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A novel graph convolutional neural 
network for predicting interaction 
sites on protein kinase inhibitors 
in phosphorylation
Feiqi Wang1*, Yun‑Ti Chen2, Jinn‑Moon Yang3 & Tatsuya Akutsu4

Protein kinase‑inhibitor interactions are key to the phosphorylation of proteins involved in cell 
proliferation, differentiation, and apoptosis, which shows the importance of binding mechanism 
research and kinase inhibitor design. In this study, a novel machine learning module (i.e., the WL 
Box) was designed and assembled to the Prediction of Interaction Sites of Protein Kinase Inhibitors 
(PISPKI) model, which is a graph convolutional neural network (GCN) to predict the interaction 
sites of protein kinase inhibitors. The WL Box is a novel module based on the well‑known Weisfeiler‑
Lehman algorithm, which assembles multiple switch weights to effectively compute graph features. 
The PISPKI model was evaluated by testing with shuffled datasets and ablation analysis using 11 
kinase classes. The accuracy of the PISPKI model with the shuffled datasets varied from 83 to 86%, 
demonstrating superior performance compared to two baseline models. The effectiveness of the 
model was confirmed by testing with shuffled datasets. Furthermore, the performance of each 
component of the model was analyzed via the ablation study, which demonstrated that the WL Box 
module was critical. The code is available at https:// github. com/ feiqi wang/ PISPKI.

Phosphorylation of proteins, which is central to various biological processes and the regulation of most aspects 
of cell  functions1, is a common but complex post-translational modification to modulate cell  proliferation2, 
 differentiation3, and  apoptosis4. Many studies about protein post-translational modification have effectively 
taken the biology field forward by using machine learning  methods5,6. A protein kinase is a phosphotransferase 
enzyme that catalyzes the transfer of phosphate ( PO3−

4  ) groups donated by high-energy adenosine triphosphate 
(ATP) molecules to specific residues in order to regulate activities of  proteins7–12. Because phosphorylation is 
an important biochemical process, protein kinases have been investigated as potential therapeutic  targets13–17. 
In addition, kinase inhibitors block the activities of kinases and are vital to inhibit the addition of phosphate 
groups to the target  protein18. Here, exploring the binding mechanism plays a crucial role on kinase inhibitor 
design. Many studies on the development of molecular drugs have focused on protein kinase inhibitors for the 
treatment of infectious  diseases19 and  cancers20.

During the process of protein phosphorylation, the γ-phosphate group of the ATP molecule is replaced by 
a hydroxide ion from water that is hydrolyzed to an inorganic phosphate ion existing in the  environment21. 
Afterward, protein kinases transport the inorganic phosphate ions to the residues of the protein  substrates22, 
which are typically serine, threonine, or tyrosine  residues23. Based on the specific phosphorylated residue, these 
molecules are classified as serine/threonine, tyrosine-specific, histidine-specific, and aspartyl/glutamyl protein 
 kinases24. Although there exist various classes of protein kinases, the characteristics of members of the same 
class are  homologous25,26. However, protein kinases can be incorporated into protein-ligand complexes that bind 
to molecular  inhibitors27 that block the transportation  process28. Kinase inhibitors interact with protein kinase 
residues via electrostatic forces, hydrogen bonding, and van der Waals forces at specific interaction sites. We 
define those atoms that have interactions with residues from protein kinases as the interaction sites for inhibi-
tors in this research.
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Bioinformatics is a versatile tool to research complicated biological processes, and machine learning continues 
to gain popularity for the development of tools to analyze biological data. A graph convolutional neural (GCN) 
network is a recently developed neural network to directly operate and analyze graphic structures and has been 
widely applied for analysis of protein-ligand complexes, structure-embedded graph  representation29, structure-
based virtual  screening30, prediction of binding  affinity31,32, and prediction of binding  residues34. Moreover, 
many novel algorithms have been proposed for solving specific biological issues in recent  years33. Although most 
previous studies have focused on issues with protein-ligand complexes, to our knowledge, there is no previous 
study on the prediction of the interaction sites of inhibitor molecules based on known protein kinase-ligand 
complexes. As compared with affinity prediction, the prediction of interaction sites with a GCN network is more 
intuitive, allowing for the collection of the features of protein kinase inhibitors for designing more effective drug 
design. Here, a novel machine learning module, the Weisfeiler–Lehman (WL) Box, was designed and a GCN 
network with WL Boxes was developed as a tool to predict the interaction sites of different classes of protein 
kinase inhibitors. The WL Box is based on an algorithm proposed in 1968 by Weisfeiler and Lehman to solve 
the graph isomorphism problem35. To the best of our knowledge, this is the first application of a GCN network 
to predict the interaction sites of protein kinase inhibitors. The result confirmed that the WL Box is an effective 
tool for the analysis of protein kinase inhibitors and drug prediction studies.

Results
Experiment. Database and datasets. Protein-ligand complexes and interaction sites were collected from 
the sc-PDB three-dimensional database of ligandable binding  sites36 and grouped by protein UniProt identifi-
cations from the Protein Data Bank37. In total, 1,064 protein-ligand complexes datasets of 22 protein kinases 
were extracted and categorized into 11 corresponding kinase classes as shown in Supplementary Information 
A. A program was developed to convert the mol2 file to a model input file consisting of the feature matrix 
F ∈ {0, 1}35×N and the structure adjacency matrix S ∈ {0, 1, 2, 3, 4}N×N for each inhibitor molecule consisting 
of N atoms from the protein-ligand complex. According to the mol2 format, there are 35 atom types and eight 
bond types. The categorical features of every atom were one-hot encoded as a color label and aligned with the 
feature matrix F. The bond defined as single, triple, dummy, unknown, and not connected were classified as TYPE 
1, a double bond as TYPE 2, an amide bond as TYPE 3, and an aromatic bond as TYPE 4. The TYPE 1 category 
consists of five bond types (i.e., single, triple, dummy, unknown, and not connected) in the dataset. Here, the sin-
gle bond is the most common bond type, and the remaining four bond types are rare. The structure adjacency 
matrix S is a record of the connection relationships between two atoms and their corresponding BOND TYPE 
of the inhibitor molecule. TYPE 0 can be used for any two atoms with bond types that are not mentioned in the 
the mol2 file.

Setup. An individual prediction model was established for each class of kinases. An inhibitor molecule with N 
atoms provides N data pairs (F, S) by assigning a specific mark to the label of each atom of feature matrix F. If a 
marked atom binds with a residue of the kinase, the corresponding output assigned a value of 1, otherwise, 0. The 
binding types between atoms and residues were ignored, as the binding state was the focus of this study. Each 
of the original datasets was expanded to the one with at least 2,560 positive and 2,560 negative samples by using 
the method described in “Dataset expander program” section, and the resulting expanded rates are shown in 
the last column of Table 2. The dataset was randomly split into three parts: one tenth positive/one tenth negative 
datasets into the test dataset, one tenth positive/one tenth negative datasets into the validation dataset, and rest of 
datasets into the training dataset, where three datasets were totally non-overlapping. Training datasets were used 
to train PISPKI models of each kinase class for several epochs, and models were evaluated by validation datasets 
at each epoch after training. Furthermore, bootstrapping was applied to the training and validation datasets to 
uniformly assign samples at each epoch. The program was developed with PyTorch38. As shown by the model 
setup in Table 1, early-stopping39 was set to 5 epochs to avoid overfitting issues and the accuracy of the sixth to 
last validation was recorded. After training was completed, the model was evaluated with the testing dataset.

Noise elimination. Multiple protein-ligand complexes consisted of the same protein (kinase) and ligand (inhib-
itor), but with different interaction sites. However, unique confusing events can occur, such as the existence of a 
kinase inhibitor with two crystal structures ( α and β ) and an atom of the inhibitor that binds with a residue of the 
kinase of crystal structure α but does not bond with any residue of crystal structure β.

To eliminate this type of noisy data, the notation B(K)
I  was used to denote inhibitor molecule I having M 

crystal structures on kinase K to represent a set consisting of all atoms binding with K. With B(K ,I)m  designating 
a binding atom set for one of the crystal structures composed of inhibitor I and kinase K, the following defini-
tion is obtained:

Then, for atom i of the inhibitor molecule I, the interaction state Y (K ,I)
i  for kinase K is determined by

B
(K)
I =

M
⋃

m=1

B(K ,I)m .

Y
(K ,I)
i =

{

1, i ∈ B
(K)
I ,

0, otherwise.
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Dataset expander program. Due to the limited number of original datasets (Supplementary Informa-
tion A Table S2), a dataset expander algorithm was developed inspired by the expansion method widely applied 
with image recognition datasets. A seed is randomly assigned to the reindex rows or columns of matrices, and 
the reindex operation � does not change the structure of the inhibitor molecule but creates a different input data 
pair. An example of the structure adjacency matrix expansion is shown in Fig. 1. Each input pair (F, S) from the 
original dataset is modified to a new pair utilizing the same seeds for F and S while maintaining the same output 
Y as follows:

where F ′ , S′ and Y ′ are the created feature matrix, structure adjacency matrix, and output, respectively. In addition, 
�r,c indicates that the reindex operation was applied to both rows and columns, whereas �r indicates application 

{

F ′ = �r,c(F, seed)
S′ = �r(S, seed)
Y ′ = Y

Table 1.  Model setup.

Components Parameters

WL Box 1 3 layers × 3 time steps

WL Box 2 3 layers × 3 time steps

Conv-layer 1

1 input channel

2 output channel

3 × 3 kernels

Conv-layer 2

2 input channel

5 output channel

3 × 3 kernels

SPP cofficient
feature matrix: 10

Structure matrix: 3

Dense layers 2000 neurons × 5 layers

Activation function Leaky ReLU

Ealry stopping 5 epochs

Dropout 0.05

Turn size
2048× 2(Training dataset)

256× 2(Validation dataset)

Batch size 16

Figure 1.  An example of the expander program.
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to rows only. By utilizing different seeds with an original pair, multiple different sample pairs can be obtained up 
to PNN = N ! , where N is the atom number of the inhibitor molecule. The batch process method of the expander 
program is shown in Algorithm 1. As mentioned in “Experiment” section, original datasets transformed from 
the mol2 format were collected with arrays of atoms in a particular order. The dataset expander program can also 
potentially support the model to improve compatibility with datasets collected from formats other than mol2. 

Algorithm 1 Dataset expander program

Input: Orignal feature dataset F; original structure dataset S; expansion rate r

Output: Enlarged feature dataset Fe ; enlarged structure dataset Se
1: original dataset length l ← len(F)

2: random seed seed ← random()

3: for x = 1 to l × r do

4: new feature matrix f ← reindexrow(F[x mod l], seed)

5: f ← reindexcolumn(f , seed)

6: Fe .append(f )

7: Se .append(reindexrow(S[x mod l], seed))

8: if x mod 10 == 0 then

9: seed ← random()

10: end if

11: end for

12: return Fe , Se

Benchmark experiment. The performance of the proposed PISPKI model was comprehensively evaluated 
by comparison with Support Vector Machine (SVM) and Convolutional Neural Network (Conv-Net) models as 
baselines, where the SVM model applies the radial basis function kernel and Conv-Net has a traditional architec-
ture consisting of two convolutional layers and a fully connected layer. Feature matrices with zero-padding were 
used as input for the baseline models. The highest accuracy of 10 repeated experiments was recorded. Compari-
son of the proposed PISPKI model and the two baseline models is shown in Table 2.

The accuracy of the PISPKI model to predict whether an atom from an inhibitor molecule is an interaction 
site or not mostly ranged from 83 to 86% for the different kinase classes, which was notably better than that of 
the two baseline models. In addition, both the Conv-Net and SVM models were unstable with different datasets 
of kinase classes, whereas the proposed model was not. Although the accuracy for the Circadian clock protein 
kinase was high, the prediction accuracy of the model is not necessarily high because the corresponding dataset 
contained only 16 protein-ligand complexes.

Table 2.  Comparison of the validation and test (%) performance of different models.

Kinase

Number of PLC*

Subclass Nmax

Conv-Net (%) SVM (%) PISPKI(%) Expansion rate (p/n)

Validation Test

3-Phosphoinositide-
dependent protein 
kinase

41 1 73 79.0 74.0 84.0 84.7 8/3

Aurora kinase 58 1 81 56.7 70.0 79.1 80.8 10/3

Circadian clock 
protein kinase 16 1 44 50.0 85.0 93.0 91.5 190/89

Cyclin-dependent 
kinase 280 1 67 76.0 68.3 86.7 85.1 2/1

Death-associated 
protein kinase 28 1 62 68.3 74.0 80.9 83.5 27/11

Dual specificity 
mitogen-activated 
protein kinase kinase

24 1 58 71.7 63.0 84.0 81.9 8/5

Glucokinase 20 1 55 78.3 75.0 85.5 85.5 25/9

Glycogen synthase 
kinase 40 1 74 61.7 67.0 84.4 85.5 11/3

Serine/threonine-
protein kinase 197 4 69 63.3 67.3 85.4 85.0 2/1

Tyrosine-protein 
kinase 99 5 93 56.5 65.9 84.4 86.7 3/1

Proto-oncogene 
tyrosine-protein 
kinase

17 1 76 73.3 65.0 83.6 79.5 180/60

Mitogen-activated 
protein kinase 244 4 87 78.8 64.9 86.9 87.5 1/1
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However, the expansion rate has no effect on the prediction of the interaction site, with the exception of 
extreme situations, such as the Circadian clock protein kinase mentioned above. Nonetheless, the performance 
of the model can be improved by applying a small number of expansion operations, as the accuracies of datasets 
with expansion rates of less than 3, such as the mitogen-activated protein kinase, tyrosine-protein kinase, serine/
threonine-protein kinase, and cyclin-dependent kinase, are stable at about 86%.

Performance evaluation with shuffled datasets. The effectiveness of the PISPKI model was further 
assessed with shuffled datasets. Due to the limited number, portions of the validation datasets were randomly 
extracted and the interaction sites were shuffled to create shuffled datasets. Consider two cases: (1) the PISPKI 
model could still predict the interaction sites of shuffled datasets with an accuracy equal to or greater than that 
of the testing datasets; and (2) the model is not compatible with shuffled datasets or the accuracy is obviously 
degraded. The baseline accuracy was set to 50% to denote the state “cannot work”, as such a situation is a binary 
classification issue. Case (1) suggests the model is compatible with both correct and incorrect data, indicating a 
problematic state, whereas case (2) confirmed the effectiveness of the model. The performances of the shuffled 
and testing datasets for each kinase class are compared in Fig. 2. The PISPKI model is incompatible with shuffled 
datasets, thereby validating its effectiveness.

Ablation study. To ensure and discuss the necessity of each part of the PISPKI model, an ablation experi-
ment was designed in which the performance of the model was assessed by removing components. In the experi-
ment, only four typical kinase class datasets with expansion rates of less than 3 were collected. Then, (1) two WL 
Boxes; (2) one WL Box; (3) and the Conv-layers were abandoned, and (4) 35 atom subtypes were merged into 
16 colors by combining the same types of chemical elements to successively construct four incomplete models, 
which are illustrated in Supplementary Information B. The performance of the incomplete models was com-
pared to that of the PISPKI model (Fig. 3).

The performance of the PISPKI model was significantly compromised by removing two WL Boxes from most 
datasets, which obviously decreased the accuracy. In addition, the model was incompatible with the mitogen-
activated protein kinase dataset, thereby confirming that the WL Box is the core of the PISPKI model. As shown 
in the third column of each dataset in the figure, reducing the number of WL Boxes to one had very limited 
influence on the model. However, compared with the full model, the performance of the truncated model was 
improved by adding extra WL Boxes. The convolutional layers seem to be an insignificant component of in 
most datasets, which still suggests potential advantages. Notably, the convolutional layers only process original 
structures and feature label information as mentioned in “Method” section. Although the WL Boxes process 
the feature and structure information more exquisitely, the original information processed by the convolutional 
layers facilitates inference of the interaction sites more accurately in complicated cases. In the last ablation 
experiment, the necessity of feature richness, which represents the quality of each feature, was tested. For this 
evaluation, datasets from mol2 files were collected, which encoded atoms in the SYBYL format that were further 
divided into 35 subtypes (color) and combined into 16 types (color) based on chemical elements as illustrated in 
Supplementary Information B Fig. S1(e). By the combination operation, the performance of the model with the 
different datasets decreased by various degrees. The results not only highlight the importance of SYBYL atom 
types but also serve as a reminder that the performance of the PISPKI model can be improved by enhancing 
feature richness.

In the ablation experiments, incomplete models were applied to examine differences in performance loss 
observed from the datasets. The effects on the cyclin-dependent kinase and serine/threonine-protein kinase datasets 
were very limited by applying incomplete models. However, the tyrosine-protein kinase and mitogen-activated 
protein kinase datasets had extremely low and high impacts, respectively. As mentioned above, the PISPKI model 
aims to solve the issue with interaction site prediction. However, there were multiple different sub-issues due to 

Figure 2.  Comparison of the performance of the shuffled and testing datasets.
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the kinase class, which is another reason why the accuracy of the baseline models was extremely variable with 
different kinase class datasets (Table 2).

Discussion
In this study, a novel machine learning model (i.e., WL algorithm-based GCN network) was designed and 
developed to predict interaction sites of protein inhibitors in phosphorylation. The accuracy of the model was 
consistently 83–86%, which can be greatly improved by applying datasets with low expansion rates compared to 
the two baseline models. The model performance can be improved by the addition of feature richness. At present, 
features are transformed from inhibitor molecules based on SYBYL atom types, which contain more information 
than chemical elements. More information about atoms can be collected to enhance the richness of features such 
as radius, atomic mass, formal charge, and aromaticity. In addition, the protein kinase residue information should 
also be used as input to the model. Furthermore, the limitation of datasets effects the model performance. This 
research was not only limited by input feature richness but also by the small number of datasets because there 
have been relatively few investigations to identify the interaction sites of inhibitor molecules. The spatial pyramid 
pooling (SPP) module facilitated compatibility of the model with inhibitor molecules having different number 
of atoms. Furthermore, the importance of the WL Box was confirmed by the ablation study (“Ablation study” 
section), which showed that the addition of multiple WL Boxes can enhance performance. Although applying a 
complicated model on a simple issue is not recommended owing to potential performance degradation because 
of excess trainable parameters, the PISPKI model can predict most interaction sites and solve other complicated 
biology issues. Hence, stable model performance is absolutely critical.

Method
Model. The architecture of the proposed PISPKI model is shown in Fig. 4. The model framework consists 
of four main parts: data preprocessing, WL Boxes, convolutional layers, and dense layers. First, each inhibitor 
molecule with N atoms is transformed to N pairs of feature matrices and structure adjacency matrices, where 
the ith atom is marked in the ith feature matrix to predict whether the corresponding atom is an interaction site. 
Note that the output of the model is assigned a value of 1 if the marked atom is predicted to be an interaction site. 
The feature matrices and structure adjacency matrices contain, respectively, atom and bond information of the 
molecules. Due to uncertainties about the number of atoms of the molecules, the sizes of the two matrices can be 
alterabled for different input data. Notably, zero-padding is not applied to satisfy all input data in the same size. 
After preprocessing, each pair of matrices is added to two submodules: WL Boxes and convolutional layers. The 
WL Boxes mainly process feature matrices using structure adjacency matrices as auxiliary information. Matrices 
with more significant features can be obtained from the output of WL Boxes; then the pooling layer processes 
new feature matrices into fixed-length vectors by applying the spatial pyramid pooling (SPP). By contrast, the 
convolutional layer processes structure adjacency matrices in which some atom information about the feature 
matrices is embedded in the diagonal elements, and the output is also processed by the SPP into a fixed-length 
vector. The resulting two vectors are concatenated as input to the dense layers for binary classification. Remark-
ably, the output vector from the pooling layer is obtained by combining the pooled results of the updated feature 
matrices and structure adjacency matrices, and the lengths of the vectors from the updated feature matrices are 
larger than those from the updated structure adjacency matrices, indicating that the output from the WL Boxes 
offers more information for the prediction of interaction sites by the classifier in the dense layer, thereby the WL 
Box module is the core of the PISPKI model.

Figure 3.  Ablation analysis.
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Preliminaries. Here, an inhibitor molecule is defined as an undirected graph denoted by G, which is repre-
sented by a 2-tuple (F, S), where F is a feature matrix representing the feature of the vertices and S is an adjacency 
matrix representing relationships among the vertices for N atoms and Ne type bonds. Set C = {c1, . . . , cm, . . . , cNc } 
consists of Nc color types, where each color cm is represented by an Nc-dimensional binary vector. For each color 
vector cm = (cm1 , c

m
2 , . . . , c

m
i , . . . , c

m
Nc
) , element cmi  is assigned a value of 1 if and only if m = i ; otherwise the ele-

ment is assigned a value 0.
Let G(V, E) be an undirected graph representing an inhibitor molecule, where V = {v1, . . . , vN } is a set of 

atoms and E is a set of edges. Information on atoms (i.e., vertices in G) is represented by a binary feature matrix 
F of size N × Nc in which each row corresponds to an atom and the corresponding row vector is a color vector 
representing the atom type. Information on the edges of G is represented by an adjacency matrix S of size N × N . 
Sij (i.e., the element of the ith row and jth column) is assigned a value of 0 if {vi , vj} /∈ E , otherwise matrix Sij 
denotes the bond type (i.e., Sij ∈ {1, 2, . . . ,Ne}).

Since graphs representing chemical structures are also considered, there is no self-loop; thus all diagonal 
elements of S are assigned a value 0. To effectively utilize the adjacency matrix, each vertex vi is assigned a label 
index li according to the feature matrix row color cm by

Then, the convolutional layer input matrix Sconv is obtained by the structure adjacency matrix S and the 
diagonal matrix as

Weisfeiler–Lehman algorithm. The Weisfeiler–Lehman (WL) algorithm, which was first proposed in 
1968 to solve the graph isomorphism problem35, has recently been widely applied in neural network models. For 
every vertex vi , features from neighboring vertices are aggregated and computed to update its own feature, which 
is computed as follows:

where x(·) and x′(·) are the original and updated features of vertices, respectively, and N(vi) denotes a set of 
neighboring vertices for vertex vi , while emb is an embedding function based on neighborhood aggregation that 
concatenates features from neighboring vertices of vi , and AGG is a custom function computing feature from 
the target vertex and its neighboring vertices. By implementing different functions, features can be updated in 
different ways. In addition, vertices can always have special features by several repetitions even with large graphs. 
Subsequently, the isomorphism of two graphs can be analyzed by examining the different features of updated 
set of vertices.

As mentioned in “Preliminaries” section, every vertex and edge have a solid color and label, respectively, 
and the colors of vertices are updated individually with the colors of the neighboring vertices and labels of the 
connected edge as illustrated in Fig. 5. The aggregation function is called mix, which can blend multiple colors 
together. Here, the mix ratio is dependent on the labels of the edges between the updated and neighboring 
vertices. After several repetitions of the algorithm, every vertex has a unique blended color as the feature in the 
inhibitor molecule graph.

li = m.

Sconv = S − diag(l1, l2, . . . , lN ).

(1)x′(vi) = AGG
(

x(vi), emb
{

x
(

vj
)

|vj ∈ N(vi)
})

,

Figure 4.  Architecture of the PISPKI model.



8

Vol:.(1234567890)

Scientific Reports |          (2022) 12:229  | https://doi.org/10.1038/s41598-021-04230-7

www.nature.com/scientificreports/

WL Box. The WL Box, which is the core of the PISPKI model, is based on the WL algorithm as described in 
“Weisfeiler-Lehman algorithm” section. A WL Box consists of L× T wl-neurons that are arranged by L layers 
and T time steps. Every layer contains T end-to-end wl-neurons and the feature matrix F is given an input for 
every first wl-neuron of the layers. Then, the wl-neuron updates the hidden state of the feature matrix in accord-
ance with the WL algorithm and the structure adjacency matrix S is applied as supplementary information. The 
updated hidden state of the wl-neuron transfers to the next wl-neuron in each layer for T − 1 time steps. The 
output of the last wl-neuron from the layer is an output of the WL Box. Hence, L new feature matrices can be 
obtained that contain more significant feature information in a WL Box. Furthermore, hidden states of feature 
matrices are updated in each layer individually, and there is no message exchange between layers in the box, as 
shown in Fig. 6.

The hidden state of a row is recurrently updated by

where h(t)l  represents the current hidden state of the wl-neuron of the layer l at time step t, in which l < L and 
t < T  ;  h(0)l  denotes the initial state of the first neuron of the layer l ,  and h(0)l = F  .  Let 
h
(t)
l = (h

(t)
l (1), h

(t)
l (2), . . . , h

(t)
l (N)) , and the ith row vector of h(t)l  is represented by h(t)l (i) ; w(t)

l,Sij
 , which is a train-

able switch weight (real number) depending on the layer, time step, and bond type Sij ∈ {0, 1, . . . ,Ne} , where w(t)
l,0 

equals zero in any wl-neuron regardless of the layers and time steps.
Finally, the hidden states of the last neuron of each layer l at time step T are combined to a tensor F[i, j, l] as 

the output of a WL Box after processing with the activation function by

where F  represents an output tensor of the WL Box, and F[−,−, l] denotes the lth block that is defined as a 
two-dimensional matrix consisting of all elements and the array from tensor F  when the index is equal to l in 
rank 3 in the tensor; σ is an activation function, and h(T)l  is the last hidden state of the lth layer at time step T. 
Besides, the structure adjacency matrix S is invariant during the process in the WL Box and can be completely 
delivered to the next module if needed.

Multiple WL Boxes. Multiple WL Boxes can be implemented sequentially to further improve the feature matrix 
of the model. Two WL Boxes are assembled for the model as shown in Fig. 4. Notably, the second WL Box, which 
differs from the first WL Box, receives a tensor F  as the input rather than matrix F, and so on. To get around this 

(2)h
(t)
l (i) = h

(t−1)
l (i)+

N
∑

j=1

w
(t)
l,Sij

h
(t−1)
l (j),

(3)F[i, j, l] = σ(h
(T)
l [i, j]),

Figure 5.  Weisfeiler–Lehman algorithm.
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issue, superscripts are sequentially assigned to the feature tensor F  , such as F (1), . . . ,F (M) and the layer number 
L, such as L(1), . . . , L(M) , denoting the output tensor and maximum layer number of the first to the Mth WL Box, 
respectively. The feature tensor of each WL Box is updated by

where F (m) and F (m−1) represent the output tensor of the mth and m− 1 th WL Box of the model, respectively; � 
denotes the WL update process function in a WL Box, as defined by Eqs. (2) and (3); F (m−1)[−,−, l] ∈ R

Nc×N is 
the lth block of F (m−1) , and F is the model input feature matrix. Every block F (m−1)[−,−, l] from tensor F (m−1) 
is assigned to the mth WL Box as an individual input, and all L(m−1) output tensors are concatenated into one 
tensor F (m) for the following computation operation.

Spatial pyramid pooling. The spatial pyramid pooling (SPP) layer is applied to normalize the output from 
the WL Boxes and convolutional layers in this study, which is a novel and effective machine learning module 
proposed by He in  201540. Different from classical pooling modules, SPP is a type of extensive research for region 
of interest operation, which further works with different sizes of pooling kernels in a matrix, and then concat-
enates the pooling results to a vector as the output. This also applies to hand-crafted pooling  regions41 over scales 
of kernels that are dependent on different sizes of input matrices and adopts the spatial pyramid operation to 
obtain more comprehensive pooled feature maps, which are then converted to a fixed length vector.

A spatial pyramid consists of multiple stages, and each stage runs a pooling operation using the correspond-
ing pooling coefficient. The notation k represents the pooling coefficient with k = 1, . . . ,K , where K is the stage 
number of a spatial pyramid. During each operation by the spatial pyramid, a hand-crafted kernel is applied, 
which yields precise k × k output from the inputted two-dimensional matrix. Due to differences in kernel size, 
each input is extended to

where F is a block of a tensor or matrix of Nc × N and �k is the matrix extension function for pooling coefficient k. 
By applying the function, F is extended to a matrix pk0 = R

k·⌈ Nc
k ⌉×k·⌈ N

k ⌉ , and all extended elements are equal to 0.
Here, the SPP layer receives two tensors F  and S from the last WL Box and the convolutional layer. Two 

spatial pyramids are constructed (with stage numbers KF and KS ) to individually compute the two tensors. The 
pooling operation works with every block KF and KS times for the input tensors F  and S , respectively. Maximum 
SPP is applied to the output tensor F  of the WL Box. For the kth stage of the spatial pyramid, each element of 
the xth column and yth row of matrix pkf  is computed by

(4)F (m) =

{

ConcatL
(m−1)

l=1
(�(F (m−1)[−,−, l])), m ≥ 2

�(F), m = 1

(5)pk0 = �k(F),

(6)pkf [x, y] =

I
∑

i=1

J
∑

j=1

pk0[I · (x − 1)+ i, J · (y − 1)+ j]/IJ ,

Figure 6.  Structure of the WL Box.
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where k denotes the pooling coefficient, k ∈ {1, . . . ,KF} ; pk0 is an extended matrix computed by Eq. (5); pk0[X,Y ] 
denotes the element of the Xth column and Yth row; (I, J) is the hand-crafted region in the kth stage, where 
I = ⌈Nc

k ⌉ and J = ⌈Nk ⌉.
Similarly, the average SPP was applied to the output tensor S from the convolutional layer. For the kth stage 

of the spatial pyrmaid, each element of the xth column and yth row of matrix pks  is computed by

where k denotes the pooling coefficient, k ∈ {1, . . . ,KS} ; pk0 is an extended matrix computed by Eq.  (5), 
pk0[X : I ,Y : J] denotes a submatrix collecting elements from Xth to (X + I) th columns and Yth to (Y + J) th 
rows; I and J constitute the hand-crafted region of the kth stage, where I = ⌈Nc

k ⌉ and J = ⌈Nk ⌉.
Finally, all elements are collated from the pooling matrices to an output vector as

where � is a function that converts a matrix to a vector, such as �(p2f ) = (p2f [1, 1], p
2
f [1, 2], p

2
f [2, 1], p

2
f [2, 2]).

Then, the output of the SPP layer is sent to a binary classifier for interaction site prediction by the dense layer.
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