuclear factor kappa B (NF-kB) signaling in non-small cell
lung cancer [37]. Consistent with these findings, we found that the hypermethylation of the PD-L1
promoter in colorectal cancer was associated with a decreased PD-L1 expression and influenced the
response to IFNγ signaling. Moreover, we demonstrated that PD-L1 expression could be altered
in human colorectal cancer by using DNA hypomethylating agents, providing more information about
enhancing the response to the PD1/PD-L1 blockade.

Furthermore, our results showed that DNA hypomethylating agents can modify immune
profiles by demethylating DNA promoter regions, and this effect can increase the expression of
immune-associated genes, such as cytokine genes, and activate chemokine gene signatures. These
results clearly indicated that the intensity of the immune response within the TME was changed by DAC.
Moreover, increasing evidence has shown that DNA hypomethylation inducers can remarkably improve
the expression of tumor-associated antigens (TAA) in several malignancies [38–40]. Our findings also
revealed that DAC could revoke and reactivate tumor-related genes, boosting host-tumor immune
responses and promoting the intratumoral infiltration of T cells in vivo [41]. These results implied
that the FDA-approved DNA hypomethylation inducers 5′-azacitidine and decitabine may be the
ideal pretreatment drugs for immunotherapy [42]. Consistent with our results, Yu et al. demonstrated
that low-dose decitabine administration improves the immunogenicity within the TME in vivo [33].
Furthermore, Chiappinelli et al. also reported that DNMTi directly trigger the type I interferon
response, which sensitizes melanoma to anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4)
immunotherapy [43]. Similarly, our results showed that DAC altered the molecular characteristics of
cancer cells so that the cells became more immunoresponsive, resulting in the remodeling of the TME
and increasing the infiltration of immune cells into the tumor site for the immunomodulation of the
tumor. Moreover, our colorectal cancer animal model showed that a DNA hypomethylating agent has
the potential to alter the immune profiles in MSS CRC (CT26 cells have been proven to be MSS [33,36]).
In addition, the combined DAC and PD-L1 blockade profoundly delayed CT26 tumor growth and
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prolonged the survival rate. Our findings suggest that the therapeutic strategy of the combined DAC
and PD-L1 blockade would be effective in metastatic CRC.

5. Conclusions

Collectively, we have provided promising therapeutic strategies for boosting the low response
rate to the PD1/PD-L1 blockade in CRC patients. DAC remodeling the TME could create more feasible
conditions for anti-PD-L1 immunotherapies, especially for MSS-CRC patients. However, further
studies are needed to determine whether the methylation of the PD-L1 promoter influences the survival
outcomes of CRC patients who are treated with the PD-L1 blockade.
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