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Abstract

Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and
peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission.
Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal
structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann
equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-
acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly
protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying
its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site
Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein
conformations of the subunits. His74 possessed a pKa of <6–7. Conservation of His74 in the proton-sensitive ASIC3 that
lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs.
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Introduction

Acid-sensing ion channels (ASICs) are proton-gated cation

channels that exist throughout the mammalian central and peripheral

nervous systems. ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and

ASIC4 have been already identified [1]. With the exception of acid-

insensitive ASIC2b and ASIC4 when expressed as a homo-trimer [2],

most ASICs are activated by a decrease in the extracellular pH, i.e.

increase of proton concentration. Activation of these channels by

protons plays an important role in physiological and pathological

processes such as nociception, mechanosensation, synaptic plasticity,

and acidosis-mediated neuronal injury [3]. Thus, ASICs are

important pharmacological targets in neurological diseases.

In the central nervous system, ASIC1 is the most abundant of all

the ASICs and is likely to modulate synaptic transmission, memory,

and fear conditioning [4]. A recently identified crystal structure of

ASIC1 from chicken at 1.9 Å resolution [5] reveals the geometry of

a transmembrane domain, which comprises 2 transmembrane

helices, and another 5 domains, namely, finger, thumb, knuckle,

palm, and b-ball (Figure 1). The finger and thumb domains, located

considerably away from the transmembrane domain, are of

particular interest because their domain interface was proposed to

be a possible pH-sensing site of ASIC1, based on the observations of

the crystal structure and mutational studies by Jasti et al. [5]

(Figure 1). The following pH-sensing mechanism wherein Asp346

plays a key role has been proposed: protonation/deprotonation of

Asp346 of the thumb domain could alter the interaction with its pair

partner Glu239 on the finger domain, resulting in the translocation

of the thumb domain. Since the thumb domain is linked with the

transmembrane domain, movement of the thumb domain causes

reorientation of the transmembrane domain and modifies channel

gating (see supplementary information: http://www.nature.com/

nature/journal/v449/n7160/extref/nature06163-s2.htm in Ref.

[5]). On the other hand, other residues have also been proposed

to play an important role in pH sensitivity, mainly by mutational

studies. In ASIC2a, mutation of a residue that corresponds to His74

of ASIC1 resulted in pH-sensing deficiency [6,7]. The residue pair

Asp79-Glu80 is conserved in all pH-sensitive ASICs. Mutations of

the corresponding residue pair in ASIC3 enhance the rate of

channel inactivation [8] and those in ASIC2a render the channels

proton insensitive [7]. To identify the pKa values or the protonation

states of these residues is, therefore, a starting point in an effort to

understand the pH-sensing mechanism of proton-sensitive ASICs.

In the present study, by using the ASIC1 crystal structure [5]

and solving the linear Poisson-Boltzmann (LPB) equation, the

protonation probabilities of all the titratable sites identified in the

crystal structure (51 Arg, 75 Asp, 101 Glu, 73 Lys, 72 Tyr, 15 His,

and 3 pairs of N/C-terminal residues) were calculated. In this

system, the protonation states of each titratable site are affected by

the protonation states of all the titratable sites, accomplishing a

completely equilibrated system in terms of the protein protonation

pattern. The protonation states of the residues and their pKa values

were obtained and compared among the homo-trimer subunits A,

B, and C of ASIC1. In the present study, the computational

conditions and procedures employed in previous studies on other

ion [9,10] and proton [11,12] channels were consistently used.

Results and Discussion

Acidic-acidic residue pairs in ASIC1
In the ASIC1 crystal structure, there exist 4 pairs of unusually

close acidic-acidic residues: (a) Asp238-Asp350, (b) Glu220-
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Asp408, (c) Glu239-Asp346, and (d) Glu80-Glu417 (Figure 1).

Since the carboxyl O-O atom distances in these pairs range

between 2.8 and 3.0 Å, it was proposed that at least 1 of the acidic

residues in each pair should be protonated, and that they form the

primary sites for pH sensing in ASIC1 [5]. Indeed, the calculated

titration curves of these pairs of acidic residues showed unusually

high protonation probability (compare, for instance, with the

titration curves in Ref. [12]), indicating that each pair has at least 1

protonated acidic residue.

(a) Asp238-Asp350 and Glu220-Asp408 pairs. In the

Asp238-Asp350 pair, Asp238 was mostly protonated and

Asp350 was completely deprotonated at all the pH investigated

(pH 5–9) (Figure 2). In the Glu220-Asp408 pair, although Glu220

was considerably protonated, Asp408 was more protonated than

Glu220. It appears from Figure 2 that this pair of acidic residues

binds a total of 1–1.5 H+ at pH 5–9.

(b) Glu239-Asp346 pair. In the Glu239-Asp346 pair, Glu239

was permanently protonated at pH 5–9 (Figure 2). The Glu239-

Asp346 pair is located at the interface between the finger and the

thumb domains of the ASIC1 protein, considerably away from the

conducting pore of the transmembrane domain (Figure 1).

Nevertheless, the mutation of Asp346 to Asn resulted in a

significant shift in the pH50 value (i.e., pH of half-maximal

activation) on the pH-dose-response curve; thus, Asp346 was

proposed to play a key role in the pH-sensing mechanism of

ASIC1 [5].

The pH50 value on the pH-dose-response curve of the wild-type

ASIC1 protein has been experimentally determined to be 6.7 [5].

Interestingly, in the present study, among all the acidic-acidic

residue pairs, Asp346 was the only residue with an apparent pKa

obtained from the pH-dependent titration curve (Figure 2) of <6–

6.5. Furthermore, the pKa of Asp346 obtained from protonation

energy at pH 7 (see the method section for definition) was also 6.7

(subunit A in Table 1), and this value was in agreement with the

experimentally measured pH50 value of 6.7 [5]. Thus, assuming

that the pH-dependent domain movement plays a key role in pH

sensing, Asp346 can be most likely the pH-sensing site of ASIC1 in

terms of its remarkable pKa value.

(c) Glu80-Glu417 pair. Notably, both Glu80 and Glu417

were completely protonated at pH 5–9, implying that this pair

possesses <2 H+ (Figure 2). Three pairs of Glu80-Glu417 were

located on the inner pore of the ASIC1 trimer, and they formed a

ring comprising 6 acidic residues (Figure 3). Although all crystal

waters were absent during the computations (see Materials and

Methods for discussion), this completely protonated state of the

Glu80-Glu417 pair can be anticipated based on the existence of a

water molecule in the ASIC1 crystal structure at an H-bonding

distance from the carboxyl oxygen atom of Glu80 (OGlu80-Owater

distance = 2.8 Å). Without this water molecule, the positioning of

these acidic residues at very small distances (Figure 3) would be

unusually energetically unstable to exist in the crystal structure.

The following 2 factors may be considered responsible for this

unusually high protonation state of the acidic-acidic ring: (i) the

specific arrangement of the acidic-acidic residues interacting ring

that comprises 6 acidic residues, and (ii) the unfeasibility of

solvation in the inner pore where these acidic residues are located.

The 6 acidic residues that form a ring in the pore may be

considered to significantly favor protonation of each acidic residue

Figure 1. Overview of ASIC1 [5]. Acidic-acidic residue pairs (only in subunit A) are depicted as spheres. Subunit A is depicted as gray strands, and
subunits B and C are depicted as blue and yellow ribbons, respectively.
doi:10.1371/journal.pone.0016920.g001

Figure 2. Protonation probabilities ,x. [21] of the acidic-
acidic residue pairs in ASIC1.
doi:10.1371/journal.pone.0016920.g002
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because each residue in the ring has 2 acidic residues on either side

(Figure 3, right). To investigate whether this arrangement is a

primary factor for the unusually high protonation state of the

Glu80-Glu417 pair, only the 6-residue ring (3 Glu80-Glu417 pairs)

was isolated from the ASIC1 protein, solvated the acidic ring into

an aqueous solution (represented by the dielectric constant

ew = 80), and titrated it at pH 5–9. From the titration curves (File

S1), the apparent pKa values of Glu80 and Glu417 were

determined to be <5.3 and <6–6.3, respectively. Although these

pKa values are slightly higher than the standard pKa value for Glu

in an aqueous solution (4.4), the present study revealed that the

isolated Glu80-Glu417 ring itself is not highly protonated in an

aqueous solution at pH 7. It is noteworthy that the protonation

states of the isolated Glu80-Glu417 ring in an aqueous solution

remained unchanged when their H-bonding partners were added,

namely, Gln277 and Gln279 (data not shown).

Further, the protonation states of the 6-residue ring in the

uncharged ASIC1 protein were also investigated where all the

atomic charges, except those of the Glu80-Glu417 pairs, were set

to 0. In this uncharged protein environment, the 6 acidic residues

were found to be completely protonated at all pH investigated

(pH 5–9; data not shown). In the uncharged ASIC1, although the

influence of the atomic charges of the proteins is absent, the

protein volume still prevents solvation of the 6 titratable acidic

residues.

From this result, it can be concluded that the loss of solvation in

the ASIC1 protein environment is a factor required to explain the

unusually high protonation state of the acidic-acidic ring in

ASIC1. In general, in the inner pore of channel proteins, the loss

of solvation (rather than repulsive interactions) is the major

contributor toward destabilizing the charged groups [9,13]. While

the ASIC1 pore is formed by a number of charged and polar

residues, it appears that bulk water access is limited there, similar

to other ion-channel proteins. It can also be concluded that the

unfeasibility of solvation is a primary factor for the unionized,

highly protonated states of the Glu80-Glu417 pairs.

Glu80 is conserved in all the pH-sensitive ASICs. Mutations of

the corresponding residue in ASIC3 enhance the rate of channel

inactivation [8], while those of the residues in ASIC2a render the

channels proton insensitive [7]. Thus, the highly protonated Glu80

demonstrated in the present study on ASIC1 may imply its

possible role as a proton-binding site in ASICs.

Asymmetry of the subunits A, B, and C in the ASIC1
trimer form

Although ASIC1 comprises 3 homo-trimer subunits A, B, and

C, the ASIC1 crystal structure shows marked differences among

their subunit conformations. In particular, different conformations

of the transmembrane domains among the 3 subunits have been

reported (see Figure 2b in Ref. [5]). It is debatable whether the

structural asymmetry is inherent to the trimer [5]. In the present

study, the generation of atomic coordinates of H atoms led to

different H-bonding networks among these residues. Consequen-

tially, different protonation states of the Glu220-Asp408 and

Glu239-Asp346 pairs among the 3 subunits were observed

(Table 1).

(a) Glu220-Asp408 pair. The pKa values obtained from

protonation energy at pH 7 of both the residues in the Glu220-

Asp408 pair of subunit B are higher by <2–4 than those of

subunits A and C (Table 1). This is due to the proximity of the side

chain O atom of Gln271 to the carboxyl O atom of Asp408 in

subunit B (O-O distance = 3.0 Å) in the ASIC1 crystal structure

(Figure 4, right). In contrast, the side chain N atom of Gln271

forms an H bond with the carboxyl O atom of Asp408 in subunits

A and C, stabilizing the ionized state of Asp408 (Figure 4, left) and

thus lowering its pKa value. Although the different conformation of

the Gln271 side chain is a potentially interesting finding, currently,

it cannot be conclusively determined whether this is functionally

relevant because of the limited resolution of 1.9 Å [5] in the

ASIC1 crystal structure at which N and O atoms are unlikely to be

distinctly distinguished.

(b) Glu239-Asp346 pair. In the Glu239-Asp346 pair, the

pKa value obtained from protonation energy at pH 7 of Glu239 of

subunit C was higher by 2 than the corresponding values of

subunits A and B (Table 1). Therefore, a significantly different H-

bond pattern involving mainly Glu239, Thr237, and Thr240 was

found. The hydroxyl group of Thr237 formed a weak H bond with

1 of the carboxyl O atoms of Glu239 in subunits A and B

(Figures 5A and 5B, respectively), while the corresponding H bond

was absent in subunit C (OThr237–OGlu239 distance = 3.7–3.8 Å;

Figure 5C). Thus, the ionized state of Glu239 in subunits A and B

can be stabilized, leading to the downshift in the pKa value of

Glu239 as compared to that in subunit C.

Furthermore, there was another significant difference in protein

conformations among the subunits: not only the H-bond pattern but

also the orientation of Thr240 differed significantly between subunit

A and subunits B and C. In subunit A, the Thr240 side chain was

oriented toward the hydroxyl O atom of Thr237, forming an H

bond (OThr240–OThr237 distance = 3.5 Å; Figure 5A). However, the

H bond between the Thr240 and Thr237 side chains observed in

subunit A was absent in subunit B, because the hydroxyl O atom of

Thr240 is considerably closer to the carbonyl O atoms of the protein

backbone at Thr237 and Thr240 (OThr240(OH)–OThr237(CO) dis-

tance = 3.1 Å, OThr240(OH)–OThr240(CO) distance = 3.1 Å) than to

Table 1. The pKa of 4 acidic-acidic residue pairs obtained from protonation energy at pH 7 (see Materials and Methods for the
definition).

residue pKa residue pKa

Subunit A B C A B C

Asp238 7.8 7.6 7.4 Asp350 5.8 6.2 6.5

Glu220 7.0 8.9 7.2 Asp408 7.3 11.5 7.1

Glu239 8.1 8.1 9.7 Asp346 6.7 7.0 7.3

Glu80 9.7 9.8 9.6 Glu417 9.5 9.2 9.6

Asp238-Asp350, Glu239-Asp346, Glu220-Asp408, and Glu80-Glu417 in ASIC1 (pKa). These pKa values were obtained by calculating the protonation energy required to
protonate the residue by 0.5 H+ at pH 7. Therefore, the values may differ from the apparent pKa values obtained from the titration curves (see the method section for
the definition) in Figure 1.
doi:10.1371/journal.pone.0016920.t001
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the hydroxyl O atom of Thr237 (OThr240(OH)–OThr237(CO) dis-

tance = 3.7 Å). Thus, the Thr240 side chain, in turn, formed an H

bond with the carbonyl O atoms of the protein backbone at Thr237

and Thr240 (Figure 5B). In subunit C, Thr237 did not form an H

bond with Glu239 but formed an H bond with Thr240, because the

donor-acceptor distance of the H bond is lesser in the latter

(OThr240–OThr237 distance = 3.3 Å) than in the former (OThr237–

OGlu239 distance = 3.8 Å). Therefore, the ionized state of Glu237 is

less stable in subunit C than in subunits A and B because of the lack

of the H bond from Thr237 to Glu237 (Figure 5C), leading to the

upshifting of its pKa by 1.6 (Table 1). In contrast to the significant

difference in the pKa of Glu239 (which was affected by the H-bond

pattern of Thr237), the pKa of the pair-partner residue Asp346 did

not vary significantly (Table 1). This was due to the identical

protonation state of its pair-partner residue Glu239 (i.e., Asp346

was essentially protonated in each subunit and its protonation state

did not alter among the subunits).

Of the residues that participate in the H-bonding network of the

Glu239-Asp346 pair (i.e., Glu239, Asp346, Thr237, and Thr240),

Glu239 and Thr240 are highly conserved residues in ASICs. On

the other hand, Asp346 and Thr237 are highly conserved in all

ASICs but ASIC3 (see supplementary information in Ref. [5]). In

ASIC3, Asp346 and Thr237 are replaced with Ser and Met (rat

and mouse) or His and Asn (human), respectively. The fact that

Asp346 and Thr237 are simultaneously replaced in ASIC3 implies

that these 2 residues probably function cooperatively in ASICs, as

indicated in the highly associated H-bonding network shown in

Figure 5. Assuming that Asp346 plays a key role in the proposed

pH-sensing mechanism of ASIC1 [5], Thr237 may also cooperate

with Asp346 in ASIC1 pH sensing. In addition, the absence of the

residues corresponding to Asp346 and Thr237 of ASIC1 in ASIC3

suggests that the proposed pH-sensing role of Asp346 in ASIC1

[5] does not hold true for the pH-sensing mechanism of ASIC3

(the pH-sensing mechanism has been further described later in the

Discussion).

The only ASIC1 crystal structure currently available was

obtained at a low pH and has been proposed to represent a

thermodynamically favorable desensitized state [5]. The desensi-

tized state can transform into the open state and the closed state

[14]. The different H-bonding pattern and protein conformations

of residues Glu239, Asp346, Thr237, and Thr240 of each subunit

revealed in the present study may imply possible variations of the

ASIC1 conformations in other channel states (i.e., including the

open and closed states).

Residues that possess pKa near pH50 = 6.7
Since the pH50 value on the pH-dose-response curve of the

wild-type ASIC1 protein is 6.7 [5], it is worthwhile to reveal

residues that possess pKa value of <6.7 for understanding the pH-

Figure 3. An acidic-residue ring that comprises Glu80 and
Glu417. (Left) side view and (right) top view from the extracellular
bulk. Carbon atoms of the residues that belong to the same subunit are
depicted in the same color (yellow, pink, and cyan), while those of
Gln277 and Gln279 are in white in all the subunits. Gln277 and Gln279
are depicted as sticks. The water oxygen atoms at Glu80 are depicted as
blue spheres.
doi:10.1371/journal.pone.0016920.g003

Figure 4. Orientation of the Gln271 side chain with respect to
the Glu220-Asp408 residue pair. H atoms are depicted as black
spheres.
doi:10.1371/journal.pone.0016920.g004
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sensing mechanism of ASIC1. Among the acidic residues that are

not involved in the acidic-acidic residue pairs, only Glu299 and

Glu343 (apparent pKa of <7 and 6 obtained from the titration

curves, respectively) showed their pKa values at similar levels (File

S1). However, since these residues are located on the protein

surface, they are probably not likely to be involved in the pH-

sensing mechanism of ASIC1.

Among the acidic-acidic residue pairs, only Asp346 was found

to possess pKa within this range in the present study (Table 1).

Although Asp346 is highly conserved among ASICs, it is replaced

with a nontitratable residue (Asn) in ASIC1 from lamprey.

Interestingly, ASIC1 from lamprey, which lacks Asp346, is proton

insensitive, which is in contrast to the proton-sensitive ASIC1 from

chicken [15]; this fact may support the proposed role of Asp346 in

the pH sensing mechanism of ASIC1 from chicken [5]. However,

it should be noted that Asp346 is not conserved even in the

proton-sensitive ASIC3. Therefore, it might be speculated that

either (i) ASIC3 has a pH-sensing mechanism different from that

of ASIC1 or (ii) both ASIC1 and ASIC3 have another common

residue(s) that also plays a pH-sensing role.

Regarding non-acidic residues, His74 (Figure 6, subunit C) and

His111 (File S1) were found to possess an apparent pKa of <6–7

in the present study, although the latter was located on the

protein surface. It is noteworthy that no other His residues have

their pKa values at this range of pH, irrespective of the fact that

the pKa of an isolated His residue is generally <7 (File S1).

Mutation of a His residue corresponding to His74 to Ala in

ASIC2a resulted in the deficiency of pH sensitivity [6,7]. This His

residue can also be observed in the proton-sensitive ASIC2a but

not in the proton-insensitive ASIC2b. His74, therefore, has been

proposed to be involved in the activation of ASIC2a by protons

[7]. The ASIC1 crystal structure revealed that His74 is located on

the inner cavity surface on the 3-fold axis (Figure 3) [5]. Thus,

His74 is probably the residue that can directly tune the gating

path in terms of the protonation states of the conducting pore

near pH50. Interestingly, His74 is also conserved in the proton-

sensitive ASIC3 that lacks Asp346. Since both ASIC1 and ASIC3

exhibit the highest proton affinity among the ASICs, the presence

Figure 6. Protonation probabilities ,x. of His74 in subunits A,
B, and C.
doi:10.1371/journal.pone.0016920.g006

Figure 5. Discrepancy of the H-bonding network that involves
the Glu239-Asp346 pair. (A) subunit A, (B) subunit B, and (C) subunit
C. The H atoms are depicted as black spheres. Solid lines indicate the
orientation of the H bond, and the numbers indicate the length
between the H atom and the H-bond donor O atom in Å.
doi:10.1371/journal.pone.0016920.g005
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of a residue corresponding to His74 in ASIC3 may explain why

ASIC3 is capable of sensing pH without possessing an acidic

residue corresponding to Asp346.

Materials and Methods

Atomic coordinates and charges
For performing computations of the ASIC1 trimer form, the

crystal structure of ASIC1, comprising subunits A, B, and C, from

chicken at 1.9 Å resolution was used (protein data bank [PDB]

code: 2QTS) [5]. The atomic coordinates were obtained using the

same procedures used in previous studies on channel proteins

[9,10,11,12]. The positions of H atoms were energetically

optimized with CHARMM [16] by using the CHARMM22 force

field [17]. While carrying out this procedure, the positions of all

non-H atoms were fixed, and the standard charge states of all the

titratable groups were maintained, i.e., the basic and acidic groups

were considered protonated and deprotonated, respectively. All

the other atoms whose coordinates were available in the crystal

structure were not geometrically optimized. Atomic partial charges

of the amino acids were adopted from the all-atom CHARMM22

parameter set [16].

Protonation pattern
The present computation is based on the electrostatic

continuum model created by solving the LPB equation with the

MEAD program [18]. To facilitate a direct comparison with

previous computational results, identical computational conditions

and parameters such as atomic partial charges and dielectric

constants were used (e.g., Refs. [9,10,11,12,19]). The ensemble of

the protonation patterns was sampled using the Monte Carlo (MC)

method with the Karlsberg program (Rabenstein, B. Karlsberg online

manual, http://agknapp.chemie.fu-berlin.de/karlsberg/). The di-

electric constant was set to ep = 4 inside the protein and to ew = 80

for solvent and protein cavities corresponding to water. All

computations were performed at 300 K, pH 5–9, and an ionic

strength of 100 mM. The LPB equation was solved using a 3-step

grid-focusing procedure with a starting grid resolution of 2.5 Å, an

intermediate grid resolution of 1.0 Å, and a final grid resolution of

0.3 Å. MC sampling yields the probabilities [A2] and [AH] of the

deprotonated and protonated states of the titratable residue A,

respectively.

Dielectric volume
As a general and uniform strategy, all crystal waters were

removed during the computations (for instance, Refs.

[9,10,11,12,19]) due to the lack of experimental information on

hydrogen atom positions. Cavities resulting from the removal of

crystal waters were uniformly filled with a solvent dielectric

medium of e = 80. Thus, effectively, the effect of the removed

water molecules was compensated for implicitly by the high value

of the dielectric constant in these cavities. A discussion on the

appropriate value of the dielectric constant in proteins for

electrostatic energy computations can be found in Ref. [20].

Definition of pKa

a) Apparent pKa obtained from the titration curve. Proto-

nation probability ,x. is defined as ,x. = [AH]/([AH]+[A2])

[21]. Once the residue titration curve (,x. versus pH) is obtained

by changing the pH of bulk aqueous solution and then plotting ,x.

of the residue, the pKa value can be obtained as the pH at the point

where ,x. = 0.5 on the titration curve. In this manuscript, this pKa

is called ‘‘apparent pKa obtained from the titration curve.’’

b) pKa obtained from protonation energy at pH 7.

However, titration of acidic-acidic pairs often yields a titration

curve that never decreased to ,x. = 0.5 at the investigated pH.

Even if the titration curve reaches ,x. = 0.5, the slope at

,x. = 0.5 may be too gentle to determine a unique apparent pKa

value appropriately. In such a case, one could use an alternative

value of pKa that can be obtained by calculating the energy required

to yield 0.5 H+ protonation (i.e., ,x. = 0.5) of the residue at pH 7

(pKa obtained from protonation energy at pH 7). When determining this

pKa value, the focusing residue possesses ,x. = 0.5, while all the

other titratable sites possess protonation states equilibrated at pH 7.

This pKa value can always be obtained uniquely at a specific pH of

bulk water.

Since only a single residue of the protein cannot be

experimentally titrated, in general, the apparent pKa obtained

from the titration curve rather than the pKa obtained from

protonation energy is considered to correspond to an experimen-

tally determined pKa. The discrepancy between the pKa values

defined above cannot be ignored, particularly when the focusing

site is subjected to an unusually large influence of the surrounding

charged residues (e.g., close positioning of the acidic-acidic residue

pair). Nevertheless, in cases wherein such a strong charge influence

from the surrounding residues can be ignored, the pKa obtained

from protonation energy at pH 7 is often essentially identical to

the apparent pKa obtained from the titration curve and provides

relevant information of the protonation state (see, for instance,

Ref. [12]).

In the present study, using the Henderson-Hasselbalch

equation, pKa obtained from protonation energy at pH 7 was

calculated as the formal pH at which the concentrations of [A2]

and [AH] are equal. The procedures to obtain pKa of the titratable

residues are identical to those used to determine the redox

potential for redox-active groups; the Nernst equation is applied in

the latter case [21]. Therefore, the accuracy of the present pKa

computations is directly comparable to that of former computa-

tions of redox-active cofactors (e.g., [22,23]). From this analogy,

the numerical error of pKa computation can be estimated to be

<0.2 pH units. Systematic errors, which typically relate to specific

conformations that may differ from the given crystal structures,

can be considerably larger sometimes. Since the calculations in

present study were performed under the same conditions as our

previous pKa computation for other channel proteins, further

details on error estimates and comparisons with the previous

results can be obtained in Refs. [9,10,11,12].
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