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Abstract: Hematopoietic stem cells (HSCs) sustain the lifelong production of all blood cell lineages.
The functioning of aged HSCs is impaired, including a declined repopulation capacity and myeloid
and platelet-restricted differentiation. Both cell-intrinsic and microenvironmental extrinsic factors
contribute to HSC aging. Recent studies highlight the emerging role of inflammation in contributing
to HSC aging. In this review, we summarize the recent finding of age-associated changes of HSCs and
the bone marrow niche in which they lodge, and discuss how inflammation may drive HSC aging.
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1. Age-Associated Changes in HSCs
1.1. The Functioning of Hematopoietic Stem Cells Declines with Age

Multiple aging-associated hematopoietic features occur in both peripheral blood (PB)
and bone marrow (BM). Aged mice display elevated platelet counts [1–3] and myeloid
cells [4], with concomitant decreased red blood cells (RBC) [1,3] and haemoglobin (Hb) [1,3].
In aged BM, there is an increase in the frequency of committed megakaryocyte progenitors
(MkPs) [1,2,5,6] and granulocyte-monocyte progenitor (GMP) [2,6] and a decline in the
frequency of common lymphoid progenitor (CLP) [6,7] and colony forming unit-erythroid
(CFU-E) [2,6]. Elderly humans frequently suffer from anemia, with a ~25% prevalence
of anemia found in people over 85 years [8]. It seems plausible that the alterations in
hematopoiesis during aging are largely due to changes that first occur in the cells from
which all blood cells derive, the hematopoietic stem cells.

HSCs can undergo both asymmetric and symmetric cell division [9,10] and have the
ability to differentiate into multiple mature blood cells and to self-renew, thus sustain-
ing the stem cell pool throughout life. In general, most HSCs are quiescent and divide
very rarely (~4 times) throughout adult life [11]. Whereas young HSCs primarily divide
asymmetrically, aged HSCs undergo mainly symmetric divisions [12]. With aging, HSCs
display functional decline (Figure 1). Aged HSCs show skewed myeloid differentiation
potentials at the expense of the reduced production of lymphocytes [1,13–17]. In addition,
serial transplantation studies have convincingly demonstrated that aged HSCs display
reduced engraftment and self-renewal [1,16,18]. In mice, the HSC pool size expands with
age, which is considered as a compensatory effect to adjust for the loss of cellular potential.

1.2. HSCs Become More Heterogeneous upon Aging

It is now well established that clonal hematopoiesis is a frequent event in otherwise
healthy elderly individuals [19]. This indicates that, during aging, the clonal composition
of the human HSC pool becomes altered and increasingly heterogeneous. In murine
models, a series of studies have assessed the clonal composition of HSCs. These were
done by either barcoding [20–22] or single cell transplantation [1,16,23]. HSC barcoding
can be achieved by virally inserting a random DNA sequence [20,22] or the excision and
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inversion of endogenous Cre-mediated DNA elements [24]. Combined with multiplex
high-throughput sequencing, the clonal behavior of HSC can be assessed quantitatively.
We previously reported that the young HSC pool is dominated by large clones, while
aged HSC pool is composed of more, but smaller clones [20]. Single HSC transplantations
have identified clones with restricted lineage potential. Beyond now classical myeloid- or
lymphoid-biased HSCs [20], HSCs with additional lineage restriction patterns have also
been identified [1,23,25]. Interestingly, in aged bone marrow, a “latent” HSC population
was identified that showed a myeloid uni-lineage restriction in primary transplantation but
multipotent differentiation in secondary transplantation [1]. The issue thus arises whether
HSCs with distinct repopulation patterns can be prospectively isolated, and if so, which
cell surface markers uniquely identify HSC subpopulations with heterogeneous function.

Figure 1. Age-associated changes in HSCs and their niche. Aged HSCs, with reduced repopulation potential, are dominated
by myeloid/platelet-biased HSCs. HSCs’ age-associated defects are partially the consequences of age-associated changes in
the niche. ↓ and ↑ represent increased and decreased activity, respectively.

Multiple sorting strategies have been developed to purify primitive HSCs from mouse
bone marrow [26–28]. These sorting strategies all allow for the isolation of highly purified
HSCs that, at the single cell level, can sustain long term self-renewal and differentiation
upon transplantation. However, even when highly purified, and irrespective of marker
expression, not all HSCs are identical. Multiple markers are heterogeneously expressed
on highly purified HSCs and numerous studies have investigated functional differences
between HSC subpopulations with such heterogeneous expression of different markers
(Table 1). Lymphoid-biased HSCs, displaying high self-renewal capacity, are usually
marked by CD86 [29], Jam2 [30] and Satb1 [31–33], while myeloid/platelet-biased HSCs
(marked by CD41 [34–38], Neo1 [39,40], CD61 [41], IL27Ra [42], Alcam [43,44] and c-
Kit [45]) possess low self-renewal capacity. Of note, although CD150high [46] or vWF+ [5,47]
HSCs display high self-renewal, they show myeloid/platelet bias and are able to generate
other lineage-biased HSCs, indicating that these cells are on the top of the HSC hierarchy.
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Table 1. Expression of HSC markers and their altered expression during aging or inflammation.

Markers Self-Renewal Bias Change with Age Change with Inflammation Reference

CD150 High Mye Up Up [46,48]
vWF High Plt Up Up [5,34,47]
CD86 High Lym Down Down [29,48]
Satb1 High Lym Down [31–33]
CD9 High Plt [49,50]
CD38 High [46]
Tie2 High Bal [51]
Jam2 High Lym [30]
CD41 Low Mye/Plt Up Up [34,36–38]
Selp Low Up Up [15,34,52]
Neo1 Low Mye Up Down [39,40]
CD61 Low Mye Up Up [34,41]

IL27Ra Low Mye Up Up [42]
Alcam Low Mye Up [43,44]
c-Kit Low Plt [45]

Mye/plt: myeloid- or platelet-biased; Lym: lymphoid-biased; Bal: balanced.

Interestingly, many markers that are used to purify HSCs are either upregulated or
downregulated upon HSC aging. Alterations in the expression of these markers correlate
with functional activity (Table 1). For example, CD150, one of the SLAM markers that is
frequently used to sort HSCs, predominantly marks myeloid-biased HSCs and is prefer-
entially expressed on aged HSCs [41,46]. Similarly, CD86, a marker of lymphoid-biased
HSCs, is downregulated upon aging [29]. The upregulation of CD150 and the concomitant
downregulation of CD86 is consistent with the myeloid-biased phenotype of aged HSCs.
In other words, an expansion of CD150high HSCs and a reduction in CD86high HSCs can
explain the functional decline of aged HSCs and also reflect changes in the heterogeneity of
aged HSCs. Importantly, this also suggests that although the aged HSCs pool is dominated
by myeloid-biased HSCs, balanced or “young-like” HSCs that contain high stem cell poten-
tial are still present, which could potentially be identified using aging-associated markers.
For example, we would predict that aged CD150low and CD86high HSCs behave similar
young-like HSCs. It is likely that additional markers are co-expressed by myeloid-biased
HSCs, while others are co-expressed by lymphoid-biased HSCs. However, although several
single-HSC RNA-sequencings have been performed, the full transcriptome of myeloid-
versus lymphoid-biased HSCs remains to be determined.

At present, the molecular origin of HSC heterogeneity remains obscure [53]. However,
it is conceivable that distinct HSCs localize to distinct niches so that diverse cell-extrinsic
signals may be delivered to individual HSCs [53]. Below, we discuss the regulation of the
HSC niche and how the niche may alter with age.

2. Age-Associated Changes in the Bone Marrow Niche

HSCs are located in the BM and are surrounded by multiple cell types. These surround-
ing cells, together with the extracellular matrix, form a complex microenvironment, known
as the HSC niche. The niche produces diverse cytokines, extracellular matrix proteins and
adhesion molecules that regulate HSC survival, proliferation, self-renewal and differentia-
tion [54]. Recently, it was found that N-cadherin-expressing bone and marrow stromal pro-
genitor cells remain dormant HSCs in homeostasis and post-chemotherapy [55]. In addition,
megakaryocytes were found to be associated with platelet and myeloid-biased vWF+ HSCs,
while vWF- lymphoid-biased HSCs are regulated by nestin and neural–glial antigen 2+

(NG2+) arteriolar niche cells [56]. These findings illustrate how the functional heterogeneity
of HSCs may result from distinct locations in the niche in the steady-state hematopoiesis.

However, to what extent the aging of the niche causally contributes to HSC aging
is unclear. Although age-associated phenotypes cannot be rescued when aged HSCs are
transplanted into lethally irradiated young mice, young HSCs display impaired engraft-
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ment and reduced T cell production when transplanted into old recipients compared to
those transplanted into young recipients [57,58]. This supports the hypothesis that an
aged BM niche contributes to reduced self-renewal and skewed myeloid differentiation
of aged HSCs. The impact of an aged niche on HSC functionality has been assessed by
transplantations, where recipients were usually lethally irradiated [57,58]. Lethal irradia-
tion creates space for donor HSCs, but affects, and possibly destroys, the BM niche [59,60].
Thus, this experimental setup ignores putative effects of different radiosensitivity of young
and aged BM niches. Therefore, irradiation-based preconditioning makes it difficult to
evaluate the direct contribution of age-related HSC niche changes to HSC functions [61].
To circumvent this problem, an excess of aged HSCs has been transplanted into young
recipients, without preconditioning. Interestingly, no significant functional rejuvenation
of aged HSCs was seen, but the transcriptome profile of aged HSCs was restored [61].
Although this suggests that aged HSCs are not rejuvenated by a young niche, it does imply
that age-associated extrinsic changes are relevant for HSC aging. To address this, young
HSCs would have to be transplanted into non-conditioned aged BM, to assess whether
young HSCs are functionally aged.

It is of great relevance to understand how the aging of the niche may be involved in
HSC aging. A growing body of evidence suggests that the BM niche does change in aged
mice (Figure 1) [4,62,63]. For example, it has been shown that HSCs are re-localized in the
aging niche, where aged HSCs are away from arterioles or megakaryocytes but close to
perivascular Nestin-GFPdim cells and sinusoids compared to young counterparts [62,64].
While it has been suggested that the overall vasculature volume and the endothelial area
occupancy is not altered in aged BM, other studies found that aging imposed drastic remod-
eling of BM vascular architecture, as evidenced by an overall increase in vascular density.
Interestingly, during aging, different vascular segments undergo different changes [4,62,63].
Endosteal vessels, transition zone vessels and α-smooth muscle actin-positive (α-SMA+)
arteries were reduced in aged BM, whereas sinusoidal areas appeared unchanged [4,62,63].
Consistent with the decrease of arteries, type H capillaries and stem cell factor (SCF) levels
were also reduced [63]. In contrast, the CD31high endomucin (EMCN)− capillaries located
further from bone increased with age [4].

In addition to changes of the vascular structure, BM vascular endothelial cells (ECs)
also alter with age. The overall number of CD45−Ter119−CD31high ECs are increased
whereas CD45−Ter119−CD31highSca-1high arteriolar ECs are decreased with age [62]. Aged
ECs display various dysfunctions, which are associated by increased vascular leakiness,
increased reactive oxygen species (ROS) and decreased in vitro angiogenic potential, sug-
gesting that the instructive endothelial niche function is compromised during aging [65].

BM mesenchymal stromal cells (MSCs) are crucial elements involved in the main-
tenance of hematopoiesis. The depletion of MSCs impaired HSC homing and expan-
sion [66,67]. Although overall the number of MSCs is expanded with age [3,62], MSCs
derived from old mice exhibited lower clonogenic potential in vitro [58,62]. NG2+ perivas-
cular cells are reduced in aged BM, which explains the reduction of vWF- lymphoid-biased
HSCs with age [56,62,63]. The expression of important niche factors such as Cxcl12, Scf, and
Angpt1, was also reduced in aged MSCs [62], indicating a functional decline of aged MSCs.
In addition, MSCs in aged mice presented with reduced levels of Osteopontin (OPN),
which is associated with the negative regulation of the HSC pool size [68]. Furthermore,
the BM niche of OPN knock-out mice mimics aged niches, and the expansion of HSCs
and reduced self-renewal were observed when young HSCs were transplanted to OPN
deficient recipients [58].

The overall changes of neuronal cells in the BM are contradictory. A reduction in the
density of tyrosine hydroxylase+ (TH+) cells in aged BM has been described [62], while
another study suggested an increase [4]. Nevertheless, the denervation of young BM
induced premature HSC and niche aging [62]. Sympathetic nervous system (SNS) nerves
locally deliver noradrenaline, targeting β2 (ADRβ2) and β3 (ADRβ3) adrenergic receptors
that are expressed by both hematopoietic and nonhematopoietic BM cells [62]. ADRβ3
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signals are associated with HSC aging, which is evidenced by using of either ADRβ3
agonist or ADRβ3 deficient mice. It has been shown that the treatment of mice with
an ADRβ3 agonist increased donor engraftment, and the deletion of ADRβ3 led to the
premature aging of HSC [4,62].

Megakaryocytes (Mks) regulate HSC quiescence through CXCL4 and TGFβ1 [69,70].
Of note, Mks are associated with myeloid- and platelet-biased vWF+ HSCs [56]. With age,
the number of Mks increase [64], which is likely responsible for the elevated TGFβ1 and
expansion of vWF+ HSCs in aged BM [2]. BM macrophages and plasma cells have also
been shown to contribute to HSCs aging. Aged BM macrophages expand platelet-biased
HSCs while plasma cells stimulate myelopoiesis in vitro [3,71]. In addition, upon aging,
both cell types displayed inflammation-associated changes [3,71]. Indeed, a recent study
suggests that niche cells display inflammatory transcriptional programs as they age [72].
This observation supports the hypothesis that age-associated inflammation in BM niche
may contribute to HSC aging. Below, we will discuss how inflammation may affect HSC
functioning during aging.

3. Inflammaging of HSC

With age, a chronic, systemic and low grade inflammatory process is referred to as in-
flammaging, which is associated with immunosenescence and age-related diseases [73,74].
There is evidence indicating that inflammaging occurs in hematopoiesis under chronic
inflammatory stress. Interestingly, inflammation-associated stress hematopoiesis is very
similar as age-associated hematopoiesis, discussed above. For example, chronic inflamma-
tory signals cause the expansion of HSC and GMP and a reduction of CLP and RBC [36,48].
Similar phenotypes emerge during experimental spondyloarthritis in which mice devel-
oped non-resolving inflammation [75]. In addition, consecutive injections of LPS dramati-
cally suppressed erythropoiesis [76]. Most importantly, increasing evidence demonstrates
that multiple pro-inflammatory cytokines, including IL-1β [3,4], TNF-α [42], IL-6 [4] and
TGFβ1 [2], are present at increased levels in aged BM (Table 2). The inhibition of both
IL-1β and TNF-α in aged mice attenuated myelopoiesis [71]. This indicates that aged
HSCs are exposed to a niche containing more pro-inflammatory cytokines, which likely
contributes to the age-associated HSC dysfunctions. This also suggests that the inhibition
of inflammatory responses may rejuvenate aged HSC.

Table 2. The role of pro-inflammatory cytokines in hematopoiesis and their altered expression during aging.

Stimuli Source Effects on HSC Change with Age Reference

IFN-α Plasmacytoid dendritic
cells, macrophages

Transient proliferationImpaired
repopulation

potentialExhaustion
[77–79]

IFN-γ T cells, Th1 cells,
macrophages

ProliferationImpaired
repopulation

potentialExhaustion
[80,81]

IL1-β Monocytes,
macrophages, ECs,

Myeloid differentiationImpaired
repopulation potential Up [3,4,36,42,82]

TNF-α Macrophages, T cells,
NK cells Myeloid differentiation Up [37,42]

IL-6 MSCs, macrophages Myeloid differentiation Up [4,83]

GM-CSF MSCs, ECs,
macrophages, T cells Myeloid differentiation [75]

G-CSF MSCs, ECs Myeloid differentiation [84,85]

TGFβ1 MSCs, Mks QuiescenceExpansion of
myeloid-biased HSC Up [2,69]

LPS Gram-negative
bacterial infections

ProliferationImpaired
repopulation potential [48,86]

ECs: endothelial cells, MSCs: mesenchymal stromal cells, Mks: megakaryocytes.



Cells 2021, 10, 1849 6 of 13

3.1. HSCs Are Transiently Activated under Chronic Inflammation

HSCs proliferate in response to both interferons (IFNs) type-I (IFN-α/β) [34,77–79]
and type-II (IFN-γ) [81], interleukin (IL)-1 [36], tumor necrosis factor (TNF)-α [37], G-
CSF [87] and TLR ligands [86] (Table 2). IFN-α, for example, induces cell cycle entry by
suppressing the expression of cyclin-dependent kinase inhibitors (CDKIs), which results
in decreased expression of Cdkn1b (p27) and Cdkn1c (p57) [78,79]. After chronic exposure
of HSC to LPS, IL1-β or IFN-γ enhanced proliferation is induced [36,86,88]. Moreover,
IFN-α and IL1-β inhibit HSC proliferation in vitro whereas IFN-γ, TNF-α and TLR ligands
directly accelerate HSC proliferation in vitro [36,37,78,80,86], indicating that distinct signals
promote HSC proliferation via different mechanisms. For instance, it has been demon-
strated that a transcriptional suppressor of type I IFN signaling, interferon regulatory
factor-2 (IRF2), negatively regulates HSC proliferation and Irf2–/– HSCs show enhanced
cell cycling status [79].

Increased HSC proliferation under inflammation is rapid but transient [37,78,89]. For
instance, HSCs quickly return to a quiescent state, and p27 and p57 return to steady-state
levels during in vivo chronic exposure to IFN-α [78]. Therefore, HSCs maintain a largely
quiescent state during chronic inflammatory stress induced by polyinosinic-polycytidylic
acid (poly I:C) [78], mimicking type I IFN-mediated response, IL1-β and chronic inflam-
matory arthritis, regardless of cell cycle activation at early phase of treatment [28,37,78,89].
This quiescent state under chronic inflammation is due to the repression of cell cycle and
protein synthesis genes, which are mediated by activation of the transcription factor PU.1
and direct PU.1 binding at repressed target genes. Consistently, PU.1-deficient HSCs dis-
played overexpressed cell cycle and protein synthesis genes [82]. Aged HSCs display cell
cycle arrest [90,91], which is associated with replicative stress [90]. Further studies are
needed to investigate to what extent the dormant status of aged HSCs is caused by chronic
exposure to inflammation.

3.2. Chronic Inflammation Triggers Myeloid-Biased Differentiation and Impaired Self-Renewal

Inflammatory signals activate HSC and promote myelopoiesis [37,75,83–85,92]. This
response is beneficial in combatting infection, but chronic exposure to inflammatory insults
impairs HSC self-renewal and causes stem cell loss. Most inflammatory stimuli have been
reported to affect HSC multi-lineage differentiation and long-term repopulation potential
(Table 2). HSCs grown in liquid culture with IL-1β produced more mature myeloid cells [36].
Furthermore, mice that were chronically exposed to IL-1β displayed increased myeloid cells
at the expense of lymphoid cells. HSCs isolated from these mice displayed myeloid-biased
differentiation potential and significant reduced self-renewal [36]. Of note, the impairment
of HSC recovered after treatment, which is probably due to the reestablished quiescence.
TNF-α also promotes myeloid regeneration in vitro [37,93]. Although no major changes in
lineage distributions were observed from TNF-α-treated HSCs, these HSCs had severely
compromised reconstitution abilities, which, similar to effects of IL-1β, recovered upon
extra resting periods [36,37]. This demonstrates a transient impairment of the engraftment
potential of IL-1β and TNF-a-treated HSCs [36,37]. Consistently, acute lipopolysaccharide
(LPS) also induced transient changes in hematopoiesis, affecting epigenetic modifications
and HSC gene expression [94]. Mice transplanted with LPS pre-stimulated HSCs displayed
high survival against secondary bacterial infection [94]. However, chronic LPS treatment
attenuated HSCs’ self-renewal and competitive repopulation activity [86]. Thus, HSCs
respond differently to acute and chronic inflammation, and only chronic and continuous
inflammation mimics the aging-associated functional declines.

3.3. Inflammation-Associated Signals Are Activated in Aged HSCs

To date, we have limited knowledge of the mechanisms by which inflammatory signals
regulate HSC function. Under chronic LPS exposure, the functions of HSCs were impaired
in a TLR4-TRIF-ROS-p38-pathway dependent manner [86]. C/EBPβ is required for LPS-
induced memory, which improves myeloid differentiation and the resistance to secondary
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infection [94]. The loss of C/EBPβ attenuates an IL-1β-driven myeloid gene program and
expands hematopoietic stem and progenitor cells (HSPCs) [92]. It also has been shown that
the induction of myeloid differentiation by IL-1β and TNF-α is likely due to the activation
of PU.1 [36,82,93] and mice lacking the PU.1 upstream regulatory severely attenuated
myeloid differentiation. The overexpression of PU.1 has been shown to accelerate the
myeloid output of HSCs in vitro [36]. In addition, the TNF-α-dependent activation of
PU.1 is directly regulated via NF-κB-dependent signaling [37,93]. Actually, the transient
impairment of HSCs induced by TNF-α correlates with both cell cycle activation and the
status of the NF-κB pathway [37], suggesting that this pathway is of vital importance for
inflammatory hematopoiesis. Interestingly, NF-κB was shown to become activated in aged
HSCs, documented by elevated phosphorylation and translocation in the nucleus [15,42,95].
This suggests that an active inflammatory response exists in aged HSCs at steady state
and raises the possibility that NF-κB signaling pathway is a potential target to achieve
rejuvenation of aged HSC.

3.4. Aged BM Niche Is Inflamed

Considering the fact that pro-inflammatory cytokines are elevated in aged BM, the
aged niche is also an inflamed niche. Inflammation can remodel the BM niche as niche cells
themselves express various inflammation-associated receptors and thus contribute to HSC
aging indirectly.

Exposure to LPS or poly I:C has shown to trigger bone marrow angiogenesis with an
increased number of sinusoids, an increase in integrin αVβ3 expression and activation on
ECs and vascular leakiness [96,97]. BM ECs, expressing high level of Tlr4 and myeloid pri-
mary response gene 88 (Myd88), are the primary source of granulocyte colony-stimulating
factor (G-CSF), the key granulopoietic cytokine, after LPS challenge or Escherichia coli
infection. Therefore, ECs are essential cells for emergency granulopoiesis under systemic
bacterial infection [98]. Consistent with this, young HSPCs cocultured on aged ECs ac-
quired a myeloid bias with a decrease in B and T cell frequencies, and an in vivo infusion of
aged endothelium into young recipients impaired HSC self-renewal and induced myeloid
bias [65].

Aged BM stroma cells show increased expression of inflammatory chemokines (Cxcl2
and Cxcl5) and several members of the complement cascade (Cfd, Cfb, C4b, and C3). Most im-
portantly, Il1b and Il6 expression levels are increased [72]. Likewise, aged BM macrophages
also showed upregulation of Il1b [3]. These data are consistent with the accumulation of
both cytokines in the aged BM [3,4], which supports the positive feedback that BM niche
cells respond to inflammation to secrete more inflammatory cytokines, which in return
enhance pro-inflammatory responses of niche cells (Figure 1). The expression of multiple
pathogen sensors, Tlr4 for example, and various effector molecules, including Erk1, Elk1
and Tbk1, were increased in old plasma cells, indicating that old plasma cells were primed
for TLR mediated inflammatory response [71]. Functionally, aged plasma cells stimulated
myelopoiesis, and inhibited lymphopoiesis, when cultured with HSCs ex vivo and in vivo
plasma cell depletion, reversed the age-associated enhancement of myelopoiesis [71].

3.5. Heterogeneous Response of HSCs to Inflammation

Considering the fact that pro-inflammatory cytokines are elevated in aged BM. We
described earlier how HSCs can directly respond to inflammatory stimuli as they express
multiple receptors known to interact with inflammatory ligands. This raises the notion
that heterogeneous responses of HSCs to inflammation may result if those receptors are
heterogeneously expressed on HSCs. As discussed above, HSCs are phenotypically and
functionally heterogeneous. Thus, there may be subsets of HSCs that show different
responses to inflammatory insults. Single cell RNA sequencing has identified HSC subsets
with distinct transcriptional responses to inflammatory signals [41]. For example, type I IFN,
TNF, and IL-1β all expanded CD41high and P-selectin+ (Selp+) HSCs. The high expression of
CD41 coincides with stem-like megakaryocyte-committed progenitors within the HSC pool,
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and the expansion of this pool is associated with activated megakaryopoiesis [34,36]. Upon
chronic LPS treatment, CD86+ HSCs, primed for lymphoid-biased differentiation, were
reduced [48]. IL27Ra marks a population with impaired self-renewal and myeloid-skewing.
This subset expanded when exposed to TNF-α. Of note, RNA-sequencing revealed that
IL27Ra+ HSCs displayed inflammatory signatures in comparison with IL27Ra- HSCs,
indicating that there are HSC subsets that are primed for potential inflammatory stress
during homeostasis [42].

IL-6R and TLR4 were shown to be more abundantly expressed by old myeloid-biased
HSCs, indicating that aged HSCs sense inflammation signals differently compared to
young HSCs. Indeed, aged HSCs have differential responses to inflammatory challenges
compared to young HSCs [41]. Aged HSCs showed more skewed myeloid differentiation
in vivo after 2 h culture with LPS, while young HSCs still maintained a balanced output [41].
Furthermore, the frequency of HSC subsets with heterogeneous transcriptional profiles to
inflammatory signals also alters with age [41]. Specifically, inflammation-related genes were
more enriched in the aged compared to the young IL27Ra+ HSCs, suggesting that IL27Ra+

HSCs are inflamed and the inflamed situation accumulates with age [42]. Collectively, this
suggests that responses of HSC to inflammation changes with age as well. The changes
in inflammatory responses with aging are likely due to the changes of HSC composition,
where HSC subpopulations primed for inflammatory insults expand. Indeed, CD41 [38],
Selp [5,15,52] and IL27Ra [42] are up-regulated with aging in HSCs (Table 1), which is
largely due to the expansion of specific populations.

Most importantly, HSC subsets with inflammatory signatures displayed dysfunctions
that are very similar to those induced by age. Collectively, a large part of age-associated
HSC changes is likely caused by a dominance of inflamed HSCs that are further expanded
by elevated inflammatory signals in the aged BM. In other words, inflamed HSCs may
display age-associated functional decline and those inflamed HSCs are functionally “older”.
In the aged BM, we suggest that less inflamed HSC subsets exist, which are functionally
“young-like” and have a high stem cell potential.

4. Conclusions and Future Perspectives

The intimate association between HSC aging and age-associated chronic inflammation
in the BM niche is becoming increasingly clear. The intrinsic mechanisms have been shown
to be major contributors to HSC aging. Genes have been identified that correlate with,
or in fact drive, age-associated HSC dysfunction. However, it is also evident that stem
cell aging is a systemic process, with both intrinsic and extrinsic factors involved. We
speculate that the intrinsic (i.e., transplantable) changes of HSC during aging may arise
from a perturbed microenvironment, and we suggest that (acute or chronic) inflammation
may be an important contributor to such perturbation. It should be emphasized that
the impairment of HSC induced by chronic IL-1β exposure recovered upon secondary
transplantation [36], while aged HSCs consistently display reduced repopulation capacities
when serially transplanted. This indicates that the consequences of chronic inflammation
do not capture all aging phenotypes and are not the sole extrinsic factors that contribute to
HSC aging.

In addition to normal aging, recent studies have focused on the interplay between
chronic inflammation, clonal hematopoiesis and hematological malignancies. Nonmalig-
nant clonal hematopoiesis, which is referred to as clonal hematopoiesis of indeterminate
potential (CHIP), is mainly driven by DNMT3A and TET2 mutations [19]. It has been
demonstrated that chronic inflammation may be a driving the selecting force of HSC clones
as it expands specific HSPC subsets and thus may contribute to CHIP [99,100]. For instance,
recent data suggests that chronic IFN-γ signaling drives clonal hematopoiesis induced
by DNMT3A loss of function [99]. In the development of several hematological diseases,
including myeloproliferative neoplasms, myelodysplastic syndrome (MDS), acute myel-
ogenous leukemia (AML) and chronic myelogenous leukemia (CML), various cytokines
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including IL-1, TNF, IL-6 and IFNs are involved [101,102]. It may be possible to intervene in
inflammatory pathways and thus prevent or restore loss of function of aged hematopoiesis.
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