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In this work, we establish a fractional-order neural field mathematical model with Caputo’s

fractional derivative temporal order α considering 0 < α < 2, to analyze the effect

of fractional-order on cortical wave features observed preceding seizure termination.

The importance of this incorporation relies on the theoretical framework established by

fractional-order derivatives in which memory and hereditary properties of a system are

considered. Employing Mittag-Leffler functions, we first obtain approximate fractional-

order solutions that provide information about the initial wave dynamics in a fractional-

order frame.We then consider the Adomian decompositionmethod to approximate pulse

solutions in a wider range of orders and longer times. The former approach establishes

a direct way to investigate the initial relationships between fractional-order and wave

features, such as wave speed and wave width. In contrast, the latter approach displays

wave propagation dynamics in different fractional orders for longer times. Using the

previous two approaches, we establish approximate wave solutions with characteristics

consistent with in vivo cortical waves preceding seizure termination. In our analysis, we

find consistent differences in the initial effect of the fractional-order on the features of

wave speed and wave width, depending on whether α < 1 or α > 1. Both cases can

model the shape of cortical wave propagation for different fractional-orders at the cost

of modifying the wave speed. Our results also show that the effect of fractional-order

on wave width depends on the synaptic threshold and the synaptic connectivity extent.

Fractional-order derivatives have been interpreted as the memory trace of the system.

This property and the results of our analysis suggest that fractional-order derivatives and

neuronal collective memory modify cortical wave features.

Keywords: traveling wave, cortical wave propagation, fractional-order derivative, neural fields, memory effect

1. INTRODUCTION

Fractional-order derivatives have been employed to pursue a deeper understanding of different
physical and biological processes, as these are thought to account for more realistic dynamic
features. Fractional derivatives provide a framework in which the memory and hereditary
properties of a system are taken into account (Ross, 1974; Podlubny, 1999; Ishteva, 2005; Ortigueira
and Tenreiro Machado, 2015; Tarasov, 2018), in comparison with integer-order systems in which
these features are not considered.
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Although the exact physical interpretation of a fractional-
order derivative remains an open problem, progress has been
made in this direction. In Podlubny (2002), a geometrical
interpretation of a fractional-order derivative was developed and
it is suggested to express an inhomogeneity of the time scale.
When applied in the temporal order, fractional derivatives may
exert an influence on the effect of the delays of signals or history-
dependent dynamics (Podlubny, 2002;Wang and Li, 2011). InDu
et al. (2013), among others, it was established that the fractional-
order derivative acts as an index of memory, meaning that
the present state of a system is influenced by its past states.
On the other hand, space fractional derivatives may describe
the inhomogeneity of a medium. A space fractional derivative
of order near two may represent anomalous diffusion, having
non-local and possibly long-range interactions (Podlubny, 1999;
Metzler and Klafter, 2000; Sokolov and Klafter, 2005; Chen et al.,
2010).

In neuroscience, fractional-order derivatives have been
applied to model dynamics of a single neuron in the Hodgkin-
Huxley model (Baleanu et al., 2012; Nagy and Sweilam, 2014;
Santamaria, 2015;Weinberg, 2015; Teka et al., 2016; Coutin et al.,
2018), to the FitzHugh-Nagumo model (Pandir and Tandogan,
2013; Armanyos and Radwan, 2016), to model electrically
coupled neuron systems (Moaddy et al., 2012), to bursting
neuron models (Mondal et al., 2019), and to Cable equations
(Henry et al., 2008; Langlands et al., 2009; Sweilam et al., 2014;
Vitali et al., 2017; Yang et al., 2017), among others. In particular,
in the Hodgkin-Huxley model, fractional derivatives of order less
than 1 - which model the influence of the membrane potential
memory- have been shown to affect the spiking diversity of the
model (Santamaria, 2015; Weinberg, 2015; Teka et al., 2016).

Neural field models have been widely employed to describe
mean neuronal population activity during hallucinations
(Ermentrout and Cowan, 1979; Bressloff et al., 2001; Butler et al.,
2012), the spreading of seizures (Connors and Amitai, 1993;
Stefanescu et al., 2012; Zhao and Robinson, 2015; Kuhlmann
et al., 2016; Jirsa et al., 2017; Proix et al., 2018), and many others
(Coombes et al., 2014). To our knowledge, fractional-order
neural field models have not been yet established in the literature.
The novelties and contributions of this manuscript include a
heuristic model motivation for a fractional-order neural field
model, explicit approximated traveling wave solutions in the
case of α ≈ 1, and explicit approximated wave solutions in
the case of 0 < α < 2 employing a semi-analytical method
for solving fractional-order differential equations, namely, the
Adomian decomposition method. The explicit approximated
solutions in the case of α ≈ 1 are in the form of finite sums of
Mittag-Leffler functions, which provides a simpler scenario of
closed-form solutions not usually obtained in fractional-order
models. We also provide error estimates of such approximations.
In the case of α ≈ 1−, our solutions converge to the solutions
established in the first-order case. However, in the case of
α ≈ 1+, there is no convergence to the first-order solution,
and the usefulness of these approximations is restricted when
considering long synaptic connectivity extents and low wave
speeds. This characteristic agrees with the fractional-order

derivative’s memory interpretation, which asserts that both
cases 0 < α ≤ 1 and 1 < α < 2 are considerably different.
The obtained error estimates for each case motivate our work.
By considering the Adomian decomposition method, we
present approximated solutions in the form of power series
decomposition and extend the approximated solutions to
fractional-order of 0 < α < 2. We also provide error estimates
of our solutions.

The primary goal of the manuscript is to provide a first
investigation toward understanding the effect of fractional-order
on wave propagation features. We claim that incorporating
fractional-order derivatives into neural fields is essential.
Realistic features can build more sensitive models of neuronal
activity, particularly the potential incorporation of neuronal
collective memory into neural field models. The primary
motivation for incorporating a fractional-order approach
into the modeling of pattern formation is to enlarge our
understanding of wave propagation in a more realistic
setting, where past dynamics might influence an effect.
Also, to compare the possible outcomes and differences in
the modeling of standard first-order features, as the results
of fractional-order influence on single neuron models
have shown the existence of ample dynamics. Our results
are consistent in the exhibited waves and suggest different
initial characteristics of the system’s traveling wave solutions
considering different fractional orders. Thus, the effect of
the collective memory of the neuronal population due to the
fractional derivative approach determines the features of the
wave solutions.

The work in this manuscript is developed as follows.
In Section 2, we review the wave features observed in in
vivo clinical recordings preceding seizure termination that are
found in the literature and establish explicit traveling wave
solutions in the first-order case. In Section 3, we establish the
approximate traveling wave solutions for values of α ≈ 1
and analyze the effect of neuronal collective memory on wave
features by utilizing these approximations. In Section 3.5, we
also establish the approximate wave solutions employing the
Adomian decomposition method and analyze the wave features
under this approach. Finally, in Section 4, we discuss the
conclusions of this work and future work to be developed. To
facilitate the visualization of themanuscript, we refer to the terms
of our approximate solutions to the Supplementary Material.
Since the main objective of this manuscript is to provide
information related to wave propagation features, the manuscript
is structured containing the relevant model motivation, results,
and conclusions from analyzing the properties of traveling
wave solutions under a fractional-order effect. The mathematical
formalism, the details of the approximated solutions, and the
error estimates appear in the Supplementary Material. In the
Supplementary Material, we also provide a background for
fractional calculus, discuss the memory interpretation of the
Caputo fractional-order derivative, provide error estimates of
our explicit Mittag-Leffler approximations, and develop the
details behind the Adomian decomposition method described
in Section 3.5.
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2. MATERIALS AND METHODS

2.1. Neural Field Models and Cortical Wave
Propagation
In this section, we review the existence of traveling wave
solutions of first-order neural field models. We establish a
choice of parameters that support wave propagation with features
consistent with in vivo wave dynamics. In this manuscript, we
focus on modeling wave features observed in human clinical
recordings reported in González-Ramírez et al. (2015), in
particular, wave speeds varying from 80 µm/ms to 500 µm/ms,
and wave widths varying from 1, 000 to 5, 000 µm. These values
are in agreement with similar studies found in the literature
(Chervin et al., 1988; Wadman and Gutnick, 1993; Golomb and
Amitai, 1997). When necessary, we analyze features outside but
close to these ranges-of-interest.

We consider a voltage-based neural field model with a linear
adaptation term (Ermentrout, 1998; Pinto and Ermentrout,
2001). This model is based on the assumption that a presynaptic
membrane potential, V , is converted into a firing rate by a
convenient firing rate function S(V). Further assumptions are
made to ignore processes, such as axonal delays, release of
neurotransmitters, synaptic facilitation, dendritic architecture,
among others, in order for the synaptic input, due to the
synaptic interactions on a postsynaptic neuron, to be described
by a convenient integral equation. To simplify this integral
equation, it is assumed that the postsynaptic potential is mainly
determined by the properties of the postsynaptic membrane and
that it is modeled in terms of sums and powers of exponential
functions. In this scenario, it is considered that the postsynaptic
cell membrane behaves as an ideal capacitor; thus, that a
first-order differential equation can be derived to describe the
postsynaptic membrane potential. Considering a mean field
approach and a continuum limit in the number of neurons of
the previous system, a neural field model can be established
to describe the mean features of neuronal populations. In this
work, we consider a single population of neurons together with
a linear bulk adaptation term (Pinto and Ermentrout, 2001),
accounting for multiple processes (such as synaptic adaptation)
and preventing activity from remaining excited. In this neural
field model, there is a spatial convolution term that is employed
to describe distance-dependent synaptic interactions. We will
further comment on the details behind this model derivation
when we motivate the fractional-order neural field model in
the following section. The first order neural field voltage-based
model with a linear adaptation term is determined by:

Dtu (x, t)=−u (x, t) +
∫ ∞

−∞
g(x− y)H(u(y, t)− k)dy− βq (x, t)

Dtq (x, t)=ǫu (x, t) − ǫq (x, t) .
(1)

Here, Dt denotes the derivative with respect to t. The variable
u(x, t) accounts for a mean synaptic input and the variable
q(x, t) accounts for a linear adaptation term, both measured at
position x and time t. The convolution term represents the inputs
due to synaptic interactions. The kernel of the convolution is a
symmetric weight function g(x) = g(−x) that monotonically

decreases for x ≥ 0. We choose an exponential kernel, g(x) =
1
2σ e

− |x|
σ , where σ > 0 denotes the extent of the synaptic

connectivity, to provide concrete examples of wave solutions and
to extend our notion of wave solutions to the fractional-order
case. The function H(x) denotes a Heaviside function that is
activated when the activity reaches a synaptic threshold, denoted
by k. That is, H(x) = 1 for x ≥ k and H(x) = 0 if x < k.
The parameter β denotes the strength of the adaptation term.
The parameter ǫ < 1 represents the decay rate parameter for the
linear adaptation term, whichwe assume occursmore slowly than
the synaptic input. All parameters are assumed to be positive.
The units for the variables and parameters are as follows. The
variables u and q, the strength of adaptation and the synaptic
threshold are dimensionless. The synaptic connectivity extent, σ ,
has units of µm. The wave speed is measured in µm/ms and the
wave width is measured in µm.

Traveling wave solutions of this model, which move with a
fixed shape and constant speed c, have been established and
extensively studied (Ermentrout, 1998; Pinto and Ermentrout,
2001; Bressloff, 2012; Coombes et al., 2014). Here, we provide
a sketch of the derivation of such solutions (for details, see
the Supplementary Material). To obtain explicit traveling wave
solutions, we change coordinates into the moving frame (z, t),
where z = x+ ct, and look for stationary solutions in this system.
We assume that the stationary solutions are pulse solutions that
cross the synaptic threshold k at exactly two points: at z = w0 and
z = w, so that the super-threshold activity region is determined
by w0 ≤ z ≤ w. Given the fact that the traveling wave solutions
are translationally invariant, we assume that w0 = 0. Using the
variation of parameters formula, we obtain the traveling wave
solutions under the traditional integer-order derivative setting:

u (x, t) =

(

ǫ − 1+
√

(ǫ − 1)2 − 4ǫβ

2c
√

(ǫ − 1)2 − 4ǫβ

)

eλ+(x+ct)

×
∫ x+ct

−∞
e−sλ+

(∫ w

0
g
(

s− y
)

dy

)

ds

−

(

ǫ − 1−
√

(ǫ − 1)2 − 4ǫβ

2c
√

(ǫ − 1)2 − 4ǫβ

)

eλ−(x+ct)

×
∫ x+ct

−∞
e−sλ−

(∫ w

0
g
(

s− y
)

dy

)

ds,

(2)

and

q (x, t) =

(

ǫ

c
√

(ǫ − 1)2 − 4ǫβ

)

eλ+(x+ct)

×
∫ x+ct

−∞
e−sλ+

(∫ w

0
g
(

s− y
)

dy

)

ds

−

(

ǫ

c
√

(ǫ − 1)2 − 4ǫβ

)

eλ−(x+ct)

×
∫ x+ct

−∞
e−sλ−

(∫ w

0
g
(

s− y
)

dy

)

ds,

(3)
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where

λ± = −
ǫ + 1

2c
±
√

(ǫ − 1)2 − 4ǫβ

2c
. (4)

The procedure to obtain the traveling wave solutions
(Equations 2,3) is fully established in Section 2 of the
Supplementary Material.

To simplify our analysis throughout the manuscript, we
assume that the parameters ǫ and β satisfy the inequality (ǫ −
1)2 − 4 ǫ β > 0; thus, we focus on the real eigenvalue case.
The traveling wave solutions (Equations 2, 3) can be simplified
to be written as piecewise continuous solutions. The simplified
traveling wave solutions are:

u⋆(x, t) =







































































Aue
x+ct
σ − Aue

x+ct−w
σ

if x+ ct ≤ 0

Bue
λ+(x+ct) + Cue

λ−(x+ct)

+ Due
− x+ct

σ + Eue
x+ct−w

σ + Fu

if 0 < x+ ct ≤ w

Gue
λ+(x+ct) − Gue

λ+(x+ct−w)

+Hue
λ−(x+ct) −Hue

λ−(x+ct−w)

+ Iue
− x+ct

σ + Jue
− x+ct−w

σ

if x+ ct > w,

(5)

and

q⋆(x, t) =







































































Aqe
x+ct
σ − Aqe

x+ct−w
σ

if x+ ct ≤ 0

Bqe
λ+(x+ct) + Cqe

λ−(x+ct)

+ Dqe
− x+ct

σ + Eqe
x+ct−w

σ + Fq

if 0 < x+ ct ≤ w

Gqe
λ+(x+ct) − Gqe

λ+(x+ct−w)

+Hqe
λ−(x+ct) −Hqe

λ−(x+ct−w)

+ Iqe
− x+ct

σ + Jqe
− x+ct−w

σ

if x+ ct > w.

(6)

The coefficients of the previous expressions depend on the
different model parameters and are fully established in the
Supplementary Material. The existence of wave solutions is
determined by the matching conditions:

u(0, t) = k, and u(w, t) = k. (7)

In Figure 1, we provide plots of the relationship among wave
width, wave speed, and synaptic threshold, together with a choice
of parameters in which the model (System 1) supports wave
features found in the range-of-interest. The curves shown consist
of a lower branch of unstable waves and an upper branch of stable
waves. The linear and nonlinear stability of the pulse solutions
have been fully addressed in Pinto and Ermentrout (2001),
Coombes and Owen (2004), Pinto et al. (2005), Sandstede (2007),
and Kapitula et al. (2004). In this work, we focus our efforts
mostly on understanding the behavior of fractional-order wave
solutions lying in the upper branch motivated by the stability

of the traveling wave solutions in the integer-order case, and
because biologically it is more realistic that stable wave solutions
model the propagation of cortical wave activity. However, to
our knowledge, the stability of wave solutions of fractional-order
neural fields has yet to be addressed.

3. RESULTS

3.1. Fractional-Order Neural Field Model
Motivation
In this section, we consider an extension of the model (System
1) into a fractional-order setting. The motivation behind this
approach lies in the approximation modeling, where the cell
membrane is modeled as an ideal capacitor. In a more realistic
setting, capacitors can entertain losses and frequency variation of
the capacitance. A fractional-order approach has been suggested
to better describe these complicated dynamics (Westerland
and Ekstam, 1994). Therefore, in this fractional setting, more
complicated dynamics of the postsynaptic membrane potential
can be considered. In particular, a fractional-order approach is
suggested to model memory events of the capacitance (0 < α <

1) (Westerland and Ekstam, 1994) or plausible fractional-order
relaxation-oscillation behavior (1 < α < 2) (Tofighi, 2003).

We consider a traditional neural networks heuristic derivation
(Ermentrout, 1998) and we allow the indices j and i to denote a
presynaptic and a postsynaptic neuron, respectively. In this way,
the membrane potential of a presynaptic cell and a postsynaptic
cell is denoted by Vj(t) and Vi(t), respectively. As previously
mentioned, we assume that the potential in each cell, V , has been
converted into a firing rate by a convenient firing rate function
S(V). In a traditional integer-order setting, it is assumed that
the capacitance current, Ic, and the membrane potential, VM , are
related by:

Ic = CM
dVM

dt
, (8)

where the membrane capacitance is denoted by CM . We
assume that an action potential of a presynaptic cell affects the
postsynaptic cell bymeans of a postsynaptic potential, PSPij(t−s),
where t denotes the measured time and s = {t1, t2, ...} describes
the spike times of the presynaptic neuron. We also consider that
there are no delays due to the distance traveled along the axon or
due to the geometrical structure of the axon. We assume that the
postsynaptic potential adds up linearly and we account for all the
possible times to determine to total potential at the soma of cell i.
We define the total potential due to cell j at the soma of cell i at
time t, Gi,j(t), as:

Gi,j(t) : =
∑

k

PSPij(t − tk), (9)

where the index k denotes the total number of spikes considered.
Considering the instantaneous firing rate of the presynaptic cell,
Sj(V), it is possible to rewrite the above expression as:

Gi,j(t) =
∫ t

−∞
PSPij(t − s)Sj(Vj(s))ds. (10)
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FIGURE 1 | Traveling wave solutions for the first-order neural field model with wave features consistent with in vivo clinical features. (A) Wave speed determined by

synaptic threshold k. (B) Wave width determined by synaptic threshold k. The lower branch (dashed gray curve) consists of unstable waves and the upper branch

(gray curve), of stable waves colliding in a saddle-node bifurcation as the synaptic threshold is increased. Parameters used for these plots: ǫ = 0.1, β = 1 and

σ = 1, 000 µm.

Considering different presynaptic cells, we obtain the total
potential to the postsynaptic cell as:

Vi(t) =
∑

j

∫ t

−∞
PSPij(t − s)Sj(Vj(s))ds. (11)

In a traditional voltage-based formulation, it is also assumed that
the postsynaptic potential is solely determined by the properties
of the postsynaptic cell, that is PSPij(t) = wijPSPi(t), for
convenient weights wij. In addition, it is assumed that these
postsynaptic potentials are determined by the sums and powers
of exponential functions. The inverse of a convenient linear
integral operator with exponential kernel is a first-order constant
coefficient differential operator. The latter fact can be used to
further simplify Equation (11) to obtain:

τi
dVi(t)

dt
+ Vi =

∑

j

wijSj(Vj(s)). (12)

In the latter scenario, it is assumed that the postsynaptic
membrane behaves as an ideal capacitor with zero losses and
constant capacitance. Also, the time constant of the model, τi, is
determined by the membrane properties of the postsynaptic cell.

In a more realistic physical setting, the losses of capacitors
producing a capacitance frequency variation can be taken into
account. This has been modeled as a fractional-order model
(Westerland and Ekstam, 1994) as:

Ic(t) = CαaD
α
t Vc(t), (13)

where Ic(t) is the total current, Vc(t) is the voltage, Cα is the
capacitance and aD

α
t is the Caputo’s fractional-order derivative

operator. The fractional-order α can be considered in the range
of 0 < α < 2, as orders of α > 2 determine inductive elements
that are no longer capacitive. When α = 1, we recover the ideal
capacitor setting used to derive Equation (12). When 0 < α <

1, a non-ideal capacitance is modeled with memory events of
the capacitance being described with a power law attenuation

(Westerland and Ekstam, 1994). This setting has been utilized
to model the ionic conductances in the Hodgkin-Huxley model
in Santamaria (2015). On the other hand, by means of Fourier
transforming Equation (13), it is possible to determine that
the impedance of the capacitor in the case of 1 < α < 2
consists of a negative resistance (Jiang et al., 2020), allowing the
plausibility of oscillations and sustained large currents at specific
frequencies. In particular, the latter case can be employed to
model fractional-order relaxation oscillation behavior (Tofighi,
2003). Both scenarios have interesting motivations for modeling
the dynamics of the postsynaptic membrane potential established
in Equation (12) under a fractional-order perspective. In this
fractional-order scenario, it is also necessary to consider a more
general form for the postsynaptic potentials. We consider again
the total potential to the postsynaptic cell (Equation 11):

Vi(t) =
∑

j

∫ t

−∞
PSPij(t − s)Sj(Vj(s))ds. (14)

We assume that the postsynaptic potential is solely determined
by the properties of the postsynaptic cell, that is PSPij(t) =
wijPSPi(t), for convenient weights wij. In addition, it is now
assumed that these postsynaptic potentials are determined by
the sums and powers of Mittag-Leffler functions, PSPij(t) =
M(t). The definition of a two-parameter Mittag-Leffler function

is Eα,β (z) =
∑∞

k=0
zk

Ŵ(αk+β)
where α > 0 and β > 0.We note that

the exponential function is solely a particular case of a Mittag-
leffler function E1,1(λt) = eλt (for more details and properties
of Mittag-Leffler functions see Podlubny, 1999). In this scenario,
we obtain:

Vi(t) =
∑

j

∫ t

−∞
M(t − s)Sj(Vj(s))ds. (15)

Considering 0 < α ≤ 1, it can be proven (Podlubny, 1999;
Bonilla et al., 2007) that:

aD
α
t

∫ t

a
M(t − s)u(s)ds = u(t), (16)
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where M(t) is a convenient Mittag-Leffler kernel, e.g., M(t) =
tα−1Eα,α(t

α), and aD
α
t is the Caputo’s fractional-order derivative

of order α that is defined as:

aD
α
t f (t) =

1

Ŵ(1− α)

∫ t

a

f ′(τ )

(t − τ )α
dτ . (17)

For more details and properties of the Caputo’s fractional-
order derivative see the Supplementary Material. Considering
convenient choices of Mittag-Leffler functions it is also possible
to extend Equation (16) to the case of 1 < α ≤ 2. Equation (16)
can be used to further simplify Equation (14) to obtain a
fractional-order system as:

τiaD
α
t Vi + Vi =

∑

j

wijSj(Vj(s)). (18)

Considering the previous motivation we now propose a
fractional-order neural field model as:

Dα
t u (x, t)=−u (x, t) +

∫ ∞

−∞
g(x− y)H(u(y, t)− k)dy− βq (x, t)

Dα
t q (x, t)=ǫu (x, t) − ǫq (x, t) ,

(19)
where Dα

t denotes the Caputo’s fractional derivative of order α

and where we have fixed the lower bound to a = 0:

Dα
t f (t) : = 0D

α
t f (t) =

1

Ŵ(n− α)

∫ t

0

f n(τ )

(t − τ )α+1−n
dτ , (20)

for a convenient function f and n ∈ Z
+ so that n − 1 <

α ≤ n and 0 < α < 2. We note that when α = 1
we recover System (1). In the Supplementary Material, we
provide the mathematical formalism behind Caputo’s fractional-
order derivative and describe its memory interpretation. We are
particularly interested in establishing traveling wave solutions in
this fractional-order neural fieldmodel with features of speed and
width within the range of cortical wave propagation.

Explicit traveling wave solutions of fractional-order systems
have been established employing the complex transformation
method and considering a fractional moving frame: z = x +
ctα . However, these solutions rely on the use of a chain rule
for fractional derivatives, which is known not to be valid
(Tarasov, 2016). To our knowledge there is no general method
for obtaining explicit closed-form wave solutions in fractional-
order system, with a bounded lower limit definition, unless a
modified chain rule or transformation is used. In this section,
we extend the initial existence of approximate traveling wave
solutions for fractional-order equations with a bounded lower
limit derivative definition with order α ≈ 1 by making use
of our explicit wave solutions in the integer-order case. In this
way, we analyze the initial dynamics of wave solutions in a
fractional-order frame starting from a first-order solution. In
the Supplementary Material, we establish error estimates for
our approximations that depend on the features of wave speed
c, synaptic connectivity range σ , fractional-order α, position
x, and time t. Therefore, these solutions only provide an
insight of the initial wave dynamics in the fractional-order

frame. This first approach is possible due to three factors:
(i) the explicit solutions (Equations 5, 6) established as finite
sums of exponential functions, (ii) the choice of the Heaviside
function to describe the input of synaptic interaction (System
19), and (iii) the choice of a convenient kernel to describe the
synaptic connectivity in each of the fractional-order neural field
models. Our solutions can be verified by direct substitution
into the fractional-order system and by using the derivative
approximations established herein. We divide our analysis into
two cases: α ≈ 1− and α ≈ 1+. According to the memory
interpretation described in the Supplementary Material, these
two cases have a significantly distinct memory effect. For values
of α ≈ 1−, we have less neuronal memory effect (transport-like
memory from the first-order derivative), and for values α ≈ 1+,
we have more neuronal memory effect (diffusive-like memory
from the second-order derivative).

The first approach that we will present here is based on
the natural extensions of exponential functions by Mittag-
Leffler functions. This approach will provide explicit closed
formulations that permit a direct investigation of the relationship
between wave width, wave speed, and synaptic threshold, as well
as a convenient analysis of the effect of fractional-order α on
the different model parameters. On the other hand, some of the
disadvantages of this approach are that the method restricts the
use of a particular kernel in the synaptic connectivity term and
that our analysis is only valid for α ≈ 1. Nevertheless, in the
Supplementary Material we show that for relatively small times
(t = 0.1), a good approximation might be obtained for fractional
orders relatively far from order one (α = 0.9).

3.2. Approximate Traveling Wave Solutions
With α ≈ 1−

In order to establish the approximate traveling wave solutions, we
consider the following fractional-order equation:

Dα
t w(t) = λw(t). (21)

The previous equation can be solved by means of Fourier
transform obtaining solutions determined by Mittag-Leffler
functions (Podlubny, 1999). For values of 0 < α < 1, we find
that the solutions of Equation (21) are of the form:

w(t) = AEα,1(λt
α), (22)

where Eα,1(λt
α) is a two-parameter Mittag-Leffler function and

A is a constant.
Motivated by Equation (21), we investigate the behavior of the

fractional derivative of Mittag-Leffler functions in the fractional
moving frame determined by z = x+ ctα , obtaining:

Dα
t Eα,1

(

x+ ctα

σ

)

≈
c

σ
Eα,1

(

x+ ctα

σ

)

, (23)

for values of α ≈ 1−. In general, the chain rule is not
valid for fractional derivatives. This implies that Equation (23)
is an approximation where the absolute error is established
in terms of Mittag-Leffler functions. In Section 4 of the
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Supplementary Material we establish the procedure to obtain
the approximation determined by Equation (23). In this case,
as α → 1−, inequality determined by Equation (23) tends
to an equality. Our estimates are better suited for considering
narrower waves, longer synaptic connectivity ranges σ , values of
α sufficiently close to 1 and small times.

We consider System (19) together:

gL(x) =
1

2σ

d

du

(

Eα,1u
)

∣

∣

∣

u=− |x|
σ

. (24)

It can be proven that gL(x) → g(x) as α → 1−, thus as α → 1−

we recover the integer-order neural field model (System 1).
By conveniently replacing the exponential functions in

Equations (5) and (6) by Mittag-Leffler functions, we establish
approximate fractional traveling wave solutions that can be
verified by a direct substitution into the model (System 19):

u⋆L(x, t), (25)

and

q⋆L(x, t). (26)

To facilitate the visualization of the manuscript, the explicit
description of the previous two equations are fully established
in the Supplementary Material as Equations (S22) and (S23). In
section 3.4, we will further analyze the matching conditions that
determine the existence of the wave solutions (Equations 25,26),
as well as the neuronal collective memory effect on wave features.

3.3. Approximate Traveling Wave Solutions
With α ≈ 1+

In a similar fashion, we consider 1 < α < 2 and the following
eigenvalue equation:

Dα
t w(t) = λw(t). (27)

Solutions to Equation (27) can be obtained by means of Fourier
transform and are determined by:

w(t) = AEα(λt
α)+ BtEα,2(λt

α), (28)

where A and B are constants. We establish estimates of
the fractional derivative of Mittag-Leffler functions in the
fractional frame:

Dα
t

(

Eα,1

(

x+ ctα

σ

)

+
(

x+ ctα

σ

)

Eα,2

(

x+ ctα

σ

))

≈
c

σ

(

Eα,1

(

x+ ctα

σ

)

+
(

x+ ctα

σ

)

Eα,2

(

x+ ctα

σ

))

.

(29)
The error of the estimate determined by Equation (29) is
established in terms of Mittag-Leffler functions in Section 4
of the Supplementary Material. We remark that in this case,
as α → 1+, the inequality determined by Equation (29)
does not converge to an equality. However, for sufficiently long
connectivity extent and low speeds, the absolute error of our

estimate is sufficiently small and this motivates our study. For
details, please see the Supplementary Material.

Consider System (19) together with the following kernel:

gR(x) =
1

4σ

d

du

[

Eα,1u
]

∣

∣

∣

u=− |x|
σ

+
1

4σ

d

du

[

uEα,2u
]

∣

∣

∣

u=− |x|
σ

. (30)

It can be proven that gR(x) → g(x) as α → 1+; thus, we also
recover Equation (1) as α → 1+. By replacing the exponential
functions in Equations (2) and (3) by convenient choices of
Mittag-Leffler functions, we obtain the approximate traveling
wave solutions that can be verified by a direct substitution into
the model:

u⋆R(x, t), (31)

and

q⋆R(x, t). (32)

The explicit description of the previous equations are fully
described in the Supplementary Material [Equations (S24) and
(S25)]. In there, we also show the error estimates for Equations
(23) and (29) finding a better agreement in the case of 0 <

α < 1. This is consistent with the memory interpretation of the
fractional-order derivative.

3.4. On the Effect of Fractional-Order on
Wave Features
We now explore the existence conditions determined by
Equation (7) on the wave solutions (Equations 25, 31). Because
our theoretical results are based on chain rule approximations
(Equations 23, 29), for the present we limit our analysis to
fractional-orders α ≈ 1. We are particularly interested in
extending themodeling of cortical wave features using fractional-
order neural field models and analyzing the effect due to
fractional-order on wave features when considering small times
(t = 0.1). The estimations and projections in this first
approach depend on the absolute error estimates determined
for Equations (23) and (29), which are fully established in
the Supplementary Material. The error estimates depend on
fractional-order α, synaptic connectivity σ , wave speed c,
distance x, and time t. For this approach, we only consider
relatively long synaptic connectivity ranges (σ = 1, 000 µm,
and σ = 1, 500 µm), in that our error estimates are suited for
these values. The synaptic connectivity ranges that have been
used are contained within reported ranges -of 40 µm to 2mm-
of synaptic connectivity measurements (Braitenberg and Schuz,
1998; Linden et al., 2011; Peyrache et al., 2012). We consider
values of α ≈ 1 and, for ease of visualization, we project the
memory effect due to the fractional derivative for values of α

distant from 1 (α = 0.9 or α = 1.1). In our analysis, we
find a consistent behavior of solutions for different fractional
derivatives orders in each of the two cases (α ≈ 1− and α ≈ 1+).
Due to the nature of our approach, we obtain best estimates
for the lower branch of waves, which is known to consist of
unstable waves. However, we are also able to gain an insight into
a portion of the upper branch, which is known to consist of stable
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waves that are relevant to describe cortical wave propagation.
Therefore, our main focus will be mainly on the features of waves
allocated on the upper branch but considering some interesting
nonlinear effects due to the fractional-order frame that occur on
the lower branch.

In Figure 2, we consider wave profiles under different
fractional derivative orders with similar wave features. We note
that, in comparison to the integer-order case, the features of
wave width and wave speed were increased for α ≈ 1− whereas
the synaptic threshold was diminished. On the other hand,
the features of wave width and wave speed were decreased for
α ≈ 1+, whereas synaptic threshold was increased. This analysis
suggests that the memory effect does indeed affect the initial
features of a wave under the same parameter choice. In particular,
for values of α ≈ 1+, more synaptic input is required to produce
a wave with diminished features, whereas for values of α ≈ 1−,
less synaptic input is required to produce a fractional-order wave
with increased features.

In Figure 3, we analyze the neuronal collective memory
effect due to the fractional derivative order by considering
wave speed vs. synaptic threshold and wave width vs. synaptic
threshold curves. Our main observation is that in the upper

FIGURE 2 | Fractional and integer-order traveling wave solutions u⋆(x, t),

q⋆(x, t), u⋆L(x, t), q⋆L(x, t), u⋆R(x, t), and q⋆R(x, t). In this plot, we show the spatial

wave profiles for a fixed initial time of t = 0. The solid gray lines correspond to

the activity (leftmost wave) and adaptation (rightmost wave) in the integer-order

case α = 1. The dotted red lines correspond to α = 0.99, the dashed red lines

correspond to α = 0.9, the dotted blue lines correspond to α = 1.01, and the

dashed blue lines correspond to α = 1.1. We consider two distinct traveling

waves with similar features that are located in the upper (stable) branch to

compare the effect of fractional-order on wave characteristics. For the

integer-order α = 1, the wave speed is c = 402.8 µm/ms, the wave width is

w = 3616.1 µm, and the synaptic threshold is k = 0.304. For the

fractional-order α = 0.99, the wave speed is c = 405.1 µm/ms, the wave

width is w = 3625.6 µm, and the synaptic threshold is k = 0.302. For the

fractional-order α = 0.9, the wave speed is c = 433.8 µm/ms, the wave width

is w = 3887.5 µm and the synaptic threshold is k = 0.292. For the

fractional-order α = 1.01, the wave speed is c = 398.7µm/ms, the wave

width is w = 3, 570 µm, and the synaptic threshold is k = 0.305. For the

fractional-order α = 1.1, the wave speed is c = 379 µm/ms, the wave width is

w = 3438.6 µm and the synaptic threshold k = 0.314. Parameters fixed for

this plot: β = 1, ǫ = 0.1, and σ = 1, 000 µm.

branch, the memory effect directly affects both wave speed and
wave width. Fractional derivative orders of α ≈ 1− tend to
diminish the synaptic threshold necessary to achieve a fixed
speed and width. On the other hand, values of α ≈ 1+ tend
to increase the synaptic threshold necessary for achieving a
fixed speed and width. Projections of fractional-orders more
distant from 1 exhibit a consistent effect of fractional-order on
wave propagation speed. That is, in our analysis, memory effect
initially increases wave speed and width (α ≈ 1−) or decreases
wave speed and width (α ≈ 1+). The relationship between
fractional-order and wave width is more complex on the lower
branch of unstable waves and is observed to be also affected by
the extent of the synaptic connectivity and the synaptic threshold.
In particular, we note that the effect of fractional-order on wave
speed seems to be different to the effect of fractional-order on
wave width. Fractional-order modifies the feature of wave speed
on both unstable and stable branch. However, fractional-order
does not modify the feature of wave width on a portion of
the unstable branch. That is, when considering sufficiently low
synaptic thresholds, there is no major effect of fractional-order
on wave width. The results in Figure 3 suggest that the effect of
fractional-order derivative on wave width might be dependent on
the synaptic-threshold.

One of the advantages of the approximations developed in
this section is that we can explore the initial effect of fractional-
order on distinct parameter relations. In Figure 4, we analyze the
relationship between wave width and wave speed for different
fixed synaptic thresholds. We find a direct effect of fractional-
order on wave speed and a nonlinear effect on wave width,
consistent with the analysis developed in Figure 3. For a relatively
small synaptic threshold (determining wave solutions lying in the
lower branch), we find a slight increase in wave speed (α ≈ 1−)
and a slight decrease in wave speed (α ≈ 1+), with a nearly
insignificant change in width. For a larger synaptic threshold
(determining wave solutions in the upper branch), we find results
consistent with Figures 2, 3: an increase in wave speed and wave
width (α ≈ 1−) and a decrease in wave speed and wave width
(α ≈ 1+) (see Figure 4 for details).

Following the analysis developed previously, we suggest that
the memory effect due to the fractional-order derivative plays
a role in the properties of traveling wave solutions of fractional
neural field models. We hypothesize as follows: in the case of
α ≈ 1−, the memory of the system, the history of neural
activity elapsed over time, initially increases wave speed and wave
width. On the other hand, in the case of α ≈ 1+, we note
a decrease in the wave speed and wave width. We also note
a plausible synaptically-dependent effect of fractional-order on
wave width. For considerably low synaptic thresholds (on the
unstable branch) there appears to be no impact of fractional-
order on the feature of wave width. Therefore, we hypothesize
a nonlinear effect of fractional-order on the feature of wave
width. We claim that this initial dynamics are of interest, as they
might provide information about transient dynamics during the
creation of propagating activity. Our previous results are very
restricted since they are only applicable to values of α ≈ 1, under
specific conditions. Therefore, in the next section we provide
further work to support our observations.
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FIGURE 3 | Wave speed vs. synaptic threshold (A,B) and wave width vs. synaptic threshold (C,D). The values of the synaptic connectivity range include the following:

for (A,C) σ = 1, 000 µm, and for (B,D) σ =1,500 µm. Gray lines correspond to the integer-order case α = 1, blue lines correspond to α ≈ 1+ (dashed lines α = 1.01,

dotted lines α = 1.1), and red lines correspond to α ≈ 1− (dashed lines α = 0.99, dotted lines α = 0.9). The gray rectangles determine the regions of interest near the

upper (stable) branch that are suited for our explicit approximations considering the error estimates described in the Supplementary Material. We acknowledge that

a big portion of the stable branch (not shown) cannot be analyzed by these approximations. In (A,B), we note that the effect of the order of the derivative in wave

speed is to modify the synaptic threshold in which a fixed speed is achieved. For values α ≈ 1−, a fixed wave speed is achieved with less synaptic threshold

compared to values of α ≈ 1+. In (C,D), we note that, in general, the effect of the order of the derivative in wave width is also to modify the synaptic threshold in which

such a width is achieved. However, in this case, a nonlinear effect of the order of the derivative and extent of the synaptic connectivity on the lower branch is present.

For values α ≈ 1−, a fixed wave width is achieved with less synaptic threshold compared to values of α ≈ 1+. Parameters fixed for these plots: β = 1 and ǫ = 0.1.

3.5. Adomian Decomposition Method
In this section, we utilize the Adomian decomposition method to
approximate fractional traveling wave solutions in a wider range
of fractional-orders and longer times. Adomian decomposition
has been successfully applied to obtain asymptotic expansions
of traveling wave solutions in the Korteweg-de Vries (KdV)
equation, Burgers’ equation, and wave equation, among others
(Wazwaz, 2001; Jafari and Daftardar-Gejji, 2006; Wang, 2006;
Abbasbandy, 2007). Its convergence and recursive formulas were
established in Adomian (1988), Cherruault (1990), Abbaoui and
Cherruault (1995), and Wazwaz (2000).

Some limitations of this method were reported in Abbasbandy
(2007), in the results obtained from this approximation for
solving a generalized coupled KdV equation were revealed to
be valid only for small values of x and t. However, in Adomian
(1988), Adomian (1994), Wazwaz (1997), and Wazwaz (2001),
it is shown that the capability of the Adomian decomposition
method can be directly improved by determining further terms in

the approximation. In the Supplementary Material, we establish
absolute error estimates of the Adomian Decomposition Method
considering a first-order initial condition. The error estimates
depend on different features, such as synaptic-threshold (and
therefore wave width and wave speed). Based on these error
estimates we limit the values of t to be analyzed.

There are advantages and disadvantages using the Adomian
decomposition method in comparison to the Mittag-Leffler
extensions developed in section 3. An advantage of this
method is that a more general kernel can be used in the spatial
synaptic connectivity term, longer times and different synaptic
connectivity extents can also be analyzed. A disadvantage is
that it is numerically challenging to obtain the relationship
among fractional-order, the different model parameters and
wave features (e.g., the analysis performed in Figures 3, 4). We
claim that both approaches can provide a complementary
insight on the effect of fractional-order on cortical
wave features.
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FIGURE 4 | Wave width vs. wave speed for different fractional-order estimates and synaptic connectivity. Gray lines correspond to the integer-order case α = 1, blue

lines correspond to α ≈ 1+ and red lines correspond to α ≈ 1−. Short dashes represent values of α closer to 1, that is, short red dashes represent α = 0.99 and short

blue dashes represent α = 1.01. Large red dashes represent α = 0.9 and blue large dashes represent α = 1.1. The gray point, the red point and the blue point

represent wave features for a fixed synaptic threshold of k = 0.2 for α = 1, α = 0.9, and α = 1.1, respectively. Similarly, the gray square, the red square, and the blue

square represent the fixed synaptic threshold of k = 0.28. (A) We fix σ = 1, 000 µm. (B) We fix σ = 1, 500 µm. (A,B) We note that the relationship between wave

width and fractional-order is not substantially affected for a wave with correspondent low synaptic threshold. We also observe that a fractional-order of α ≈ 1− tends

to increase wave width and wave speed relative to α = 1. On the other hand, α ≈ 1+ tends to decrease wave width and wave speed relative to α = 1. The previous

analysis is valid for sufficiently wide waves, as observed in Figure 3. The wave features obtained for k = 0.2 (unstable branch) only modify wave speed. On the other

hand, in considering k = 0.28 we observe an effect on both the width and the speed of the wave. This change is also affected by the synaptic connectivity range.

Parameters fixed for all plots: β = 1 and ǫ = 0.1.

We consider again a fractional-order neural fiel model:

Dα
t u (x, t)=−u (x, t) +

∫ ∞

−∞
g(x− y)H(u(y, t)− k)dy− βq (x, t)

Dα
t q (x, t) = ǫu (x, t) − ǫq (x, t) .

(33)
In this new approach, the kernel choice g(x) can be a more
general symmetric monotonically decreasing function, as long as
it is sufficiently smooth. For our analysis, we consider a gaussian

kernel, g(x) = 1
σ
√
2π

e
−x2

2σ2 .

3.6. Approximate Traveling Wave Solution
for 0 < α < 1
We consider a fractional neural field model (System 33) for
0 < α < 1. This method consists of considering the first-order
traveling wave solutions (Equations 2,3) as initial conditions.
That is:

u(x, 0) = u⋆(x, 0), (34)

and

q(x, 0) = q⋆(x, 0). (35)

Applying the Adomian decomposition method we obtain
approximate traveling wave solutions. In Section 5 of the
Supplementary Material we provide details regarding the
procedure to obtain such traveling wave solutions. Using a 4α

approximation to increase the capability of themethod, we obtain
the following traveling wave solution for the activity variable:

uf (x, t) ≈ u⋆(x, 0)+ f1 (x)
tα

Ŵ (α + 1)
+ f2 (x)

t2α

Ŵ (2α + 1)

+ f3 (x)
t3α

Ŵ (3α + 1)
+ f4 (x)

t4α

Ŵ (4α + 1)
,

(36)
and for the adaptation variable:

qf (x, t) ≈ q⋆(x, 0)+ h1 (x)
tα

Ŵ (α + 1)
+ h2 (x)

t2α

Ŵ (2α + 1)

+ h3 (x)
t3α

Ŵ (3α + 1)
+ h4 (x)

t4α

Ŵ (4α + 1)
.

(37)
The description of each of the terms of the previous expressions,
as well as the details of the Adomian decomposition method, are
contained in Section 5 of the Supplementary Material. In the
Supplementary Material, we also provide error estimates of the
Adomian approximated solution.

In Figure 5, we analyze the evolution of two different waves
lying in the upper branch of stable waves using the Adomian
approximation. Due to the characteristics of this method we
can now consider a shorter synaptic connectivity extent (σ =
300 µm), and waves lying in an upper portion of the stable
branch. However, a similar analysis has been made for longer
synaptic connectivity extents (e.g., σ = 1, 000 µm), obtaining
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FIGURE 5 | Wave speed and wave width as a function of time as estimated by the Adomian Decomposition Method in the case of 0 < α < 1. (A,D) Wave speed vs.

synaptic threshold and wave width vs. synaptic threshold, respectively. The gray rectangles determine the regions of interest in the upper (stable) branch that are

suited for the Adomian Decomposition Method according to the error estimates established in the Supplementary Material (up to t = 2 ms). Here, we choose two

distinct wave solutions to analyze the effect of fractional-order on wave features. The “red square solution” determines a wave solution considering k = 0.28 (c = 202

µm/ms and w = 2, 413 µm) and the “red circle solution” determines a wave solution considering k = 0.33 (c = 110 µ m/ms and w = 847 µm). (B,C,E,F) Wave

speed and wave width for the wave solution as time evolves determined by the red circle solution (B,E) and red square solution (C,F), respectively. The different color

dots determine distinct fractional-orders. The red dashed lines determine the features of the integer-order initial solution. (B,C) The fractional wave solutions present

an initial increase in wave speed, in agreement with the Mittag-Leffler approximations, followed by a subsequent and significant decrease in wave speed. (E) The

fractional wave solutions α ≈ 1 present an insignificant increase in wave width. (F) The fractional wave solutions present a slight increase in wave width. (A–F)

Parameters fixed: ǫ = 0.1, β = 1.0, and σ = 300 µm.

qualitatively similar results. In Figures 5B,C,E,F, we show the
evolution of the wave speed (at the front of the wave) and
the wave width according to time intervals suggested by our
error estimates. In both cases, we find an initial increase in
wave speed, consistent with our results from the Mittag-Leffler
approximations, followed by a subsequent decrease in wave
speed. In the initial increase of speed we find that, in general,
lower orders imply faster speeds. After that, the wave speed was
dramatically reduced with lower order implying slower waves.
The effect of fractional-order on wave width was more complex.
For relatively low synaptic threshold (k = 0.28), we find that the
wave width was slightly increased, whereas for higher synaptic
threshold (k = 0.33) the increase of the wave width was
minimum. In the first case, a lower fractional-order imply more
increase in the feature of wave width. With the Mittag-Leffler
approximations we were not able to analyze waves in the stable
branch with lower synaptic thresholds. However, the results of
this approach are consistent with the intuition gained from the
Mittag-Leffler approximations: the effect of fractional-order on
wave width is determined by the synaptic threshold.

In Figures 6, 7, we show the initial profile of the two
previously analyzed traveling wave solution, presented as initial

conditions in , with Figure 5, with different fractional-orders
utilizing the Adomian decomposition method for 0 < α < 1.
Here, we observe initial differences on the wave profile due to
their position in the stable branch (narrower wave and wider
wave). For all the fractional-orders analyzed here, we obtained
an initial increase in wave speed, followed by a decrease in wave
speed at later times as is described in Figure 5. The time interval
chosen for each wave is based in its correspondent error estimate.
In both cases, a slight change of profile can be observed in this
short time interval. In particular, for high fractional-orders a
small change in the wave amplitude is observed. Due to the nature
of our methods, we cannot detect the exact effect of fractional-
order on wave shape. Thus, a further analysis of the effect of
fractional-order on wave shape needs to be addressed in the
future.

In Figure 8, we analyze approximate fractional-order
wave solutions on a wave located on the unstable branch.
Our aim is to show the different effect of the method
on the stable and the unstable branch. For the different
fractional-orders analyzed here the pulse disrupted below
the synaptic threshold, and was no longer considered a pulse
solution.
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FIGURE 6 | Approximate fractional-order traveling pulse solutions using the Adomian decomposition method in the case of 0 < α < 1. The dashed red curve denotes

the integer-order initial pulse solution (Equation 5) determined by the “red square solution” and the blue curve denotes the approximate fractional pulse solution. Each

row and column determine a different fractional-order and time as is described in the caption. (A–F) The effect of fractional-order on wave speed is nonlinear. In all

cases, there is an initial increase of wave speed, followed by a decrease in wave speed. On the other hand, for all fractional orders and all times, we find a consistent

and slight increase in wave width as is described in Figure 5. The fractional-order approximations provide an insight of a possible effect of fractional-order on wave

profile finding a slight change in the wave amplitude. (A–F) Parameters fixed: ǫ = 0.1, β = 1.0, k = 0.33 and σ = 300 µm.

In summary, the results of the case of 0 < α < 1
show that the effect of fractional order is to initially increase
the wave speed, and then significantly decreasing it. The
initial increase is supported by the results obtained from the
Mittag-Leffler approximations. This implies that the modeling

of cortical in vivo wave propagation using fractional-order
neural field models is severely affected by the fractional-order
choice. Also, the effect of fractional-order on wave width is
nonlinear and determined by the synaptic threshold and synaptic
connectivity extent.
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FIGURE 7 | Approximate fractional-order traveling pulse solutions using the Adomian decomposition method in the case of 0 < α < 1. The dashed red curve denotes

the integer-order initial pulse solution (Equation 5) determined by the “red circle solution” and the blue curve denotes the approximate fractional pulse solution. Each

row and column determine a different fractional-order and time as is described in the caption. (A–I) The effect of fractional-order on wave speed is nonlinear. In all

cases, there is an initial increase of wave speed, followed by a decrease in wave speed. The fractional-order approximations provide an insight of a possible effect of

fractional-order on wave profile finding a slight increase in the wave amplitude. (A–I) Parameters fixed: ǫ = 0.1, β = 1.0, k = 0.28 and σ = 300 µm.

3.7. Traveling Wave Solution for 1 < α < 2
We consider the fractional neural field model (System 33) for
1 < α < 2, but now under the following initial conditions:

u(x, 0) = u⋆(x, 0), (38)

ut(x, 0) =
∂u⋆

∂t
(x, 0), (39)

q(x, 0) = q⋆(x, 0), (40)

and

qt(x, 0) =
∂q⋆

∂t
(x, 0). (41)

Applying the Adomian decomposition method, we obtain
the approximated wave solutions. For details regarding the
Adomian decomposition method, please see Section 5 of

the Supplementary Material. The approximate wave solutions
employing a 4α approximation are the following:

uf (x, t) ≈ u⋆(x, 0)+
∂u⋆

∂t
(x, 0)+ f1 (x)

tα

Ŵ (α + 1)

+ f2 (x)
t2α

Ŵ (2α + 1)
+ f3 (x)

t3α

Ŵ (3α + 1)

+ f4 (x)
t4α

Ŵ (4α + 1)
,

(42)

and

qf (x, t) ≈ q⋆(x, 0)+
∂q⋆

∂t
(x, 0)+ h1 (x)

tα

Ŵ (α + 1)

+ h2 (x)
t2α

Ŵ (2α + 1)
+ h3 (x)

t3α

Ŵ (3α + 1)

+ h4 (x)
t4α

Ŵ (4α + 1)
.

(43)
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FIGURE 8 | Approximate fractional-order traveling pulse solutions with different fractional orders using the Adomian decomposition method on the unstable branch

considering the case of 0 < α < 1. The dashed red curve denotes the explicit integer-order pulse solution (Equation 5). The dashed green line denotes the synaptic

threshold, the blue curve denotes the fractional pulse, and the red dots determine the points at which the synaptic threshold is achieved. Each row and column

determines a different fractional order and time. (A) Fractional-order α = 0.9 at time t = 1, we note a slight decrease in wave speed and slight decrease in wave width.

(B) Fractional-order α = 0.9 at t = 2, the fractional pulse solution is no longer above the synaptic threshold, hence it is no longer considered a pulse solution. (C,D)

Fractional-order α = 0.1 at time t = 1 and time t = 2, respectively. Similarly to (C), the fractional pulse solution is no longer above the synaptic threshold. (A–D)

Parameters fixed: ǫ = 0.1, β = 1.5, k = 0.25 and σ = 500 µm. Initial wave features c = 160 µm/ms and w = 589 µm.

The description of each of the terms of the previous
expressions as well as the details regarding the Adomian
decomposition method are established in Section 5 of the
Supplementary Material.

In Figure 9, we analyze the evolution of the two different
waves lying in the upper branch of stable waves, described in
Figure 5, using the Adomian approximation in the case of 1 <

α < 2. We show the evolution of the wave speed (at the front
of the wave) and the wave width according to time intervals
suggested by our error estimates. In both cases, we find an initial
decrease in wave speed, consistent with our results from the
Mittag-Leffler approximations, followed by a subsequent increase
in wave speed. In the initial decrease of speed we find that, in
general, lower orders imply less decrease. After that, the wave
speed was increased. For relatively low synaptic threshold (k =
0.28), we find that the wave width was slightly decreased, whereas
for higher synaptic threshold (k = 0.33), the decrease of the
wave width was minimum. In the first case, a lower fractional-
order imply more decrease in the feature of wave width. This

result is also consistent with the results from the Mittag-Leffler
approximations: the effect of fractional-order on wave width is
determined by the synaptic threshold.

In Figure 10, we depict an example of a fractional-
order approximate solutions considering the initial conditions
previously discussed, but now in the case of 1 < α < 2. Here,
we find that all fractional-orders exhibited an initial decrease
in wave speed and width consistent with the analysis developed
in section 3. For all fractional-orders and low times, we find a
consistent and very slight (less than 150 µm) decrease in wave
width. It is not possible to establish a qualitatively difference
in the wave shape with this approach. Further work needs
to be addressed to establish the effect of fractional-order on
wave profile.

The analysis developed by using the Adomian decomposition
method strengths our hypothesis established in Section 3.
Regardless of the fractional-order considered, there is an effect of
fractional-order on wave speed and wave width. Low fractional-
orders (0 < α < 1), tend to produce a slight increase in
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FIGURE 9 | Wave speed and wave width as a function of time as estimated by the Adomian Decomposition Method in the case of 1 < α < 2. (A–D) Wave speed and

wave width for the wave solution determined by the “red circle solution” (A,C) and “red square solution” (B,D), respectively. The different color dots determine distinct

fractional-orders. The red dashed lines determine the features of the integer-order solutions initial solution. We analyze up to t = 1.5 in correspondence to the error

estimates established in the Supplementary Material. (A,B) The fractional wave solutions present an initial decrease in wave speed, in agreement with the

Mittag-Leffler approximations, followed by a subsequent increase in wave speed. (C) The fractional wave solutions present an insignificant decrease in wave width. (D)

The fractional wave solutions present a slight decrease in wave width. A similar analysis has been made for longer synaptic connectivity ranges obtaining qualitatively

similar results. (A–D) Parameters fixed: ǫ = 0.1, β = 1.0, and σ = 300 µm.

wave width and similar shape to the integer-order case, at a cost
of initially increasing wave speed and significantly decreasing
the wave speed at later times. On the other hand, the initial
effect of fractional-orders (1 < α < 2) is to decrease wave
width and speed. After this transient effect on the feature of
wave speed, the wave speed tends to increase. The limitations of
the approximation does not permit to know the exact evolution
later in time of this case but the reduction on wave width
is an important effect due to the fractional-order. Therefore,
the possible memory repercussion due to a fractional-order
approach exerts a significant effect on wave features modeled by
neural fields.

4. DISCUSSION

In this work, we established a novel study regarding the existence
of approximated fractional-order traveling wave solutions to
describe wave features observed in in vivo clinical recordings.

We focused our efforts on two different ranges of fractional
orders: 0 < α < 1 and 1 < α < 2. In our
work, the characteristics shown in the wave solutions were
considerably different in each of these cases. First, our Mittag-
Leffler approximations provided information of plausible initial
fractional-order dynamics when considering the change from
a first-order to a fractional-order framework. In the case of
α ≈ 1−, our approximations converged to the first-order case
as α → 1−. They provided evidence of an initial and transient
activity increase. On the other hand, in the case of α ≈ 1+, the
estimates did not converge to the first-order case as α → 1+.
The usefulness of the latter case was restricted when considering
long synaptic connectivity extents and low speeds. This is one
of the limitations of our approximations. For such scenarios,
we found an initial activity decrease. We complemented our
analysis with explicit Mittag-Leffler error estimates, described
in the Supplementary Material, that motivated the use of
such approximations.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 March 2022 | Volume 16 | Article 788924

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


González-Ramírez Fractional-Order Wave Propagation

FIGURE 10 | Approximate fractional-order traveling pulse solutions using the Adomian decomposition method in the case of 1 < α < 2. The dashed red curve

denotes the integer-order initial pulse solution (Equation 5) determined by the “red square solution” and the blue curve denotes the approximate fractional pulse

solution. Each row and column determine a different fractional-order and time as is described in the caption. (A–F) The effect of fractional-order on wave speed is

nonlinear. In all cases, there is an initial decrease of wave speed, followed by an increase in wave speed. On the other hand, for all fractional orders and all times, we

find a consistent and slight decrease in wave width as is described in Figure 9. The fractional-order approximations provide an insight of a possible effect of

fractional-order on wave profile. (A–F) Parameters fixed: ǫ = 0.1, β = 1.0, k = 0.28 and σ = 300 µm.

Second, the implementation of the Adomian decomposition
method provided information regarding a wider range of
fractional orders covering 0 < α < 2. Since the effectiveness
of this method relies on the order expansion choice, we limited
our analysis to convenient time intervals motivated by the error
estimates herein established. Using this approach, we recovered
the initial transient dynamics previously established by the

Mittag-Leffler approximations and observed further dynamics
changes. In particular, in the case of 0 < α < 1, after
the initial effect captured by the Mittag-Leffler approximation,
a decrease of activity was observed. On the other hand,
considering the case of 1 < α < 2, we observed an activity
increase after an initial decrease of activity. Therefore, both of
our solutions agreed on the initial transient effects, and the
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Adomian decomposition method provided evidence of distinct
dynamics as time increases. We also found evidence of an
apparent synaptic-dependent fractional-order derivative effect
using this methodology. In particular, wave solutions determined
by higher synaptic thresholds had diminished feature change
than those determined by lower synaptic thresholds, in which
more acute changes were observed. Thus, the fractional-order
derivative’s memory effect might also depend on the synaptic
activity threshold.

Since the fractional-order traveling wave approximated
solutions have as free parameters: the wave speed (c), the
wave width (w), and the synaptic connectivity extent (σ ), the
effect of fractional-order on solutions can only be analyzed by
considering the matching conditions determined by Equation
(7). The matching conditions provided the existence of traveling
waves in the first-order case and the fractional-order case. Due
to the number of free parameters, our work was designed to
extract information about the relationship between the wave
speed and the wave width, as these two features can be related
to clinical data. Some of our study limitations are the use of
convenient kernels in the Mittag-Leffler approach and limited
synaptic connectivity extents for each of the approximations.
To the authors’ knowledge, this is the first study of fractional-
order neural field models and provides a basis for future research
considering the modeling of neuronal population activity under
a fractional-order framework.

5. CONCLUSIONS

We established an initial study of traveling wave solutions of
fractional-order neural field models in this work. We provided
evidence of distinct effects on wave features considering the
fractional temporal order as developed using the Caputo
mathematical framework and a first-order wave solution as
the initial condition. We hypothesized that the difference in
characteristics is due to the neuronal collective memory effect of
the fractional derivative. We found that for values of 0 < α < 1,
the memory tends to increase initially and then decrease the
wave speed, while in the case of 1 < α < 2, the memory
tends to decrease initially and then increase the wave speed. Also,
our results showed that the effect of fractional-order on wave
width is dependent on the synaptic threshold and the synaptic
connectivity extent. Therefore, our results provided insight into
how the memory effect due to the fractional-order derivative
plays a complex role in studying wave patterns in neural
fields. There are several advantages of considering a fractional-
order scenario in comparison to a traditional integer-order
framework. First, the model motivation extends naturally to a

fractional-order scenario, and we can recover the first-order case
when considering the limit α → 1−. In this model motivation,
the fractional-order can account for different synaptic processes
and scales of action. The fractional-order approach provides
richer dynamics, in which the plausible memory index exerts
different effects on the wave features. By considering a fractional-
order approach, the problem’s difficulty increases; however, it is
possible to include more realistic modeling features similar to the
expected non-linear nature of neuronal systems.

Future research directions include developing numerical and
computational methods to implement the Caputo fractional-
order derivative better and to analyze wave propagation
features without restricting synaptic connectivity extents. In
general, it is also of interest to understand the effect of
fractional-order on different spatio-temporal patterns of activity.
Also, it is desirable to investigate the effect of fractional-
order on wave propagation by considering different fractional-
order derivative definitions, and developing hypotheses of the
plausible memory effect due to the fractional-order derivative
definition choice.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LG-R designed the research, established the mathematical
models, performed the mathematical analysis, performed the
numerical simulations, and wrote the manuscript.

FUNDING

This research was funded by SIP-IPN 2021-1285 and 2022-1416.

ACKNOWLEDGMENTS

LG-R would like to thank Vladimir Vega for helpful discussions
about fractional-order derivatives and enlightenment to calculate
the error estimates of the Mittag-Leffler approximations.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.788924/full#supplementary-material

REFERENCES

Abbaoui, K., and Cherruault, Y. (1995). New ideas for proving convergence

of decomposition methods. Comput. Math. Appl. 29, 103–108.

doi: 10.1016/0898-1221(95)00022-Q

Abbasbandy, A. (2007). The application of homotopy analysis

method to solve a generalized hirota-satsuma coupled kdv

equation. Phys. Lett. A 361, 478–483. doi: 10.1016/j.physleta.2006.

09.105

Adomian, G. (1988). A review of the decomposition method

in applied mathematics. J. Math. Anal. Appl. 135, 501–544.

doi: 10.1016/0022-247X(88)90170-9

Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition

Method. Boston, MA: Kluwer Academic Publishers.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 March 2022 | Volume 16 | Article 788924

https://www.frontiersin.org/articles/10.3389/fncom.2022.788924/full#supplementary-material
https://doi.org/10.1016/0898-1221(95)00022-Q
https://doi.org/10.1016/j.physleta.2006.09.105
https://doi.org/10.1016/0022-247X(88)90170-9
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


González-Ramírez Fractional-Order Wave Propagation

Armanyos, M., and Radwan, A. (2016). “Fractional-order fitzhugh-nagumo

and izhikevich neuron models,” in 2016 13th International Conference

on Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON) (Chiang Mai: IEEE),

1–5.

Baleanu, D., Tenreiro Machado, J., and Luo, A. (2012). Fractional Dynamics and

Control. New York, NY: Springer.

Bonilla, B., Rivero, M., and Trujillo, J. (2007). On systems of linear fractional

differential equations with constant coefficients. Appl. Math. Comput. 187,

68–78. doi: 10.1016/j.amc.2006.08.104

Braitenberg, V., and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity. Berlin: Springer.

Bressloff, P. (2012). Spatiotemporal dynamics of continuum neural fields. J. Phys.

A Math. Theor. 45, 033001. doi: 10.1088/1751-8113/45/3/033001

Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., and Wiener, M. (2001).

Geometric visual hallucinations, euclidean symmetry and the functional

architecture of striate cortex. Phil. Trans. R. Soc. B 356, 299–330.

doi: 10.1098/rstb.2000.0769

Butler, T., Benayoun, M., Wallace, E., van Drongelen, W., Goldenfeld, N., and

Cowan, J. (2012). Evolutionary constraints on visual cortex architecture from

the dynamics of hallucinations. Proc. Natl. Acad. Sci. U.S.A. 109, 606–609.

doi: 10.1073/pnas.1118672109

Chen, W., Sun, H., Zhang, X., and Korosak, D. (2010). Anomalous diffusion

modeling by fractal and fractional derivatives. Comput. Math. Appl. 59,

1754–1758. doi: 10.1016/j.camwa.2009.08.020

Cherruault, Y. (1990). Convergence of adomian’s method. Math. Comput. Model

14, 83–86. doi: 10.1016/0895-7177(90)90152-D

Chervin, R., Pierce, P., and Connors, B. (1988). Periodicity and directionality in

the propagation of epileptiform discharges across neocortex. J. Neurophysiol.

60, 1695–1713. doi: 10.1152/jn.1988.60.5.1695

Connors, B., and Amitai, Y. (1993). “Generation of epileptiform discharges by

local circuits in neocortex,” in Epilepsy: Models, Mechanisms and Concepts, ed

P. Schwartzkroin (New York, NY: Cambridge University Press).

Coombes, S., Beim Graben, P., Potthast, R., and Wright, J. (Eds.). (2014). Neural

Fields: Theory and Applications. Berlin: Springer.

Coombes, S., and Owen, M. (2004). Evans functions for integral neural field

equations with heaviside firing rate function. SIAM J. Appl. Dyn. Syst. 4,

574–600. doi: 10.1137/040605953

Coutin, L., Guglielm, J., and Marie, N. (2018). On a fractional stochastic hodgkin-

huxley model. Int. J. Biomath. 11:1850061. doi: 10.1142/S1793524518500614

Du, M., Wang, Z., and Hu, H. (2013). Measuring memory with the order of

fractional derivative. Sci. Rep. 3, 3431. doi: 10.1038/srep03431

Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming

systems. Rep. Prog Phys. 61, 353–430. doi: 10.1088/0034-4885/61/4/002

Ermentrout, G., and Cowan, J. (1979). A mathematical theory of visual

hallucination patterns. Biol. Cybern. 34, 137–150. doi: 10.1007/BF00336965

Golomb, D., and Amitai, Y. (1997). Propagating neuronal discharges in neocortical

slices: Computational and experimental study. J. Neurophysiol. 78, 1199–1211.

doi: 10.1152/jn.1997.78.3.1199

González-Ramírez, L., Ahmed, O., Cash, S., Wayne, C., and Kramer, M.

(2015). A biologically constrained, mathematical model of cortical wave

propagation preceding seizure termination. PLoS Comput. Biol. 11, e1004065.

doi: 10.1371/journal.pcbi.1004065

Henry, B., Langlands, T., and Wearne, S. (2008). Fractional cable

models for spiny neuronal dendrites. Phys. Rev. Lett. 100:128103.

doi: 10.1103/PhysRevLett.100.128103

Ishteva, M. (2005). Properties and applications of the Caputo fractional operator

(Master’s thesis). Universität Karlsruhe (TH), Bulgaria.

Jafari, H., and Daftardar-Gejji, V. (2006). Solving linear and nonlinear fractional

diffusion and wave equations by adomian decomposition. Appl. Math. Comput.

180, 488–497. doi: 10.1016/j.amc.2005.12.031

Jiang, Y., Zhang, B., Shu, X., and Wei, Z. (2020). Fractional-order

autonomous circuits with order larger than one. J. Adv. Res. 25, 217–225.

doi: 10.1016/j.jare.2020.05.005

Jirsa, V., Proix, T., Perdikis, D., Woodman, M., and et al. (2017). The virtual

epileptic patient: Individualized whole-brain models of epilepsy spread.

Neuroimage 145, 377–388. doi: 10.1016/j.neuroimage.2016.04.049

Kapitula, T., Kutz, N., and Sandstede, B. (2004). The evans function for nonlocal

equations. Indiana U Math. J. 53, 1095–1126. doi: 10.1512/iumj.2004.53.2431

Kuhlmann, L., Grayden, D., Wendling, F., and Schiff, S. (2016). The role

of multiple-scale modelling of epilepsy in seizure forecasting. J. Clin.

Neurophysiol. 32, 220–226. doi: 10.1097/WNP.0000000000000149

Langlands, T., Henry, B., and Wearne, S. (2009). Fractional cable equation models

for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math.

Bio. 59, 761–808. doi: 10.1007/s00285-009-0251-1

Linden, H., Tetzlaff, T., Potjans, T., Pettersen, K. H., and Grun, S.

(2011). Modeling the spatial reach of the lfp. Neuron 72, 859–872.

doi: 10.1016/j.neuron.2011.11.006

Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous

diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77.

doi: 10.1016/S0370-1573(00)00070-3

Moaddy, K., Radwan, A., Salama, K., Momani, S., and Hashim, I. (2012). The

fractional-order modeling and synchronization of electrically coupled neuron

systems. Compt. Math. Appl. 64, 3329–3339. doi: 10.1016/j.camwa.2012.01.005

Mondal, A., Sharma, S., Upadhyay, R., and et al. (2019). Firing activities of

a fractional-order fitzhugh-rinzel bursting neuron model and its coupled

dynamics. Sci. Rep. 9, 15721. doi: 10.1038/s41598-019-52061-4

Nagy, A., and Sweilam, N. (2014). An efficient method for solving

fractional hodgkin-huxley model. Phys. Lett. A 378, 1980–1984.

doi: 10.1016/j.physleta.2014.06.012

Ortigueira, M., and Tenreiro Machado, J. (2015). What is a fractional derivative? J.

Comput. Phys. 293, 4–13. doi: 10.1016/j.jcp.2014.07.019

Pandir and Tandogan, (2013), in AIP Conference Proceedings 1558, 1919-1922,

Rhodes, Greece.

Peyrache, A., Dehghani, N., and Eskandar, E. E. A. (2012). Spatiotemporal

dynamics of neocortical excitation and inhibition during human sleep. Proc.

Natl. Acad. Sci. U.S.A. 109, 1731–1736. doi: 10.1073/pnas.1109895109

Pinto, D., and Ermentrout, G. (2001). Spatially structured activity in synaptically

coupled neuronal networks: I. traveling fronts and pulses. SIAM J. Appl. Math.

62, 226–243. doi: 10.1137/S0036139900346465

Pinto, D., Jackson, R., and Wayne, C. (2005). Existence and stability of traveling

pulses in a continuous neuronal network. SIAM J. Appl. Dyn. Syst. 4, 954–984.

doi: 10.1137/040613020

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, USA,

1–340.

Podlubny, I. (2002). Geometric and physical interpretation of fractional

integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386.

Available online at: http://www.crossref.org/

Proix, T., Jirsa, V., Bartolomei, F., Guye, M., and Truccolo, W. (2018). Predicting

the spatiotemporal diversity of seizure propagation and termination in human

focal epilepsy. Nat. Commun. 9, 1088. doi: 10.1038/s41467-018-02973-y

Ross, B. (1974). “A brief history and exposition of the fundamental theory of

fractional calculus,” in Fractional Calculus and Its Applications, ed B. Ross,

Berlin; Heidelberg: Springer-Verlag.

Sandstede, B. (2007). Evans function and nonlinear stability of traveling

waves in neuronal network models. Int. J. Bifurcat Chaos 17, 2693–2704.

doi: 10.1142/S0218127407018695

Santamaria, F. (2015). Effect of power-law ionic conductances in the hodking

and huxley model. BMC Neurosci. 16, P250. doi: 10.1186/1471-2202-16-

S1-P250

Sokolov, I., and Klafter, J. (2005). From diffusion to anomalous diffusion: a century

after einstein’s brownian motion. Chaos 15:026103 doi: 10.1063/1.1860472

Stefanescu, R., Shivakeshavan, R., and Talathi, S. (2012). Computational models of

epilepsy. Seizure 21, 748–759. doi: 10.1016/j.seizure.2012.08.012

Sweilam, N., Khader, M., and Adel, M. (2014). Numerical simulation of

fractional cable equation of spiny neuronal dendrites. J. Adv. Res. 5, 253–259.

doi: 10.1016/j.jare.2013.03.006

Tarasov, V. (2016). On chain rule for fractional derivatives. Comm. Nonlinear Sci.

Numer. Simulat. 30, 1–4. doi: 10.1016/j.cnsns.2015.06.007

Tarasov, V. (2018). Generalized memory: Fractional calculus approach. Fractal

Fract. 2, 1–4. doi: 10.3390/fractalfract2040023

Teka, W., Stockton, D., and Santamaria, F. (2016). Power-law dynamics of

membrane conductances increase spiking diversity in a hodgkin-huxley model.

PLoS Comput. Biol. 12, e1004776. doi: 10.1371/journal.pcbi.1004776

Frontiers in Computational Neuroscience | www.frontiersin.org 18 March 2022 | Volume 16 | Article 788924

https://doi.org/10.1016/j.amc.2006.08.104
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1098/rstb.2000.0769
https://doi.org/10.1073/pnas.1118672109
https://doi.org/10.1016/j.camwa.2009.08.020
https://doi.org/10.1016/0895-7177(90)90152-D
https://doi.org/10.1152/jn.1988.60.5.1695
https://doi.org/10.1137/040605953
https://doi.org/10.1142/S1793524518500614
https://doi.org/10.1038/srep03431
https://doi.org/10.1088/0034-4885/61/4/002
https://doi.org/10.1007/BF00336965
https://doi.org/10.1152/jn.1997.78.3.1199
https://doi.org/10.1371/journal.pcbi.1004065
https://doi.org/10.1103/PhysRevLett.100.128103
https://doi.org/10.1016/j.amc.2005.12.031
https://doi.org/10.1016/j.jare.2020.05.005
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1512/iumj.2004.53.2431
https://doi.org/10.1097/WNP.0000000000000149
https://doi.org/10.1007/s00285-009-0251-1
https://doi.org/10.1016/j.neuron.2011.11.006
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/j.camwa.2012.01.005
https://doi.org/10.1038/s41598-019-52061-4
https://doi.org/10.1016/j.physleta.2014.06.012
https://doi.org/10.1016/j.jcp.2014.07.019
https://doi.org/10.1073/pnas.1109895109
https://doi.org/10.1137/S0036139900346465
https://doi.org/10.1137/040613020
http://www.crossref.org/
https://doi.org/10.1038/s41467-018-02973-y
https://doi.org/10.1142/S0218127407018695
https://doi.org/10.1186/1471-2202-16-S1-P250
https://doi.org/10.1063/1.1860472
https://doi.org/10.1016/j.seizure.2012.08.012
https://doi.org/10.1016/j.jare.2013.03.006
https://doi.org/10.1016/j.cnsns.2015.06.007
https://doi.org/10.3390/fractalfract2040023
https://doi.org/10.1371/journal.pcbi.1004776
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


González-Ramírez Fractional-Order Wave Propagation

Tofighi, A. (2003). The intrinsic damping of the fractional oscillator. Phys. A. 329,

29–34. doi: 10.1016/S0378-4371(03)00598-3

Vitali, S., Catellani, G., and Mainardi, F. (2017). Time fractional cable equation

and applications in neurophysiology. Chaos Soliton Fract. 102, 467–472.

doi: 10.1016/j.chaos.2017.04.043

Wadman, W., and Gutnick, M. (1993). Non-uniform propagation of epileptiform

discharge in brain slices of rat neocortex. Neuroscience 52, 255–262.

doi: 10.1016/0306-4522(93)90154-8

Wang, J., and Li, H. (2011). Surpassing the fractional derivative: concept

of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567.

doi: 10.1016/j.camwa.2011.04.028

Wang, Q. (2006). Numerical solutions for fractional kdv-burgers equation

by adomian decomposition method. Appl. Math. Comput. 182, 1048–1055.

doi: 10.1016/j.amc.2006.05.004

Wazwaz, A. (1997). A First Course in Integral Equations. Singapore: World

Scientific.

Wazwaz, A. (2000). A new algorithm for calculating adomian

polynomials for nonlinear operators. Appl. Math. Comput. 111, 53–69.

doi: 10.1016/S0096-3003(99)00063-6

Wazwaz, A. (2001). Construction of solitary wave solutions and rational

solutions for the kdv equation by adomian decomposition method.

Chaos Soliton Fract. 12, 22830–22293. doi: 10.1016/S0960-0779(00)00

188-0

Weinberg, S. (2015). Membrane capacitive memory alters spiking

in neurons described by the fractional-order hodgkin-huxley

model. PLoS ONE 10, e0126629. doi: 10.1371/journal.pone.01

26629

Westerland, S., and Ekstam, L. (1994). Capacitor theory. IEEE Trans. Dielectr.

Electr. Insul. 1, 826–839. doi: 10.1109/94.326654

Yang, Y., Huang, Y., and Zhou, Y. (2017). Numerical simulation of time fractional

cable equations and convergence analysis. Numer. Meth. D E 34, 1556–1576.

doi: 10.1002/num.22225

Zhao, X., and Robinson, P. (2015). Generalized seizures in a neural field

model with bursting dynamics. J. Comput. Neurosci. 39, 197–216.

doi: 10.1007/s10827-015-0571-7

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 González-Ramírez. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 19 March 2022 | Volume 16 | Article 788924

https://doi.org/10.1016/S0378-4371(03)00598-3
https://doi.org/10.1016/j.chaos.2017.04.043
https://doi.org/10.1016/0306-4522(93)90154-8
https://doi.org/10.1016/j.camwa.2011.04.028
https://doi.org/10.1016/j.amc.2006.05.004
https://doi.org/10.1016/S0096-3003(99)00063-6
https://doi.org/10.1016/S0960-0779(00)00188-0
https://doi.org/10.1371/journal.pone.0126629
https://doi.org/10.1109/94.326654
https://doi.org/10.1002/num.22225
https://doi.org/10.1007/s10827-015-0571-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
	1. Introduction
	2. Materials and Methods
	2.1. Neural Field Models and Cortical Wave Propagation

	3. Results
	3.1. Fractional-Order Neural Field Model Motivation
	3.2. Approximate Traveling Wave Solutions With α1-
	3.3. Approximate Traveling Wave Solutions With α1+
	3.4. On the Effect of Fractional-Order on Wave Features
	3.5. Adomian Decomposition Method
	3.6. Approximate Traveling Wave Solution for 0<α<1
	3.7. Traveling Wave Solution for 1<α<2

	4. Discussion
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


