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Abstract: The Windkessel model, which is known as a successful model for explaining the hemo-
dynamic circulation, is a mathematical model with a direct correspondence with the electric circuit.
We propose a theoretical model for the intracranial aneurysm based on the Windkessel-type steady
blood flow. Intracranial aneurysms are well known vascular lesions, which cause subarachnoid
hemorrhages. Since an aneurysm is an end-sack formed on the blood vessel, it functions as an unusual
blood path that has characteristic features such as a reservoir and bottle neck orifice. We simulate
an aneurysm by an electric circuit consisting of three different impedances, resistance, capacitance
and inductance. A dumbbell-shaped aneurysm is the most dangerous aneurysm to easily rupture.
Our aneurysmal model is created as a two-story aneurysm model for this point, thus namely the
five-element Windkessel. Then, the mathematical formula was solved in numerical simulations by
changing the size of the aneurysm and the elasticity of the aneurysm wall. An analysis of this model
provided that the presence of the daughter aneurysm and the thinning of the aneurysm wall are
positively correlated with a sharp increase in blood pressure in the aneurysm dome. Our mathematic
aneurysm model proposes a good analogue to the real aneurysm and proved that this model includes
soliton that is a non-decreasing wave propagation.

Keywords: Windkessel model; intracranial aneurysm; subarachnoid hemorrhage; soliton

1. Introduction

The subarachnoid hemorrhage (SAH) is one of the main causes of sudden death, and
it is triggered by the sudden rupture of intracranial aneurysms [1–5]. Therefore, SAH
prevention has an important role for public health. The prediction of aneurysm rupture is
still an on-going argument. The most important method to predict the aneurysmal rupture
is diagnostic imaging such as size and shape [1–5]. This is a basic study to elucidate the
mechanism of an aneurysm rupture related with its morphology. An intracranial aneurysm
is a kind of blind end sack on the arterial wall that acts as a reservoir for circulating blood
and the complex blood path within the end sack [6–9]. The blood flow into the aneurysm is
influenced by the size of the aneurysm orifice and vessel geometry [6–9]. The inflow and
the outflow path through the same orifice, and the flow collision of the inflow and outflow
at the neck results in a slower vortex flow within the aneurysm. The aneurysm with the
daughter aneurysm such as the bleb (so called doubly composed aneurysm) is reported to
have a stagnant flow [4]. In such a bleb, the fragility of the aneurysmal wall is also observed.
Recent advances in imaging proved that the fragility of the aneurysmal wall induced the
deformation of blebs along the cardiac cycle [10]. The blebs must be the upper part of the
two-story aneurysm that must be locally weak or fragile for inflammation [11,12].

Recently, CFD (computational fluid dynamics) is considered as the most popular tool to
evaluate the hemodynamics affecting aneurysmal rupture There are many augments about
low or high shear stress, which plays an important role in aneurysmal rupture. CFD for
aneurysmal studies seem to have many limitations. In particular, CFD have not succeeded
in predicting the rupture caused by the slow recirculation flows or stagnant flow conditions
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found in daughter aneurysms [13–15]. Maybe in such conditions, inflammation or mass
transport between the blood and aneurysmal wall must be important [16]. On the other
hand, the Windkessel model, which is well known as a successful model for explaining the
hemodynamic circulation, is a mathematical model with a direct correspondence with the
electric circuits [17,18]. The Windkessel model is a lumped model that is not suitable for
the assessment of spatially distributed shear stress and aspects of flow travel; however, it is
a simple and fairly accurate approximation of arterial afterloads. In order to explain the
rupture of the doubly composed intracranial aneurysm, we construct a theoretical model
for the intracranial aneurysm based on the Windkessel-type modeling.

In this paper, we propose a five-element Windkessel-type model for the two-story
aneurysm and also identify the rupture condition of the intracranial aneurysm. We are
the first to use the Windkessel model to evaluate aneurysmal flow, and are successful in
demonstrating some resonating beats and the soliton wave propagation must be a key
factor for aneurysmal rupture.

2. Theoretical Model
2.1. The Five-Element Windkessel Model

The Windkessel model is known as a nonlinear steady flow model for explaining
hemodynamic circulation. While the more detailed turbulence and vortex formation are
not considered in Windkessel models, steady fluid mechanics are taken into account. Here,
we propose a model for describing an intracranial aneurysm (Figure 1A), which will clarify
a substantial role of steady fluid dynamics in the aneurysmal rupture.
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Figure 1. (A) Doubly composed intracranial aneurysm consisting of mother and daughter aneu-
rysms (also called dumbbell-shaped aneurysm in the preceding works). The blood flow F is the 
amount of blood flow pumping from the heart, F1 is the blood flow in the mother aneurysm and F2 
is the blood flow in the daughter aneurysm, where the circulative flows with the opposite direction 
are assumed in the aneurysms. (B) Solitonic Windkessel model for the doubly composed intracra-
nial aneurysm. The corresponding electric circuit is shown, where C1 and C2 corresponds to the 
size/dimension of mother and daughter aneurysms, respectively. R determines the branching ratio 
F1 = F of the blood flow. The constants L1 and L2 are related to the elasticity of blood vessel wall. P0, 
P1 and P2 denote the local pressures, and F, F1, and F2 are blood flows. 

Figure 1. (A) Doubly composed intracranial aneurysm consisting of mother and daughter aneurysms
(also called dumbbell-shaped aneurysm in the preceding works). The blood flow F is the amount of
blood flow pumping from the heart, F1 is the blood flow in the mother aneurysm and F2 is the blood
flow in the daughter aneurysm, where the circulative flows with the opposite direction are assumed
in the aneurysms. (B) Solitonic Windkessel model for the doubly composed intracranial aneurysm.
The corresponding electric circuit is shown, where C1 and C2 corresponds to the size/dimension of
mother and daughter aneurysms, respectively. R determines the branching ratio F1 = F of the blood
flow. The constants L1 and L2 are related to the elasticity of blood vessel wall. P0, P1 and P2 denote
the local pressures, and F, F1, and F2 are blood flows.

To define the blood flow in the aneurysm based on the Windkessel-type modeling, it
must be hypothesized that the size of the neck is the resistance of blood flow entering the
aneurysm: R (resistance), the size of the aneurysm is the reservoir for blood: C (capacitance)
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and the inertial effect of aneurysmal wall: L (inductance). The resistance R is a typical
resistance to block the blood flow into the aneurysm, because the blood flow entering the
aneurysm increases if a larger neck is formed. The capacitance C is mainly determined by
the size of aneurysm, thus blood flow into the aneurysm must be determined by aneurysm
volume. Then, aneurysm shape and aneurysmal wall elasticity must affect the intra-
aneurysmal flow; the elastic compliance effect is expected to appear if the elasticity of the
aneurysmal wall increase. Therefore, an inertial term L is added to the Windkessel model.

The electrical analog of the two-story aneurysm model consisting of the mother and
daughter aneurysm on the parent artery is shown in Figure 1B. In this model, the capacitor
C1 and C2 represent the compliance of mother and daughter aneurysm, and the inductance
of L1 and L2 stands for the inductance of the mother and daughter aneurysm, and F, F1,
and F2 are the blood flow in the parent artery, in the mother aneurysm and in the daughter
aneurysm, respectively. According to Kirchhoff’s law, the following three equations are
logically introduced. Let t be the time variable. The proposed model, which corresponds to
the five-element Windkessel model (Figure 1), reads

R(I(t)− I1(t)) = V(t) R(F(t)− F1(t)) = P(t)
Q1(t)

C1
+ L1

dI1(t)
dt = V(t) ⇔ Q1(t)

C1
+ L1

dF1(t)
dt = P(t)

Q2(t)
C2

+ L2
dI2(t)

dt = Q1(t)
C1

Q2(t)
C2

+ L2
dF2(t)

dt = Q1(t)
C1

(1)

where F(t) and P(t) mean the blood flow and the blood pressure of the parent artery,
respectively. Indeed, for the two models in Equation (1), electric currents I(t), I1(t), I2(t) and
electric voltage V(t) are replaced with blood flows F(t), F1(t), F2(t) and blood pressure P(t),
respectively. The quantity Q1(t) and Q2(t) denote the amount of blood inside the mother
and daughter aneurysms, respectively. More precisely, Q1(t) and Q2(t) means the amount
of blood inside the mother and daughter aneurysms, respectively. The R is the resistances
associated with the neck size, which is taken to be very high for most of the blood flows
going through the parent vessel. The flows F1(t) and F2(t) can be either positive, zero
or negative (for the default direction of the flows inside the aneurysms, see Figure 1A).
Consequently, the intracranial aneurysm is mathematically modeled in the form of the
Windkessel model.

Let local pressures P1 and P2 correspond to the pressures on the capacitor C1 and
C2, respectively. Much attention is paid to the effect due to the existence of the daughter
aneurysm. Here, blood pressure P(t) and the blood flow F(t) in the parent artery are
assumed to be given. In this situation, the flows F1(t) and F2(t) inside the aneurysms are
the unknowns, as well as the local pressures P1(t) and P2(t) inside the aneurysms, so that
the model equation is equivalent to solve

d2

dt2 F2(t) +
1

C2L2
F2(t) =

d
dt

[
P(t)
L2
− L1

L2

d
dt

(
F(t)− P(t)

R

)]
(2)

in terms of F2 (t). This equation is obtained by beginning with differentiating the third
equation of Equation (1), and next by substituting the second and first equations into it.
This is the second-order differential equation, where the right-hand side of this equation
is given by P(t) and F(t). Note that, in the present situation of simulating a blood flow
inside human brain, P(t) and F(t) are given. By giving initial values F2(0) and dF2(0)/dt,
Equation (3) leading to F2(t) is solvable. In this paper, F2(0) and dF2(0)/dt are fixed to
0.58 mL/min and 0 mL, respectively. On the other hand, the first equation of Equation (1)
leads to F1(t). Once F1(t) and F2(t) are obtained, Q1(t) is calculated by the second equation
of Equation (1), and then Q2(t) is obtained by third equations of Equation (1). P1(t) and
P2(t) are obtained by Qi(t) = C Pi (t) (cf. Q = CV for electric circuits).

In terms of making a large-scale systematic calculation, the differential operators are
discretized by the finite difference method. This treatment is rather legitimate in the present
setting with the given P(t) and F(t). Indeed, a relatively large amplitude effect represented
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by the right-hand side of Equation (2), which plays a role of external force in the equations
of motion, prevents the accumulation of errors.

2.2. Solitonic Modeling in Some Specific Cases

Another mechanism included in the present Windkessel-type steady flow is the soliton
propagation. The solitons are the stably-traveling waves without changing shape and
velocity [19–23]. Generally speaking, soliton propagations can be found in many scales and
in many mediums [24–26]. According to exactly the same setting as Equation (1), we have

P2 − P1 = L2
dF2

dt
, P1 − P0 = L1

dF1

dt
,

dQ1

dt
= F1 − F2, (3)

where we introduce additional quantity: local pressure P0 corresponding to the pressure
on the resistance R. Note that the local pressure P0 is temporally introduced to simply
discussion in this section, and it is not necessary in the main analysis. Equation (3) leads to

P2 + P0 − 2P1 = −L1
d2Q1

dt2 + (L2 − L1)
dF2

dt
. (4)

The second term of the right-hand side can be negligible if L1∼L2 or dF2/dt∼0 is
satisfied. Since the values of Li is associated with the elastic compliance, the cases with
L1 < L2 tend to be realized at the initiation stage of the aneurysm formation. Let the capacity
of the mother aneurysm be represented by the inverse dependence on the blood pressure
P:C1 = −(aP + b) −1 with constants a and b. By definition, the volume of the mother
aneurysm is calculated as

Q1 =
∫ P1

0 C1dP = −
∫ P1

0 (aP + b)−1dP

= − lim
p̂→0

1
a

[
log
(

p + b
a

)]P1

p̂
= − lim

p̂→0
( 1

a (log
(

P1 +
b
a

)
− log

(
p̂ + b

a

)
))

=
− lim

p̂→0
1

a (log ( P1
p̂+ b

a
+ b

a
1

p̂+ b
a
))= −1

a (log
( a

b P1 + 1
)
)

(5)

where p̂ is an intermediate constant satisfying p̂ + b/a = b/a. As a result, let L1∼L2 or
dF2/dt∼0 be satisfied, and

L1

a
d2

dt2 log
( a

b
P1 + 1

)
= 2P1 − P2 − P0 (6)

is obtained. This is the soliton equation admitting 1-soliton solution. In particular, this
equation holds the same form as the Toda lattice equation [27–31], so that the local pressure
P1 inside the mother aneurysm possibly holds the 1-soliton solution. Consequently, the
local pressure in the mother aneurysm is in the non-decaying solitonic state, if the elastic
compliance of mother and daughter aneurysms are not so different. As this model holds
the soliton-type, non-decaying wave propagation, we call the present model the solitonic
Windkessel model. In the case of soliton appearance, the solitonic wave propagation might
contribute directly or indirectly to the rupture of the daughter aneurysm.

3. Method

Systematic calculations, including almost 30 different settings, are carried out for
Equation (2). Equation (2) is discretized by the finite difference method with its incrimina-
tion unit dt = 0.002 sec. The blood pressure P(t) and the blood flow F(t) in the artery are
given by

F(t) = 10 sin(2πft) + F(0), (7)

P(t) = 20 sin(2πft) + P(0),

where f, F(0) and P(0) are the frequency of the heartbeat, initial blood flow and initial blood
pressure, respectively. For the human being, the typical blood flow of the middle cerebral
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artery is around 50 mL/min, the typical blood velocity is 60 cm/sec, the blood pressure
is between 80 to 120 mmHg and the heart rate is from 40 to 120 beat per minutes with
mean value 70 (Table 1), so that if we take the initial blood flow F(0) = 50 mL/min, the
initial blood pressure P(0) = 100 mmHg, and f = 70/60 [1/sec] in the systemic calculations
(Figure 2). In the natural situation, the blood flow in the parent artery (F + F1) is not so
different before and after aneurysmal formation. To realize this feature, the amount of
artery blood flow is adjusted by choosing the value of R, and the resistance parameter R is
fixed to R = 2.2 for all of the systematic calculations.

Table 1. Parameters in realistic situations, which are actually adopted in the present calculation.
As a result, the frequency f in this paper is fixed to 70/60 (1/sec), and the artery blood flow F to
50 (mL/min).

Beat [bpm] Artery Blood Flow [mL/min]

Typical values 70 (40–110) 50 (40–60)
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Let us begin with a typical case of doubly composed intracranial aneurysms, in which 
a half-sized daughter aneurysm is formed on the mother aneurysm; the half size is real-
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Figure 2. Blood flow F(t) and blood pressure P(t) in the main vessel are given in the left panel (A) and
the right panel (B), respectively. Environmental variables are determined by the heartbeat: blood
pressure P(t) and blood flow F(t) are plotted for 0–20 s. These are regularly provided by the heart. The
time periodic oscillation is fixed by the typical beat 70 bpm (Table 1), the blood pressure is assumed
to range from 80 to 120 mmHg and the blood flow to be 40 to 60 mL/min.

4. Results

The blood flow and blood pressure before aneurysmal formation exactly corresponds
to the natural situation shown in Figure 2. In other words, the blood flow and pressure
shown in Figure 2 correspond to those pumping from the heart. Beginning with this natural
situation, we simulate the change of blood flow and local blood pressure depending on the
size and the elastic compliance of aneurysm.

Let us begin with a typical case of doubly composed intracranial aneurysms, in which
a half-sized daughter aneurysm is formed on the mother aneurysm; the half size is realized
by taking C2/C1 = 0.50, and the elastic compliance arising from the elasticity of aneurysmal
wall are taken to be L2/L1 = 0.50. For a given setting: R = 2.2, C1 = 0.10, C2 = 0.05 and
L1 = 10 and L2 = 20; Figure 3 shows the intra-aneurysmal flow and the blood flow of the
parent artery. Less than 10% of the blood in the parent artery flows into the aneurysm.
The blood flow inside daughter aneurysm includes an oscillation with a large frequency.
Indeed, the composite oscillation formed in the daughter aneurysm holds a three times
longer beat than the heartbeat. It implies the appearance of the resonating beat. Here, it
is notable that, based on the ultrasonic measurement, the flow velocity of the ruptured
aneurysm is observed to be relatively slow compared to those in the parent artery [9]. That
is, distinct from the naïve expectation, a slower flow often leads to the rupture. As observed
in the following, this fact is explained in the present model.
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Figure 3. (A) The branching of blood flow from F(t) to F1(t) and F2(t) at a given setting (R = 2.2,
C1 = 0.100, C2 = 0.005 and L1 = 10, L2 = 20). Here, we take R = 2.2 for the local blood flow in the
main vessel F–F1 not to change too much (less than 10% in all the calculated cases) compared to F. It
simulates the typical case of doubly composed aneurysm. Calculation shows that the blood flow in
the artery F is almost equal to the blood flow in the parent artery F–F1, and therefore the blood flows
in the aneurysms are kept to be small. Depending on the choice of four parameters (C1, C2, L1, and
L2), flows F1 and F2 can be either positive, zero or negative. (B) In the same parameter setting, the
local pressures P1(t) and P2(t) are calculated, which note that the blood pressure at the parent artery
is equal to P(t) regardless of the choice of parameter. In this parameter setting, the amplitude of local
pressure P1(t) is almost equal to P(t), while another local pressure P2(t) oscillates with irregular beat
and small amplitude.

Figure 4 compares the oscillation of blood pressures for some different sizes of the
daughter aneurysm. It simulates the growth of the daughter aneurysm from 1/5th the
size to the same size of the mother aneurysm. The growth of the daughter aneurysm in
an ordinary scenario, keeping L2/L1 = 2.0, is shown in the Figure 4A, and that in a soliton-
appearance scenario, in keeping with L2/L1 = 1.0, is shown in the Figure 4B. A large value
of the elastic compliance Li is expected to be due to the swelling of the aneurysm arising
from the thinness of the blood wall. At the initial stage of the daughter aneurysm formation
(C2/C1 = 0.20), the local blood pressures P1 and P2 satisfies |P1| > |P2|. However, at the
latter stage with a sufficiently grown daughter aneurysm, the opposite relation |P1| < |P2|
holds. Accounting for the situation with the similar sizes between mother and daughter
aneurysms at the latter stages (C2/C1~1.0), a significant increase was detected only in the
local pressure P2, where the local pressure P1 is kept to be less than 170 mmHg. The local
blood pressure P1 of the mother aneurysms oscillates by the heartbeat cycle, while the local
blood pressure P2 in the daughter aneurysm oscillates by both the heartbeat and another
long beat. This fact coincides with the beating. Consequently, we found the appearance
of the wave propagation entailing the resonating beats in the daughter aneurysm, where
the resonating beat arises from the interference of flows with several different frequencies.
Furthermore, independent of the compliance and of the scenario of aneurysmal evolution,
we see that the local blood pressure P2 increases, as it is proportional to the size of the
daughter aneurysm.

Figure 5 compares the oscillation of blood pressures for some different elastic com-
pliances of the aneurysm, where only the mother aneurysm is formed. It simulates the
evolution of the elastic compliance of aneurysm. Indeed, the elastic compliance should be
different depending on elasticity and/or thinness of the aneurysmal wall. In Figure 5, the
size of the aneurysm is fixed (C1 = 0.10), and only the compliance L1 is changed. The result
shows us that even if the size of aneurysm is not well developed, very high local pressure
of about 200 mmHg can be achieved by the compliance effect. Consequently, we see that
the local blood pressure P1 increases, as it is proportional to the elastic compliance.
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Figure 5. Maximum value of the local blood pressure P1 depending on the aneurysmal compliance L1.
The daughter aneurysms are not assumed to be formed well (C2 = 0.1, C2 = 0.001, L2 = 0). By changing
the compliance parameter L1 of mother aneurysm, the local pressure P1 of mother aneurysm increases
linearly. Note that the blood flow F–F1 and blood pressure P in the parent artery is nothing different
from those given by Figure 3.

5. Discussion
5.1. Rupture Caused by the Size of Aneurysm

Let us begin with defining the aspect ratio α. The aspect ratio is defined by α = d/w,
where d is the depth, and w is the neck width (Figure 1A). According to the surgical
experience and the related studies, the risk factor of the intracranial aneurysm rupture
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is widely believed as the size larger than 10 mm [32] with or without the presence of the
daughter aneurysm (e.g., with or without the entailing deformed shape). In a sense, the
formation of the larger aneurysm is quantitatively identified by the aspect ratio larger than
1.6 [4,5]. In the previous studies [4,5], we reported that the aspect ratio of the unruptured
aneurysm more than 1.6 is a border to start the pathological process to rupture.

The present five-element Windkessel model shows that the aneurysm with C2/C1
more than 0.8 is the dangerous state of the aneurysm (Figure 4), because intra-aneurysmal
pressure becomes larger than 120 mmHg in all the cases, where 120 mmHg is the given
maximum blood pressure from the heart. Let mother and daughter aneurysms be al-
most spherical, in which the radius of mother and daughter aneurysms are R1 and R2,
respectively. In this situation, the following relations are approximately valid:

4πR3
1

3
= C1,

4πR3
2

3
= C2, (8)

It leads to the approximation of the aspect ratio

α =
d
w

3
2 R1 +

3
2 R2√

3
2 R1 × 2

=

√
3

2
R1 +

√
3

2

(
C2

C1

)1/3
, (9)

where w and d are approximated by
√

3R1 and (2R1 + 3R2)/2, respectively (see Figure 1A).
In this formalism, the aspect ratio of the dumbbell-shaped situation C1 = C2 is given by
α = 1.73. Since the border of the rupture is identified to be C2/C1 = 0.8 based on the
simulation, it leads to

α =

√
3

2
+

√
3

2
(0.8)1/3 = 1.67. (10)

It agrees well with the value α = 1.6 obtained by the experimental observation [4,5].
This finding proved the validity of the present five-element Windkessel model, and there-
fore is a substantial role of the static fluid dynamics effect.

5.2. Rupture Caused by the Formation of Daughter Aneurysm

The size ratio (more precisely, the volume ratio) between the mother and daughter
aneurysm Q2/Q1 is essentially governed by the ratio between the proportional coefficients
C2/C1 (cf. Q = CV). If the local blood pressure is sufficiently large enough to be larger
than 180 mmHg, the rupture should take place. The possibility of rupture due to the
daughter aneurysm is noticed; if the size (capacitance) of the daughter aneurysm becomes
larger than 80% (C2/C1 = 0.80) of that of mother aneurysm (Figure 4), the rupture can
take place. It tells us that the intra-aneurysmal pressure is demonstrated to be highly
dependent on the size ratio C2/C1 between the mother and daughter aneurysm. The
dumbbell shape formation, which has been believed to be a risk factor of the aneurysmal
rupture, is confirmed quantitatively as the risk factor. Since the blood flow inside the
daughter aneurysm cannot be as large in the present choice of the R value, the supersonic
measurement for the rupture of the daughter aneurysm by slow blood flow is explained in
the present model (Figure 6). Moreover, according to the present model, even if the size of
the mother and daughter aneurysm (the values of C1 and C2) is not so large, the rupture
can take place if the size ratio C2/C1 is large enough to be close to 1.0. Importantly, in such
dumbbell shape formations, only the local pressure of the daughter aneurysm increases to
possibly more than 200 mmHg.
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5.3. Rupture Caused by the Compliance of Aneurysm

The compliance (L1 and/or L2) of the aneurysm arises from the elasticity or thinness of
the aneurysmal wall. In Figure 5, the calculations performed by assuming a negligibly small
daughter aneurysm are shown. The intra-aneurysm pressure increases linearly as the intra-
aneurysmal compliance becomes larger. The fluctuation of the pulsatile pressure becomes
extremely large, and is even comparable to some local pressures of the dumbbell-shaped
aneurysms (see also Figure 4). The possibility of rupture due to the compliance of the
aneurysm is noticed, and the intra-aneurysmal pressure is shown to be highly dependent
on the elastic compliance L1 of the aneurysm. In this case, a rupture with a relatively small
aneurysm can take place.

Recent studies of the motion of the aneurysmal wall on the basis of the dynamic digital
subtraction angiography have demonstrated that the bleb of an aneurysm has a larger
deformation amplitude than the aneurysmal sac [12,33,34]. In ruptured aneurysms, an
area of pulsation was found to occur at the thinnest part of the aneurysmal wall, where it
is covered with a fibrin plug [15,16]. The present model simply explains those previous
clinical reports.

Previous reports have demonstrated that the main risk factor of the intracranial
saccular aneurysm rupture is considered a size larger than 10 mm [32]. However, many
ruptured aneurysms are small [3,35]. There is the important suspicion that many of the
aneurysms may rupture within a short period before growing to a 10 mm size; the rest of
the unruptured aneurysms stayed stable, and then may be found incidentally. We observed
that the incidentally found aneurysm ruptured truly little, and most of the unruptured
aneurysm stayed unruptured [36,37]. Thus, the risk of rupture of the aneurysms must
be the highest at its early stage, because at the initiation, the aneurysmal wall must be
very fragile.

5.4. Rupture Caused by Soliton Propagation

The soliton propagation is involved in our five-element mathematical Windkessel
model. This is the first report to demonstrate soliton in the hemodynamic circulation. In
particular, the local pressure P2 inside the daughter aneurysm holds the soliton solution.
Comparing the Figure 4A and the Figure 4B, the soliton propagation contributes to increase
the local pressure P2, even though the smaller L2 value is assumed in the solitonic situation
(Figure 4B) compared to the ordinary situation (Figure 4A). Consequently, the local pressure
in the daughter aneurysm is often governed by the non-decaying solitonic state, especially
in cases when the aneurysm wall is not thin. The solitonic wave propagation contributes
directly or indirectly to the rupture of aneurysm.
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5.5. Rupture Caused by the Large Amplitude “to-and-fro” Oscillation

In the present model, the conditions such as the formation of the daughter aneurysm
(C2/C1 > 0.80) and the appearance of aneurysmal compliance (L1 > 40) is directly associated
with increased intra-aneurysmal pressure. It is estimated that, at the stage of aneurysmal
initiation, the very thin aneurysmal wall grows rapidly (resulting in the larger L1 value
and sometimes in the larger C2 value). As a result of resonating beats in both blood flow
and local blood pressure, the thin aneurysmal wall is exposed by large amplitude wall
movement (bulge and dents = to-and-fro movement along the heartbeat or another beating
frequency). The to-and-fro movement of the fragile part quickly progresses into a vicious
process to rupture (Figure 6). Without any elevation of the blood pressure, a rather small
increase in intra-aneurysmal pressure induces to-and-fro oscillation for the thin and fragile
aneurysmal wall. This must happen on real human SAH.

6. Conclusions

The solitonic Windkessel model is introduced to explain the rupture of the intracranial
aneurysm. A larger capacitance chamber in an electric circuit simulates a larger aneurysm.
We further add inductance on the capacitance to express the compliance of the aneurysm.
The linear dependence of the daughter aneurysmal pressure on the capacitance C2/C1 is
noticed, and the linear dependence of the mother aneurysmal pressure on compliance L1 is
noticed. The experimental observation of ruptured and unruptured aneurysms clarifies
those difference that are observed in both aneurysmal shape and the hemodynamics. This
fact agrees with the theoretical prediction based on CFD, in which the rupture is expected
to take place, especially in aneurysmal parts with lower wall shear stress. Since the lower
wall sheer stress is mostly realized by aneurysmal deformation (shape change), the shape
of the aneurysm has been believed to be a primal factor of aneurysmal rupture. However,
the shapes of ruptured and unruptured aneurysms are reported to be often quite similar
without any significant differences [38]. The present model (solitonic Windkessel model)
clarifies the other significant effects, such as the soliton propagation and the resonating
beats. It simply tells us that the Windkessel-type modeling can take into account the
effects essentially associated with the hemodynamic circulation, which are not easy to be
incorporated in the fluid dynamic modeling.

Based on the five-element solitonic Windkessel model, we quantitatively explain the
pathological process of aneurysmal rupture for the first time. The discovery is summarized
as follows:

• The formation of a large aneurysm with an aspect ratio larger than 1.6;
• The formation of the daughter aneurysm as large as the mother aneurysm;
• The formation of a spherical-shaped aneurysm with large compliance.

These are quantitatively confirmed to be the risk factors of aneurysmal rupture. In
particular, the present model succeeds in explaining the observed fact that a significantly
slow flow inside the aneurysm and/or the formation of a small aneurysm can result in a
rupture. It is worth noting here that, as is well known in the context of the usual application
of the Windkessel model, the compliance of the blood vessel tends to be larger for younger
patients and for female patients. The present quantitative conclusion, as for compliance,
supports the fact that aneurysmal rupture often happens to young people. In terms of the
compliance of the aneurysm:

• It is a non-decaying soliton propagation arising from small compliance;
• There is a “to-and-fro” large amplitude resonating oscillation arising from large compliance.

These are possible risk factors of aneurysmal rupture depending on the individual case.
The first factor should be called the solitonic Windkessel effect, and the second factor should
be called the ordinary Windkessel effect, that is highly affected by the resonating beat.
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Consequently, for the utility, we clarify five typical properties of an aneurysm being
close to rupture:

(i) Aneurysm with an aspect ratio larger than 1.6 (cf. Section 5.1);
(ii) Aneurysm with a thin or elastic blood wall, where the elastic situation sometimes

happens to young patients (cf. Section 5.3);
(iii) Dumbbell-shaped aneurysm with its daughter size as large as 80% of the mother

aneurysm (cf. Section 5.2);
(iv) Dumbbell aneurysms, especially the daughter aneurysm, with a thick or inelastic

blood wall, possibly experience the soliton propagation. It explains that the formation
of the daughter aneurysm itself is dangerous (cf. Section 5.4)

(v) Dumbbell-shaped aneurysms with thin or elastic blood wall possibly experience the
to-and-fro large amplitude resonating oscillation. This explains that the rapture can
take place by even a small daughter aneurysm formation (cf. Section 5.5).

In the solitonic Windkessel model, ideal incompressible fluids with negligible viscosity
are dealt with. The blood is a non-Newtonian fluid in more realistic setting, and it is
interesting to see whether the viscosity and the other fluid dynamic features play a certain
role or not.
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