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Enabled by advancing technology, coral reef researchers increasingly prefer use of image-
based surveys over approaches depending solely upon in situ observations,
interpretations, and recordings of divers. The images collected, and derivative
products such as orthographic projections and 3D models, allow researchers to study
a comprehensive digital twin of their field sites. Spatio-temporally located twins can be
compared and annotated, enabling researchers to virtually return to sites long after they
have left them. While these new data expand the variety and specificity of biological
investigation that can be pursued, they have introduced the much-discussed Big Data
Problem: research labs lack the human and computational resources required to process
and analyze imagery at the rate it can be collected. The rapid development of unmanned
underwater vehicles suggests researchers will soon have access to an even greater
volume of imagery and other sensor measurements than can be collected by diver-piloted
platforms, further exacerbating data handling limitations. Thoroughly segmenting (tracing
the extent of and taxonomically identifying) organisms enables researchers to extract the
information image products contain, but is very time-consuming. Analytic techniques
driven by neural networks offer the possibility that the segmentation process can be greatly
accelerated through automation. In this study, we examine the efficacy of automated
segmentation on three different image-derived data products: 3D models, and 2D and
2.5D orthographic projections thereof; we also contrast their relative accessibility and utility
to different avenues of biological inquiry. The variety of network architectures and
parameters tested performed similarly, ~80% IoU for the genus Porites, suggesting
that the primary limitations to an automated workflow are 1) the current capabilities of
neural network technology, and 2) consistency and quality control in image product
collection and human training/testing dataset generation.
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1 INTRODUCTION

Unmanned remote sensing platforms offer the prospect of collecting for monitoring and analysis
vastly more image-based data than was previously possible. In particular, the high-resolution
imagery made available by the IKONOS and MODIS satellites revolutionized macroecological
studies across terrestrial habitats (Pfeifer et al., 2012). In the marine sciences, these technologies have
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enabled observation of the entirety of the planet’s oceans
regularly. However, the opacity of water prevents similarly
comprehensive viewing of the ocean floor beyond the
shallowest areas. Capabilities of unmanned underwater
vehicles (UAVs) for closer, finer-scaled inspection are not as
well-developed as satellites but are advancing rapidly. In shallow,
nearshore environments like coral reefs, ecological research
groups are increasingly transitioning away from diver-recorded
data to manned underwater imagery surveys—analogous to what
a UAV would collect—that can be archived and analyzed
(Weinberg, 1981; Gracias and Santos-Victor, 2000).

Using structure from motion (SfM) algorithms, 3D models of
reef tracts can be derived from survey imagery (Pizarro et al.,
2009; Smith et al., 2016; Edwards et al., 2017; Ferrari et al., 2017;
Kodera et al., 2020; Sandin et al., 2020), enabling analysis in a data
medium that much more closely resembles real-world coral
environments, particularly in steep or geometrically-complex
areas that are common in reefs but poorly captured with top-
down imagery. A variety of metrics, including percent cover,
growth, species composition, or disease or bleaching incidence
can be extracted from 3Dmodels, or 2D orthographic projections
(orthoprojections) thereof, using random point sampling or full
semantic segmentation (i.e., labeling per-point, per-taxa;
hereafter referred to simply as segmentation). Image-based
data increases the amount of information collected from a
field site relative to in situ observation approaches, but it
introduces new data extraction challenges: it is much simpler
to amass a library of thousands of reef sites than it is to extract the
ecological information contained in that library.

Neural networks and other computational/algorithmic
processing and analytical strategies offer hope that such
backlogs can be cleared. A number of studies have evaluated
automated segmentation methods, both neural-network-based
and otherwise, for classifying (applying a label to an entire scene)
or segmenting (applying labels per-pixel) 2D images of coral
(Beijbom et al., 2012) or orthoprojections of 3D models of coral
reefs (Alonso et al., 2017, 2019; Alonso and Murillo, 2018; Yuval
et al., 2021). Beyond coral applications, neural networks for top-
down photographic media have been tested in 2D, 2.5D (RGBD),
3D, and hybrid formats in contexts such as satellite imagery with
promising results (Mohammadi et al., 2019; Bachhofner et al.,
2020; Saralioglu and Gungor, 2020; Song and Choi, 2020). More
generically, many studies have examined 2D, 3D, and hybrid
methods of segmentation, with the two most common
applications being 1) scene analysis to inform automated
decision-making for driverless cars, grasping arms, and other
robotic applications, and 2) rapid or assisted interpretation of
diagnostic medical imagery. Development in these fields is quite
rapid, but as of this date no automated solution exists to segment
corals with the accuracy desired by coral scientists hoping to
reliably track growth on the scale of, in some cases, mere
millimeters per year.

In this study, we compare the performance of 2D, 2.5D, and
3D segmentation neural networks on 10 m × 10 m reef
pointclouds, and 2D and 2.5D orthoprojections thereof, from
Palmyra Atoll in the Pacific. We aim to contribute to the effort of
evaluating the utility of neural-network-expedited segmentation

workflows, as well as mapping out scenarios where inexpensive
and fast 2D analysis is adequate and those where benefits of 3D
are substantial.

2 MATERIALS AND METHODS

2.1 Photographic Survey, 3D Model and 2D
Orthoprojection Derivation
The details of our field sampling design have been discussed in
detail elsewhere (Edwards et al., 2017; Fox et al., 2019; Kodera
et al., 2020; Sandin et al., 2020). Briefly, the photographic surveys
were conducted by a pair of divers within 100 m2 plots positioned
along the 10m isobath in oceanic fore reef habitats. Utilizing a
custom-built frame containing two Nikon d7000 DSLR cameras
mounted in tandem, the diver operating the camera collected
imagery via a lawnmower pattern 1.5 m above the site, with
cameras set to a 1 s interval timer and oriented straight down in
the direction of gravity (as opposed to perpendicular to the
surface plane of the reef). The first camera was equipped with
a wide angle 18 mm lens to ensure the substantial overlap
required for accurate 3D model reconstruction, while the
second was equipped with a 55 mm lens to provide the visual
detail needed to disambiguate complex species-level
identifications. During each survey, a series of scale bars and
boundary markers were placed throughout the plot, which are
visible in the final reconstructed model. At each plot boundary
marker, a second diver recorded depth information to establish
orientation of the plot relative to the plane of the ocean surface.

The details of the technical processing software used to
generate the 3D models have been described previously
(Westoby et al., 2012; Sandin et al., 2020). Briefly, the models
used in this study were created with Photoscan, now known as
Metashape, which is developed by Agisoft LLC. Scale bars and
depth measurements were used as ground control points to
determine scale and orientation. The resulting model is a
pointcloud: a list of points with XYZ spatial coordinates and
corresponding RGB color values.

Pointcloud visualization and geometric analysis in this study
was performed in the software package Viscore, developed at UC
San Diego in the Cultural Heritage Engineering Initiative/Kuester
Lab (Petrovic et al., 2014; Fox et al., 2019; Sandin et al., 2020).
Viscore is a visual analysis platform that facilitates a number of
3D workflows useful for performing virtual fieldwork, including
interactive alignment and inspection of time-series site
representations, manual plot segmentation in 3D, import/
export/filtering of point subsets, and generation of
orthoprojected maps and digital elevation models.

2.2 Dataset
The models studied in this report were collected annually from
2013 to 2020 on Palmyra Atoll at a single 10 m × 10 m site. Top-
down 2D orthoprojections were derived for each 3D model at a
scale of 1 mm/pixel. Corresponding 2.5D versions of the
orthoprojections were produced by including the Z depth
value for each pixel. All Porites (a coral genus) within the
study site were traced by hand in Viscore. Therefore, every
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point/pixel had one of two possible labels: Porites or everything
else. For ingestion into neural networks, 3D models were split
into 1 m × 1 m patches along the X and Y axes (defined as the
plane of constant depth), while orthoprojections were split into
image patches 512 pixels on a side. This resulted in 100 1 m2 3D
patches and 400 512 × 512 pixel patches per year. Each 5122 pixel
patch corresponds to approximately 0.25 m2. These dimensions
were chosen because they had roughly similar memory impact in
our experiments, resulting in the use of equivalent batch size (8)
during training across all dimensionalities. 60% of patches from
years 2013–2019 (420 pointcloud patches, 1,680 image patches)
were randomly assigned to the training subset, while another 20%
each was reserved for validation and testing. To test how the
neural network models would perform on a model no part of
which was in the training set, the entire 2020 model was reserved
for separate testing.

Performance on data collected under different circumstances
than that which is in the training set is a critical metric when
trying to determine how useful an automated tool is. This concept
is known as generalization. It is analogous to the difference
between memorization and conceptual understanding—tools
that generalize well perform consistently across different times,
places, and contexts, while those that generalize poorly only
perform well on inputs that closely resemble examples they
have already seen. In the context of this study, a neural
network that generalizes well would accurately segment Porites
photographed anywhere in the world, with any camera, at any
time of day, etc., because it has developed an understanding of
how to distinguish Porites, while one that generalizes poorly
would only segment accurately when presented with Porites from
our single site on Palmyra between the years 2013 and 2019
because it has memorized how to make correct predictions in that
specific context. Automated tools that generalize well are much
more useful than those that do not.

Porites in each 10 m × 10 m plot were manually segmented in
Viscore by one of the authors (NP, CE, HR, or EA). Viscore offers
high-framerate 3D rotation and zooming, survey image draping,
and point labeling with adjustable-size paintbrushes to make the
manual segmentation process as easy and accurate as possible.
Which author segmented which plot is shown in Table 1. The
segmenters are separated into two categories: those with extensive
coral identification experience (“experts”), and those with less
(“non-experts”). All four of the authors also segmented the same
3 m × 3 m subsection of the 2020 plot to evaluate consistency
between ourselves.

2.3 Segmentation With Neural Networks
Unsegmented 3D pointclouds and derived 2D orthoprojections
can be used to investigate a variety of characteristics of ecological
importance, such as 3D reef structure and qualitative
observations of coral colony health. However, far more
information is available if each organism is identified and
segmented. Repeated surveys of a location depict the
recruitment, growth, and death of individual corals, so they
can be used to evaluate competition, successional states,
equilibrium, anthropogenic impacts, and more. Manually
segmenting a single square meter requires an average of
1 hour; at this rate, an expert working full time would need at
least a century to map every organism in the ~2000 pointclouds
thus far collected by the research labs contributing to this report.
Expediting segmentation is therefore necessary to make full use of
photographic survey products. Neural networks are the state-of-
the-art solution for segmentation of visual media such as images,
videos, and 3D models.

For this study, we tested SparseConvNet (SCN), a successful
point cloud segmentation neural network architecture (Graham
et al., 2018). SCN does not operate directly on pointclouds, but
instead voxelizes (the 3D equivalent of a pixel) the input pointcloud
to a chosen grid size. Voxels with side length 2 mmwere used for this
study. Smaller voxels increased computation time but did not
improve predictions. 3D computations are done sparsely,
meaning on a list of occupied voxels instead of as matrix
operations on every location whether it is occupied or not. Sparse
operations greatly improve speed and efficiency operations on data
in whichmost matrix locations are empty, which is the case with our
reef surface; there is no useful information above or below the
surface, so a 3D cube containing that surface is mostly empty space.
SCN is fast, simple, and provides the additional benefit of operating
on discretized locations, just as the 2 and 2.5D image segmentation
neural networks we used in this study do. For 2.5D segmentation we
used ESANet (Seichter et al., 2021), while 2D segmentation was done
with ESANet with its depth channel components disabled (in this
configuration it only considers RGB color information, as opposed
to color and depth). ESANet uses a ResNet-34 (He et al., 2015)
encoder with an additional “context module,” similar to those found
in the popular DeepLab architectures (Chen et al., 2018), for
detecting large-scale patterns. These architectures were chosen
because they perform well on publicly-available benchmarks and
are among the more commonly used.

All networks were trained with batch size 8 for 512 epochs
with the Adam optimizer (Kingma and Ba, 2015) and the cross

TABLE 1 | Coral segmenters, their experience, the plot(s) they traced, and IoU on the 3 m × 3 m subsection of the 2020 model relative to consensus.

Tracer Experience Years traced IoU v. consensus
on 2020 subsection

[%]

Hugh Runyan (HR) Non-expert 2013, 2014, 2018, 2019, 2020 88.6

Clint Edwards (CE) Expert 2016 93.7

Nicole Pedersen (NP) Expert 2015 94.1

Esmeralda Alcantar (AE) Expert 2017 92.4

- Mean: 92.2
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entropy loss function, using similar color, scale, and deformation
augmentations. During training, the networks were evaluated
with the 2013–2019 validation set and saved at regular intervals
(every 10 epochs), after which the best performing of the saved
versions were selected and then tested on the 2013–2019 and 2020
test sets. The results of these tests are shown in Table 2.

The difference between 2.5D and 3D neural networks is subtle.
2.5D neural networks operate in flat, two-dimensional windows
placed over an image; using, say, a 5 × 5 window of pixels, the
network searches for patterns in each of the RGB color channels,
as well as the Z depth channel, and combinations thereof. In a 3D
neural network, the analogous window would be 5 × 5 × 5.
Patterns of color are sought in different 3D shapes, just as in 2D
neural networks patterns of color are sought in 2D shapes. The
primary shortcoming of the 2.5D approach is that each pixel can
only contain one value for each of R, G, B, and Z—if two surfaces
share the same horizontal location in XY, only the one with the
higher Z value will be stored in an RGBD image.

2.4 Error Metrics
For training we used the cross-entropy loss function. To evaluate
predicted segmentations, we use the intersection over union
(IoU) error metric. For each class (meaning possible labels,
here just 1) Porites and 2) everything else), IoU is defined as
the intersection of the prediction and ground truth—the true
positive count—divided by the union of the prediction and
ground truth—the sum of the true positive, false positive, and
false negative counts: TP/(TP + FP + FN).

In contrast, accuracy is defined as (TP + TN)/(TP + TN + FP +
FN). Because prediction is relatively easy for most of the ~95% of
our plots that is not Porites, TN will be a very large number
relative to TP for the Porites class. If the automated segmentation
network identified 5% of the plot as Porites but it was entirely the
wrong 5%, it would still be 90% accurate, because only 10% of the
points are mislabeled (5% that should have been labeled Porites
but weren’t and 5% that should not have but were). This means
that segmentation accuracy is a less useful metric for performance
evaluation than IoU; IoU better reflects our goal of tracking the
growing edges of individual corals of specific genera that often
comprise only a small fraction of the total area of the plot.

3 RESULTS AND DISCUSSION

3.1 Consistency Amongst Labelers
All four authors that segmented the same 3 m × 3 m subsection of
the 2020 plot agreed on 76% of points that were labeled Porites by

at least one author, meaning that, of the points labeled Porites by
at least one segmenter, 76% of them were labeled Porites by all
four. These segmentations are illustrated in Figure 1, while the
disagreed-upon points are isolated in Figure 2. This bulk
disagreement metric is not ideal however, as it is likely to be
influenced by the number of segmenters (more people will
disagree more often than fewer people). We created a more
stable alternate accuracy metric by first creating a “ground
truth” from majority consensus labeled points (those labeled
Porites by at least three of us), and then calculated IoU error
against that ground truth for each labeler. Results are shown in
Table 1. The mean IoU of all labelers against majority consensus
ground truth was 92%, with the non-expert scoring the lowest
at 88%.

3.2 Automated Segmentation
Prediction IoU scores for the top-performing 2D, 2.5D, and 3D
neural networks as determined by validation IoU score are
reported numerically in Table 2, while a visual example of 3D
results is shown in Figure 3, corresponding to the same area of
the 2020 model that was used for the consistency experiment in

TABLE 2 | Highest automated segmentation accuracy of each neural network dimensionality as determined by validation IoU score.

Porites IoU (2013–2019
validation set) [%]

Porites IoU (2013–2019
test set) [%]

Porites
IoU (2020) [%]

2D 82.8 82.0 57.4

2.5D (RGBD) 83.1 81.4 45.0

3D 81.4 82.3 70.4

FIGURE 1 | 3D model showing agreement and disagreement amongst
manual segmenters. Dark background is consensus background, while blue
highlights show agreed-upon Porites by all four segmenters. Points
highlighted yellow were labeled Porites by three segmenters, red by two,
and purple by only one.
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Section 3.1. 2D, 2.5D, and 3D approaches performed similarly
(~80% IoU) on the 2013–2019 validation and test sets, but
performance on the 2020 plot held out of the training dataset
varied: the 3D network achieved the highest 2020 score (70.4%),
while the 2D network scored second highest (57.4%), and the
2.5D network scored the lowest (45.0%).

Prediction IoU scores on the 2013–2019 test set of the most
successful 3D network (as determined by validation IoU) are
broken down by year in Table 3. Scores were relatively stable,
ranging from 77.2% to 85.6%. Scores on the 2015, 2016, and 2017
models traced by experts were 84.6%, 85.6%, and 77.2%
respectively, while scores on non-expert-traced models were
78.5%, 83.1%, 85.3%, and 84.9%.

The consistency of performance across media dimensionality
is likely explained by a combination of factors. First and foremost,
our 2D and 2.5D orthoprojections are derived directly from the
3D model, which is constructed from top-down survey imagery.
As such, there is little in the 3D models that is not in the
orthoprojections because images were not captured from side-
on angles. While the extra dimensions offer additional
opportunities for pattern detection, if there is little difference
in significant information between the three input
dimensionalities, then there are few resulting additional
patterns for the higher-dimensional networks to detect. A
second important factor is that these 2D, 2.5D, and 3D neural
networks are algorithmically quite similar: they all depend on
cascaded multi-scale convolutional pattern detectors.
Fundamentally, neural networks are optimization problems
just like curve-fitting, and as in that simpler scenario there are
often a number of similarly-performing algorithmic alternatives
but none that are near-perfect without overfitting.

A third factor to consider is labeling errors and subjective
decisions, in both the training set and the ground truth used to
evaluate performance—it is possible that the accuracy/
consistency of our Porites training and testing dataset is only
~80%. If there are errors in training data, a neural network might
fail to learn useful information or learn incorrect information,
while errors in the validation and test sets introduce uncertainty
into performance metrics. As can be seen in Figures 1–3, much of
both segmenter disagreement and neural network error
concerned exact placement of coral colony boundaries. If
training data is inconsistent in those areas, the neural network
may not be able to learn how to be precise and consistent when
delineating boundaries, and if the validation/test data is
inconsistent in those areas it may be difficult to tell from
performance metrics like IoU if the network is right or wrong.

The comparison between contributing segmenters (Section
3.1, Table 1) suggested individual segmenters score ~90% by IoU

FIGURE 2 | 3Dmodel showing manual segmenter Porites disagreement
only. Points highlighted yellow were labeled Porites by three of four
segmenters, red by two, and purple by only one.

FIGURE 3 | Example of 3D neural network prediction (correct
predictions are highlighted blue, false positive predictions are red, and false
negative are yellow), corresponding to the same area as Figures 1, 2.

TABLE 3 | Automated segmentation accuracy of the 3D network on the 2013-
2019 test set broken down by year.

Year Porites IoU (test set)
[%]

2013 78.5

2014 83.1

2015 84.6

2016 85.6

2017 77.2

2018 85.3

2019 84.9
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when compared to a more reliable consensus segmentation.
However, that experiment was only conducted on one small
3 m × 3 m patch of reef where segmenters knew they would be
compared to one another. It is possible the segmenters were
fatigued or less careful when segmenting entire 10 m × 10 m
models and made more mistakes, especially as four of the seven
models were segmented by the least-experienced contributor
(HR). If the 2013, 2014, 2018, and 2019 segmentations
produced by the least-experienced author (HR) were indeed
more flawed, we might expect the neural network IoU
prediction scores on those years to be lower, but the per-year
results in Table 3 show that automated performance was
relatively consistent across years, and the lowest score (77.2%)
occurred on a model traced by one of the experts.

The better performance of the 3D network on the 2020 plot,
none of which was in the training set, could be because, while
color varies due to e.g. camera settings and lighting conditions,
3D structure is more consistent across samples. If this explanation
were correct, we would expect the 2.5D network to outperform
2D on the 2020 dataset because 2.5D also contains information
about physical structure, but that was not the case (Table 2). It is
possible that the 3D networks are also structurally smaller and
simpler than 2D or 2.5D networks because the latter are more
memory efficient and developmentally mature. More complex
networks often perform better, but sometimes become more
sensitive to small deviations in data distribution (generalize
more poorly).

Generally speaking, these results should not be expected to
consistently extrapolate to any coral dataset from anywhere on
the globe. This is especially true of performance on the 2020
dataset. Neural networks’ accuracy depend on a number of
factors, such as: the number of genera they are asked to
predict and the phenotypic plasticity of those genera, variation
in lighting conditions during photo surveys, including turbidity
and depth-dependent color changes, specifics of the camera
sensor and settings including resolution, white balance, focal
length, manual or autofocus settings, as well as the image
acquisition pattern, vagaries of the 3D reconstruction process,
and more. As shown by the relatively good and consistent
performance of all three dimensionalities on the 2013–2019
validation and test sets, neural networks can learn to account
for these variations if they are present in the training dataset—if
training and testing sets strongly resemble one another. The
variable and unreliable performance on the 2020 dataset
demonstrates a commonly-understood shortcoming of neural
networks: they often don’t perform well on samples from outside
the dataset on which they were trained. IoU scores on the 2020
dataset were dramatically lower, even though the 2020 dataset
was from the same geographic site on Palmyra as 2013–2019 data
(i.e., the corals were mostly the same, excepting a year’s worth of
growth and death) and all datasets were collected with similar
equipment and procedures. Many strategies have been developed
on how to limit performance loss on unseen data, generally
referred to as domain adaptation or domain generalization,
but they are beyond the scope of this report.

Coral researchers hoping to expedite segmentation with neural
networks should strive for consistency, comprehensiveness, and

quality control in field image collection methodology and manual
segmentation of training and validation data, but the results in
this report suggest automated performance loss is likely in
applications concerning unsegmented new survey sites or
resurveys of existing sites.

For most ecological applications, the neural network
prediction accuracy achieved in this study is not adequate, so
researchers must manually correct the automated predictions
before they can be used in analysis. Such human-in-the-loop
workflows (Pavoni et al., 2021) are more realistic at this time than
fully automated ones, and they have the added advantage of a
human expert verifying the segmentations as they are created.
Relying on automated predictions carries the risk of the accuracy
of those predictions changing without researcher detection,
resulting in mislabeled data and erroneous conclusions.
However, this manual editing and verification process is time-
consuming: in our experience, the time required to segment an
entire plot de novo and the time required to edit predictions is
often similar. Generally, the most time-consuming aspect of
manual segmentation is tracing complex boundaries.
Unfortunately, as illustrated in Figure 3, that is the area
neural network predictions tend to be least reliable, so
boundaries often must be segmented manually whether one is
editing imperfect predictions or segmenting de novo. Further,
Figures 1, 2 show that boundaries are also the place manual
segmenters are most likely to disagree. The boundaries of coral
segmentations can be viewed as zones of uncertainty, where
neither humans nor neural networks are reliable. Researchers
intending to use segmentations of image products to study mm-
scale growth at the boundaries of individual coral colonies are
advised to rigorously engage this topic.

3.3 Considerations of Data Dimensionality
While it is a well-vetted analytical approach, in many applications
working in 2D has significant shortcomings—largely arising from
a 2D model’s inherent limitations in fully representing a 3D
environment. Sites exhibiting greater geometric
complexity—with ledges and overhangs, or with branching
coral morphologies (e.g. Acropora)—cannot be fully
represented in either 2D or 2.5D. Aspects of 3D structure
unaffected by occlusion—colony height, say, or benthic slope
or rugosity—are representable in 2.5D but not in 2D. Another
more subtle issue arises concerning the direction of
orthoprojection: the pattern of occlusions, as well as the
relative density at which different parts of a site are (re)
sampled (for gridded models such as DEMs) both depend on
the chosen projection direction. Furthermore, 2D
measurements—distances, projected areas, angles, (non-
detrended) rugosity estimates—are all affected by the choice of
projection. Selecting the projection direction systematically and
consistently is especially important for making quantitative
comparisons (e.g. growth rates) across time series.
Orthoprojecting along the direction of gravity is often a
reasonable standard—however, many reefs contain habitats of
interest that feature steep slopes, or stark vertical structures,
especially on shallow reef flats and forereefs, both of which are
critical habitats for study. In such cases, orthoprojecting along the
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direction of gravity makes little sense as the projected area of
organisms in these habitats will represent a fraction of their true
footprint in 3D. Measuring the exact vertical direction
underwater can also be difficult and imprecise, which
introduces projection error—particularly undesirable when
trying to accurately measure a few millimeters of growth at
colony edges.

However, working in 3D presents its own set of challenges,
making greater demands than 2D on every stage of the workflow,
from acquisition to analysis to dissemination. Full 3D datasets are
much larger than 2D—orthoprojections range from 0.5–2 GB per
time point, with depths per pixel adding another ~1 GB, while the
3D models in this study range from 10 GB to 75 GB per time
point—and require significantly more computational power to
work with. This technical challenge is addressed by the Viscore
platform, allowing multi-year multi-site projects (easily totaling
several TB of data) to be inspected and annotated interactively on
commodity laptops.

Even with data-handling impediments removed, working in
3D is generally more difficult than in 2D. Reconstructing
complete 3D models (without holes) requires more
photographs, from more view-angles, than are required for
2D. In this work, we photograph primarily with the camera
pointed straight down: the resulting models are incomplete
underneath overhangs or on vertical surfaces where sight lines
are occluded. The peripheries of images, especially from wide-
angle lenses, capture much of the information necessary to build
accurate digital surrogates, but they nevertheless do not capture
the entirety of the 3D structure of the reef.

This incompleteness of 3D coverage complicates analysis.
Measuring colony size and growth is one example: while top-
down projected areas can be reliably measured in 2D (subject to
the 2D caveats discussed above), making similar measurements
in 3D (surface area and volume) requires more care. Measuring
total 3D surface area is relatively straightforward for well-
defined surfaces, but models resulting from incomplete
coverage (e.g., only top-down views) require a degree of
assumption or interpolation in areas of low coverage and
reconstruction point density. Further, estimates of volume
can be particularly problematic, as for many coral taxa they
require assumptions of where the coral skeleton ends and the
underlying substrate begins—information often not captured by
top-down imagery—though changes in volume can be more
reliably estimated. Scale and model resolution also have a

significant impact on 3D measures: coral often has much
more 3D surface area than 2D (particularly branching,
corymbose, and foliose forms), due to structures ranging
from m- or cm-sale (e.g., branches) to sub-mm corallite
walls, ridges, and other delicate features. Accurately
capturing 3D structure at such small scales is difficult. In an
ideal world the coral research community would work
exclusively with complete sub-mm resolution 3D models, but
that is not always practical.

Those coral researchers pursuing applications where the
drawbacks of 2D are relatively minimal (e.g., where the
morphology of the taxa of interest is not overly complex, the
bathymetry is relatively flat, the most useful information is
contained in color rather than 3D morphology) will likely
prefer 2D due to speed and simplicity. On the other hand,
those more concerned with geometric fidelity in complex
environments will prefer to operate with 3D pointclouds if the
necessary resources can be mustered.
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