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Abstract: Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic 
diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an 
extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of 
mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti- 
inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong 
therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. 
Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting 
capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than 
specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews 
the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and 
macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted 
therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the 
treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation. 
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Introduction
Inflammation is a protective reaction of the immune system to external stimuli, which maintains tissue homeostasis under 
various harmful conditions.1 It is an internal defense reaction induced by immune cells and cytokines, primarily triggered by 
specific pattern recognition receptors expressed on myeloid-derived cells, like neutrophils, monocytes, macrophages, and 
dendritic cells.2 The purpose of inflammation is to repair damaged tissues and eliminate various injurious factors, including 
pathogens. Any factor that leads to cell or tissue damage can potentially cause inflammation.3 The general process of 
inflammation is as follows: danger signals are released from damaged cells or pathogens, activating surrounding immune 
cells, which then release inflammatory mediators to recruit more immune cells to the inflammatory site. Subsequently, white 
blood cell migration occurs, resulting in the accumulation of neutrophils at the inflammatory site, releasing tumor necrosis 
factor-α (TNF) to increase vascular permeability. Monocytes release pro-inflammatory cytokines, further promoting the 
inflammatory response. Immune cells clear dead cells and inflammatory factors through phagocytosis or immune responses. 
Finally, anti-inflammatory cytokines, including interleukin-10 (IL-10), are discharged, inducing tissue regeneration, leading to 
the alleviation of the inflammatory response and eventual recovery. Inflammatory reactions can lead to temporary reductions 
in tissue function. When the inflammatory response is excessive or persistent, it promotes the development of numerous 
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chronic ailments, leading to pathological changes and severe tissue damage, which may result in the progression of different 
chronic diseases, such as periodontitis, pneumonia, rheumatoid arthritis, cardiovascular diseases, malignant tumors, diabetes, 
chronic kidney disease, and autoimmune diseases.4,5 However, traditional anti-inflammatory drugs have issues such as poor 
permeability, rapid degradation, low bioavailability, and poor targeting ability, and may cause irreversible damage to normal 
tissues or organs. Therefore, there is a need to improve the targeted delivery of drugs and reduce their toxic side effects. 
Nanomaterials possess advantages such as large surface area, high drug loading capacity, strong drug stability, prolonged drug 
retention time at the inflammatory site, and reduced drug side effects. With the continuous development and innovation in the 
field of nanotechnology, nanomaterials have shown potential applications in multiple fields. Nanomaterials can not only 
improve bioavailability and enhance drug efficacy6 but also increase drug targeting by targeting specific immune cells, making 
them increasingly applied in the therapy of inflammation, infection and other diseases. The modulation of cytokine functions 
has been proposed to treat chronic inflammatory diseases, and immunotherapy that regulates host immunity has also shown 
promising application prospects in the treatment of infectious inflammation.7 Recently, many nanomaterials have been 
engineered to modulate the roles of immune cells and inflammation-associated cytokines to diminish inflammation, and 
these nanosystems have demonstrated remarkable therapeutic outcomes both in vitro and in vivo.

Immune Cells in Inflammation
Innate immune cells, neutrophil (NET), macrophages, dendritic cells (DC), mast cells (MC), and adaptive immune cells, 
including thymus-derived lymphocytes (T cells), bone marrow-derived lymphocytes (B cells), and plasma cells, interact with 
tissues to regulate inflammatory responses and host immune modulation processes, influencing the development of inflam-
mation. When pathogens invade human tissues, the innate immune response is activated.8 Innate immune cells produce 
cytokines and chemokines that directly regulate tissue metabolism: DCs generate cytokines and interact with immune cells, 
while NK cells express M-CSF and release histamine, platelet-activating factors, and other factors and mediators along with 
MCs, thereby modulating inflammatory responses.9 Similarly, adaptive immune cells produce various cytokines, chemokines, 
and interact with other immune cells, exerting direct or indirect effects on tissue metabolism: B cells secrete cytokines and 
interact with immune cells, while T cells tend to release more inflammatory factors and cytokines, such as IL-6, TNF-α, IL-1β, 
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IL-17, and IL-22, interacting with other cells and mediating signaling pathways, including OPG/RANK/RANKL and TNF. 
Moreover, excessive innate immune responses lead to inflammation and tissue destruction, activating adaptive immune 
responses.10,11 Screening potential therapeutic targets can significantly improve the treatment of inflammation.12 To further 
enhance the specificity of nanoparticles, more and more stimuli-responsive nanomaterials are being studied and developed, 
and the acidic pH and elevated ROS levels in the inflammatory microenvironment are commonly used response factors for the 
construction of stimulus-responsive nanomaterials. Therefore, a deeper understanding of the mechanisms of immune cells in 
chronic inflammation facilitates the development of novel therapeutic approaches and drugs, providing new strategies and 
methods to treat and prevent chronic inflammation.

Neutrophil
Neutrophils, the most and primary white blood cells in the human body, are among the first cells to enter inflamed sites and 
serve as a crucial first line of defense against infectious challenges. They rapidly migrate into tissues, directly phagocytosing 
and eliminating pathogenic microorganisms and their products, playing a vital role in controlling infection and resolving 
inflammatory responses.13 Neutrophils exhibit a wide range of effector mechanisms to combat pathogens, including 
phagocytosis and the production of reactive oxygen species (ROS), proteases, and neutrophil extracellular traps (NETs). 
Furthermore, neutrophils possess various specific receptors, such as integrin αvβ1 and mannose receptors, which can quickly 
recognize and bind to cyclic arginine-glycine-aspartic acid peptides or mannose. Modifying drug-loaded nanoparticles with 
these specific ligands can increase drug concentrations at inflammatory sites by binding to specific receptors on neutrophils.14 

Polymorphonuclear neutrophils express most types of Toll-like receptors, and the engagement of cell surface Toll-like 
receptors activates neutrophils and promotes antimicrobial functions, enabling the identification of a broad spectrum of 
pathogen-associated molecular patterns (PAMPs) and triggering responses to invading pathogens.15

Neutrophil Extracellular Traps (NETs)
In recent years, neutrophil extracellular traps (NETs) have been considered the culprit in neutrophil-mediated 
immunopathology.16 When exogenous pathogens invade or the body experiences certain inflammatory conditions, 
neutrophils release a fibrous network-like structure known as NETs,17 which are regarded as potential therapeutic targets. 
Figure 1 NETs are comprised of DNA, histones, and MPO, with histones and MPO exhibiting significant toxicity to 
epithelial cells.18 Brinkmann first described NETs as bactericidal traps that promote the elimination of extracellular 
bacteria.19 The process of NET formation, known as NETosis, is a unique form of cell death distinct from apoptosis as 
well as necrosis.20 NETs are a double-edged sword,21 with excessive production by neutrophils promoting the advance-
ment of different aliments, such as atherosclerosis, rheumatoid arthritis, and cancer. Therefore, inhibiting NET formation 
or eliminating their excess may be a potential anti-inflammatory strategy.22–24 Research on NETs is crucial for under-
standing the function of the immune system and the mechanisms of inflammation and infection.

Neutrophils and Periodontitis
Periodontitis, one of the most widespread infectious inflammatory disorders within humans, is a chronic inflammatory 
condition triggered by local microbial communities and host immune responses, leading to periodontal tissue damage and 
even tooth loss.25 The disease is characterized by a dysregulated neutrophil response to specific bacterial species within 
the subgingival biofilm. Neutrophils are the primary inflammatory cells involved in periodontitis, and neutrophil 
infiltration is a major feature of periodontal lesions.26–28 Hirschfeld et al proposed that variations in neutrophil responses 
to different bacteria, such as quantitative deficiencies or functional abnormalities in neutrophils against various bacteria, 
may be the pathogenic mechanism leading to periodontal disease.29 As the most abundant immune cells, changes in 
neutrophil numbers or functions can exacerbate periodontal inflammation through multiple mechanisms, affecting 
periodontal immune homeostasis. On one hand, neutrophils participate in the progression of periodontitis,30 with 
continuous activation of neutrophils in periodontal tissues releasing large amounts of ROS, damaging periodontal 
structures. On the other hand, chronic inflammation causes alterations in bone marrow hematopoietic stem cells, with 
newly differentiated neutrophils exhibiting enhanced activity, further aggravating tissue destruction and worsening 
periodontitis.31 The research team led by Fang Fuchun identified a neutrophil subpopulation associated with NETs in 
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gingival tissues using single-cell technology for the first time. They demonstrated the role of NETs in promoting gingival 
inflammation and alveolar bone resorption in severe periodontitis using a mouse model, suggesting the potential of 
targeting NETs for periodontitis treatment.32 Figure 2 Additionally, their experiments revealed the mechanism by which 
inflammatory gingival fibroblasts promote NET formation through MIF-CD74/CXCR4, providing new perspectives for 
the prevention and treatment of periodontitis.

Excessive NET formation or clearance disorders have a causal relationship with periodontitis. Neutrophils recruit 
Th17 cells to periodontal tissues by releasing NETs and chemokines such as CCL2 and CCL20, indirectly exerting 
tissue-destructive effects through IL-17.16 After the rupture of the cell membrane within the extracellular space, NETs are 
released into the tissues, exerting antimicrobial effects and subsequently removed from the tissues. If NET removal fails, 
persistently high levels of NETs may cause damage to periodontal tissues.33 Non-surgical and surgical interventions have 
become traditional treatment modalities for periodontal therapy. Although adjunctive therapies (including antibiotics or 
supplements) accompany these therapies, their use is limited by antimicrobial resistance and partial effectiveness. Thus, 
novel approaches are required to regulate local inflammation in periodontal tissues as well as the host immune 
response.34 In the next few years, more research is required to improve immunotherapy treatment methods and 
continuously comprehend the risks as well as long-term effectiveness of new approaches in treating periodontitis.35

Neutrophils and Chronic Respiratory Diseases
In chronic obstructive pulmonary disease (COPD) patients, persistent NET formation has been observed, correlating with 
inflammation and disease severity. Research shows that neutrophils and NETs contribute to lung function decline by 
obstructing airways.36 Chronic lung infections are associated with high levels of neutrophil proteins and DNA, believed 

Figure 1 Mechanisms of NET formation. (A) PMA and other stimuli induce lytic-NET formation. Neutrophils are stimulated with PMA, resulting in the activation of NADPH 
oxidase via PKC and Raf-MEK-ERK signaling pathways, consequently generating ROS. Subsequently, PAD4 is activated and citrullinates arginine on histones, causing 
chromatin decondensation. MPO and NE are discharged from cytoplasmic azurophilic granules and then translocated to the nucleus, contributing to the unfolding of 
chromatin. The nuclear envelope subsequently disintegrates, discharging the chromatin into the cytosol, where it blends with cytosolic proteins. NE also cleaves GSDMD in 
the cytosol to its active form (GSDMD-NT), which, besides forming pores in the plasma membrane, also mediates pore formation in nuclear and granule membranes, 
enhancing the release of NE and other granular content. Finally, NETs are released, and the neutrophil undergoes cell death. (B) Nonlytic NET formation is induced by the 
recognition of stimuli via Toll-like receptor 2 (TLR2), TLR4, or complement receptors, independent of NAPDH oxidase activation. S. aureus and C. albicans activate TLR2 
and complement receptors, respectively, while E. coli or LPS-activated platelets activate TLR4. Along with PAD4 activation and NE translocation to the nucleus, chromatin 
decondensation proceeds, and protein-decorated chromatin is expelled via vesicles without plasma membrane disruption. After the release of NETs, neutrophils remain alive 
for further functions. Reprinted from Blood, Vol 133/Edition 20, Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation, Page 
numbers 2178–2185, Copyright 2019, with permission from Elsevier.17
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to be caused by NETs. In addition to causing direct damage, NETs provide pro-inflammatory stimuli to macrophages, 
promoting inflammatory responses in CF subjects. Wang et al found that GPR84 was highly upregulated in cells isolated 
from bronchoalveolar lavage fluid of LPS-induced mice.37 GPR84 blockade improved lung inflammation in mice by 
reducing neutrophil infiltration and oxidative stress. GPR84 can also induce neutrophil oxidant production by stimulating 
Lyn, AKT, and ERK1/2 activation. This study demonstrated the crucial role of GPR84 in neutrophil function and lung 
inflammation, suggesting GPR84 as a potential drug target for pneumonia.

Neutrophils and Chronic Liver Diseases
Nonalcoholic fatty liver disease (NAFLD) is presently the primary chronic liver disease, characterized by inflammation, 
hepatocyte injury, and fibrosis.38 NAFLD is the most frequent cause of liver disease-related mortality as well as 
morbidity. Nonalcoholic fatty liver includes nonalcoholic fatty liver steatosis and nonalcoholic steatohepatitis (NASH). 
Many studies have highlighted the role of neutrophils in NASH, with hepatic neutrophil infiltration promoting NASH 
development and circulating neutrophils correlating with its severity. Neutrophil infiltration in the liver promotes the 
development of nonalcoholic steatohepatitis.39,40 MPO-DNA levels, a marker of NETs, are elevated in NASH patients 
and mouse models.41 In mouse models, the development of steatosis is independent of NETs, suggesting that NET 
formation is a consequence of fatty liver accumulation. When NETosis is inhibited, inflammatory responses decrease, 
with reduced levels of macrophages and neutrophils in the liver. Therefore, regulating key targets that recruit neutrophils 
to the liver may slow disease progression.42

Neutrophils and Atherosclerosis
Atherosclerosis (AS) is a lipid-driven, multi-cell-mediated chronic inflammatory disease of blood vessels, primarily 
affecting large and medium-sized arteries. AS is featured by lipid accumulation in the arterial wall, immune cell 
infiltration, and the formation of a fibrous cap composed of smooth muscle cells and collagen.43 One mechanism by 
which neutrophils promote atherosclerosis is through the formation of NETs.44 Extracellular cholesterol crystals interact 
with neutrophils to induce NET release, and NETs stimulate macrophages to produce the precursor form of the 
inflammatory cytokine interleukin-1β (pro-IL-1β). Furthermore, cholesterol crystals bind to the cell surface protein 
CD36 on macrophages, activating inflammasomes (as shown in the figures 1-5), thereby promoting the maturation of 
endogenous IL-1β and upregulating another pro-inflammatory cytokine, IL-17, produced by.45 Consequently, 

Figure 2 In inflamed gingival tissue, fibroblasts decreased while neutrophils increased; Fibroblasts induce excessive formation of NETS through MIFCD74/CXCR4 ligand 
receptor axis, thereby promoting the progression of periodontitis). Reprinted from Journal of Advanced Research, Qiu W, Guo R, Yu H, et al. Single-cell atlas of human gingiva 
unveils a NETs-related neutrophil subpopulation regulating periodontal immunity, Copyright 2024, with permission from Elsevier.32
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macrophages present in atherosclerotic plaques possess inflammatory and plaque-destabilizing functions. Ultimately, this 
triggers thrombotic complications, interrupting arterial blood supply to downstream tissues, leading to myocardial 
infarction and stroke.

Neutrophils and Rheumatoid Arthritis (RA)
Rheumatoid arthritis (RA) is a systemic autoimmune disease featured by continuous synovial inflammation, leading to joint 
cartilage and bone damage. NETs serve as a kind of source of extracellular autoantigens, and citrullinated peptides 
generated by histone citrullination through PAD2 and PAD4 activity are overexpressed within neutrophils. It could even 
be detected within the synovium of RA patients.46 Activated neutrophils also express chemokines and chemokine receptors, 
promoting neutrophil migration and infiltration in RA joints.47 Furthermore, numerous studies have observed enhanced 
NET formation in RA patients, and the function of NETs in the pathogenesis of rheumatoid arthritis has been investigated.

Macrophages
Macrophages are core innate immune cells in the mortal body and are an essential part of the host immune response. 
They are also one of the most extensively studied immune cells, playing a important role in the pathogenesis of 
inflammation. Macrophages are vital in the initiation, maintenance, and resolution stages of inflammation. They can 
rapidly migrate and accumulate at inflammatory sites, where they exert dual roles in promoting disease progression and 
tissue repair.48 Under the induction of different factors, macrophages polarize into different functional phenotypes.

M1 and M2 macrophages participate in the destruction as well as repair phases of inflammatory tissues49 Figure 2. 
When the body encounters pathogenic microbial attacks, macrophages differentiate into M1 and M2 macrophages.50 M1 
macrophages mainly participate in Th1-type immune responses and can produce a series of pro-inflammatory cytokines, 
including nitric oxide (NO), interleukin (IL)-1β, IL-2, IL-6, and other inflammatory factors, promoting Th1 activation. 
Increasing evidence suggests that inflammation is closely related to the increase in the M1/M2 ratio of polarized 
macrophages.51 CD64 is a high-affinity Fc-γ receptor, considered a marker of M1 macrophages, while CD163 and 
CD206 have been recognised as the primary markers of M2 macrophages. For example, in synovitis, macrophages 
expressing CD64 (Fc-γ receptor) play a key role and are considered a marker of macrophage activation.52,53 ROS are 
naturally occurring oxidants, and their production affects macrophage differentiation, promoting their transformation into 
the M1 phenotype. Under physiological conditions, antioxidants can effectively neutralize ROS, thus preventing ROS- 
mediated tissue damage.54

Macrophages and Chronic Inflammation 
Macrophages are regulators of immune activity and body homeostasis, adopting variable activation states as a function of 
time and environmental cues.55 In the pathogenesis of inflammatory lung diseases, macrophages promote the advance-
ment as well as progression of acute or chronic inflammatory responses via secreting inflammatory cytokines/chemokines 
and activating transcription factors, such as in acute respiratory distress syndrome (ARDS) and chronic obstructive 
pulmonary disease (COPD). Eapen et al demonstrated that M2 phenotype macrophages predominate in the bronchoal-
veolar lavage (BALF) of COPD patients with increased cytokines, including IL-4, IL-13, IL-8, and IL-10.56 Osama et al 
showed that macrophage-induced eosinophilia is closely related to the severity of COPD.57 MCP-1 levels are elevated in 
sputum samples from COPD patients, and macrophages influence neutrophil recruitment by producing MCP-1, indicating 
that macrophages play a vital role in the development of COPD by inducing neutrophil influx.58 Macrophages are key 
coordinators in the pathogenesis of lung injury/acute respiratory distress syndrome, and regulating macrophage polariza-
tion can improve the prognosis of ALI/ARDS.59

In periodontitis, M1 and M2 macrophages participate in the destruction and repair stages of PD.49 Figure 3 M1 
macrophages promote inflammation and activate osteoclasts by recruiting neutrophils to remove periodontal pathogens, 
leading to alveolar ridge resorption. M2 macrophages are involved in Th2-type immune responses60 (Figure 3), 
increasing the expression of IL-10 and chemokines, promoting Th2 activation, and exerting immunomodulatory effects 
on Th2 cells. They promote apoptosis and neutrophil recruitment to terminate the inflammatory process. M2 macro-
phages release various anti-inflammatory factors, including IL-4 and IL-10, secrete bone morphogenetic protein (BMP)- 
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2, as well as vascular endothelial growth factor (VEGF) to participate in inflammation suppression and accelerate tissue 
healing, exerting anti-inflammatory and effect of angiogenesis, and activating osteoblasts to restore bone tissue.61,62 

Additionally, M2 macrophages possess immunosuppressive, wound repair, and tumor-promoting functions.

Dendritic Cells (DCs)
The primary function of dendritic cells is to survey peripheral cells and present antigens to T cells. Exogenous stimuli 
activate DCs, leading to the secretion of cytokines and upregulation of surface costimulatory molecules.64 Mature DCs 
present antigens to naive CD4+ T cells,65 which differentiate into helper T cells (Th1, Th2, Th17) and regulatory T cells 
(Tregs).66 Interferon-γ (IFN-γ) and interleukin-12 (IL-12) secreted by dendritic cells induce Th1 cell formation in an 
inflammatory environment.67 Therapeutic approaches utilizing regulatory T cells (Tregs) to alleviate inflammatory tissue 
damage have been widely proposed. However, Tregs are unstable and may lose their function in an inflammatory 
environment, potentially converting into Th17 cells.68 Regulating the Treg/Th17 balance can significantly impact the 
pathogenesis of inflammation.69 Wen et al discovered that protein arginine methyltransferase 5 (PRMT5) attenuates 
activation and maturation by suppressing the expression of endotoxin-stimulated pro-inflammatory cytokines, ISGs, 
costimulatory molecules, and MHC. The inhibition of metabolic switching plays a key role in controlling activated 
dendritic cells, suggesting that PRMT5 is a promising therapeutic target for inflammation.70,71

Lymphocytes
Different subsets of lymphocytes also participate in the inflammatory process. Helper T cells (Th1, Th17) and 
B lymphocytes promote inflammatory responses, while regulatory T cells (Tregs) and B10 cells significantly suppress 
inflammatory reactions. Studies have shown that periodontitis primarily activates CD4+ T cell-polarized Th1, Th2, Th17, 
and Tregs, mediating immune responses through characteristic cytokines. The activation of Th cells is a pivotal factor in 

Figure 3 Polarized macrophages play a crucial role in the initiation and progression of Parkinson’s disease (PD). In PD, resident macrophages polarize into two primary 
phenotypes, M1 and M2, which respectively govern the inflammatory development and resolution phases. M1 macrophages are primarily proinflammatory and produce 
a series of proinflammatory factors, working in conjunction with Th1 cells, Th2 cells, and other cells. By collaborating with Th1-type immune cells, M1 macrophages can 
remove periodontal pathogenic microorganisms through the recruitment of PMNs. Simultaneously, M1 macrophages activate osteoclasts, leading to the absorption of the 
alveolar ridge. M2 macrophages primarily play an anti-inflammatory role and are mainly involved in immune interactions with Th2 cells. M2 macrophages terminate 
inflammatory development via accelerating the apoptosis for M1 macrophages and PMNs, perform tissue repair through various anti-inflammatory factors, and could activate 
osteoblasts to recover bone tissue. Reproduced from Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: characteristics, Function, and 
Molecular Signaling. Front Immunol. 2021;12:763334.49
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determining the progression of tissue damage, particularly the classical T cell subsets Th1, Th2, and Th17, which secrete 
various pro-inflammatory cytokines (IL-1β, IL-17).72

Therefore, in-depth exploration of the different roles of various immune cells at different stages of chronic inflammation is 
of great significance for the future clinical application of immunotherapy in the treatment of chronic inflammatory diseases.

Overview of Nanomaterials
Systemic administration is currently the most common method for treating many symptoms and diseases, and traditional 
inflammatory targeted therapies have shown promising therapeutic effects. However, most anti-inflammatory drugs are 
inevitably absorbed, have poor permeability through mucosal barriers, struggle to accurately reach the lesion site, have 
short retention times, and may even produce adverse side effects on the body, thus limiting their clinical application. 
Many anti-inflammatory drugs broadly suppress inflammation and are administered systemically at high dose concentra-
tions, leading to various side effects, including immunodeficiency toxicity (eg, viral and bacterial infections) and 
systemic toxicity (eg, nephrotoxicity, hepatotoxicity).73 Therefore, numerous researchers have focused on designing 
and investigating drug carriers, wound dressings, and composite drug release systems, such as nanoparticles, exosomes, 
and biomimetic materials, to overcome the limitations of anti-inflammatory drugs.74,75 Nanomaterials are a type of 
multifunctional novel material with particle sizes ranging from 1 to 100 nm. The prominent features of nanomaterials are 
their unique size, shape, and surface properties that enable tissue penetration through passive or active targeting 
mechanisms. The emergence of nanotechnology has provided tremendous potential for overcoming biological barriers. 
Firstly, nanoparticles deliver drugs in a sustained and controlled manner, degrading and releasing drugs in response to 
specific environmental stimuli, thereby enhancing drug solubility, improving drug stability, reducing toxicity and drug 
degradation, ensuring stable cellular targeting and oral retention,76 and protecting drugs from pH effects and enzymatic 
degradation.77 Secondly, surface modification of nanoparticles can enhance their ability to target inflammatory micro-
environments. Thirdly, the small size of nanocarriers allows them to accumulate in inflamed epithelial cells through the 
enhanced permeability and retention effect, more effectively targeting inflammatory tissues.78 The advantages of 
nanoscale delivery systems, such as biodegradability, biocompatibility, non-toxicity, and prolonged circulation, provide 
a platform for targeted therapy of inflammation.79 Nanoscale delivery systems have been utilized as a potential method 
for treating various diseases, including inflammation.80

Based on their chemical composition and structure, nanoparticle systems can be classified into organic nanoparticles, 
inorganic nanoparticles, and lipid-based nanoparticles. Organic nanoparticles, commonly referred to as polymeric 
nanoparticles, include synthetic and natural polymers. Nanoscale drug delivery systems with various structures have 
been widely used,81 including chitosan, poly(lactic-co-glycolic acid) (PLGA), nanohydrogels, liposomes, carbon nano-
particles, silica nanoparticles, and nanocomposites, all of which can serve as drug carriers and exhibit excellent drug 
loading and release capabilities,76,82 making them potential candidates for targeted drug delivery.83

Polymeric Nanoparticles
Polymeric nanoparticles (PNPs) are solid particles ranging in size from 10 to 1000 nanometers. Examples include poly 
(lactic-co-glycolic acid) (PLGA) nanoparticles,84 polycaprolactone (PCL), and hydrogel nanoparticles. Polyesters are the 
most commonly used polymers in nanosystems, containing ester functional groups in their polymer backbone, and their 
degradation can facilitate controlled drug release. Natural polymeric nanoparticles include polymers such as sodium 
alginate, chitosan, albumin, and gelatin.85 Moreover, with the rapid development of nanotechnology and materials 
science, there has been an increasing focus on developing safer and more effective hydrogels for treating severe 
inflammatory conditions, such as rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Hydrogels 
can be classified into natural hydrogels (eg, chitosan, hyaluronic acid, sodium alginate, cellulose, gelatin) and hydrogels 
prepared from synthetic biomaterials (eg, poly(lactic acid) (PLA), polyacrylamide, poly(ethylene glycol) (PEG)). 
Nanohydrogels are nanoparticles composed of three-dimensional hydrogel materials, formed by crosslinked swellable 
polymer networks with high water retention capacity. Nanohydrogels are primarily composed of synthetic polymers, 
biopolymers, or combinations of chemically or physically crosslinked components.86
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Nanostructured Lipid Carriers
Nanostructured lipid carriers (NLCs) are drug delivery systems that utilize solid lipids and liquid lipids as the core 
matrix. Compared to solid lipid nanoparticles and traditional drug delivery carriers, NLCs offer advantages including 
improved drug loading capacity, flexible drug release modulation, and improved stability. Moreover, NLCs exhibit good 
biocompatibility, low toxicity, increased solubility, reduced side effects, prolonged shelf life, and superior drug targeting 
and controlled release capabilities.87,88 In previous studies, NLCs have demonstrated effective therapeutic prospects 
through various administration routes, including pulmonary, local, nasal, ocular, and oral.89 Yang et al designed a rapidly 
monodispersed gelatin methacryloyl@liposome (GelMA@Lipo) hybrid microgel drug delivery platform by anchoring 
liposomes within a photocrosslinkable GelMA matrix. Compared to the control group, the liposomes were firmly fixed in 
the microgel through non-covalent interactions, enabling prolonged drug retention in the joints.

Classification of Inorganic Nanomaterials
Common inorganic nanomaterials include metal nanoparticles (Ag, Pd), metal oxide-based functional nanomaterials 
(ZnO, TiO2, MgO), carbon and graphene nanomaterials, and others. Compared to organic nanomaterials, inorganic 
nanomaterials possess unique physicochemical properties, such as optical, electrical, magnetic, ultrasonic, and catalytic 
properties, as well as controllable shape and size, which also offer tremendous advantages in anti-inflammatory therapy.90 

Although inorganic nanomaterials have been widely used in biomedical applications, the extensive retention time of 
many functional inorganic nanomaterials in vivo increases the possibility of harmful toxicity.91 Therefore, further 
enhancement of their targeting ability and bioavailability is also required.92

Nanomaterials Targeting Specific Immune Cells
Although traditional nanoscale drug delivery systems have improved the therapeutic effects of drugs, nanoparticles 
carrying drugs with surfaces that bind to plasma proteins can activate immune responses and are easily cleared by the 
mononuclear phagocyte system, thereby reducing the bioavailability of the drugs.93 Moreover, most systems cannot 
precisely target the drug to the inflammatory tissue, and the drug is released into each type of cell at the inflammation 
site, further reducing the therapeutic effect.94,95 Therefore, additional studies are required to enhance the targeting ability 
of nanoparticles. For example, intravenous injection of mannosylated liposomes in rats with arthritis resulted in only 
partial drug delivery to the joints because liposomes are easily cleared by the reticuloendothelial system.96 In contrast, 
neutrophil-based drug delivery systems can avoid clearance by the reticuloendothelial system and enhance the ability of 
nanoparticles to target joints.97

In cancer treatment, the clinical progress of immunotherapy has been remarkable, and more clinical data have 
demonstrated that combining nanomedicines with immunotherapy can significantly improve the therapeutic effect.98 

Nanoimmunotherapy is mainly achieved through three different approaches: nanomedicines are used to (1) target cancer 
cells, (2) target the tumor immune microenvironment, and (3) target the peripheral immune system. In the case of 
inflammation, the inflammatory microenvironment is formed by immune cells, inflammation-related enzymes, and 
inflammatory mediators. Similar to tumors, we can use immune cells or biomarkers to provide opportunities for precise 
targeting of anti-inflammatory drugs. Combined with the advantages of nanomedicines, such as precise localization of 
inflammatory tissues, overcoming barriers, enhancing interactions with epithelium, and reducing systemic adverse 
reactions, targeted delivery of nanomaterials to immune cells can be achieved for the treatment of chronic inflammation. 
The immunomodulatory effects of nanoparticles are one of the hotspots in nanomaterial research. Currently, many 
nanomaterials have been found to regulate the immune system, achieving significant progress in the fields of nanome-
dicine and immunotherapy.99

Macrophage-Targeted Nanomaterials
Macrophage Polarization
The main direction of macrophage polarization therapy is to induce macrophages to transform into the M2 type, thereby 
alleviating inflammation, promoting tissue repair, and achieving anti-inflammatory effects. The production of ROS is 
a major biological process in which stimulated macrophages participate in killing phagocytosed microorganisms.100 
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However, excessive ROS may drive macrophages to transform into the M1 type, exacerbating the development of 
inflammation.101 Sun et al constructed a cerium@ce6 multifunctional nanocomposite that regulates host immunity by 
downregulating M1 polarization and upregulating M2 polarization in macrophages. This nanocomposite can avoid 
periodontitis caused by high levels of ROS, prevent oxidative stress, and improve the regenerative potential of period-
ontal inflammatory tissues in animal models.102 Ni et al utilized gold nanoparticles (AuNPs) to induce macrophages to 
transform into the M2 type by regulating the production of inflammatory and regenerative cytokines, thereby improving 
the periodontal inflammatory microenvironment and modulating the inflammatory response in early periodontal 
tissues.103 Nanoparticles can protect drugs from the influence of pH and enzymatic degradation. By designing nano-
particles to respond to ROS, pH, or enzymatic reactions in the pathological microenvironment, drug release can be 
controlled.76 Hu et al prepared a mannosylated (Man) functionalized nanoscale metal-organic framework (MOF) to load 
Que for targeted therapy of myocardial infarction (MI). The nanomedicine Que@MOF/Man can reprogram macrophage 
polarization and neutralize ROS, thereby reducing oxidative stress and targeting the inflammatory infarcted heart.104 Man 
is a yeast polysaccharide containing D-mannose residues that can be recognized by mannose receptors. Mannose 
receptors are highly expressed on macrophages at inflammatory sites, promoting the inflammation-specific accumulation 
and targeted cellular internalization of Que@MOF/Man in macrophages. Galarraga et al exposed LPS-stimulated 
macrophages to extracted cranberry concentrate and found a significant decrease in M1 and a significant increase in 
M2, indicating that cranberry proanthocyanidins have effective anti-inflammatory effects in periodontal treatment.105 

Wang et al introduced the antioxidant drug quercetin into nano-octahedral cerium to construct a nanocomposite 
(CeO2@QU), achieving synergistic regulation of host immunity in periodontal disease. The prepared nanocomposite 
not only effectively increased the M2/M1 ratio of macrophage polarization in inflammatory cell models but also 
promoted periodontal tissue regeneration by significantly decreasing the levels of pro-inflammatory cytokines while 
increasing the levels of anti-inflammatory cytokines, demonstrating therapeutic potential for local inflammation.106 Shi 
et al developed resveratrol-loaded liposomes (Lipo-RSV) that transformed macrophages from the M1 phenotype to the 
M2 phenotype by stimulating p-STAT3 and suppressing p-STAT1. Lipo-RSV elevated the mRNA levels of M2- 
associated markers (CD206, Arg-1, and Chil3) and reduced the mRNA levels of M1 macrophage markers (CD86, 
iNOS, and CCR7) in stimulated macrophages. Furthermore, Lipo-RSV could scavenge ROS, inhibit NF-κB signaling 
and inflammasomes, thus reducing pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, showing potential for treating 
periodontitis.107 Wali et al prepared dexamethasone-loaded ROS-responsive polymeric nanoparticles (PFTU@DEX 
NPs). Due to the ability of PFTU@DEX NPs to inhibit the expression of NLRP3, Caspase1, and IL-1β, they could 
effectively suppress inflammatory cells, ROS signaling pathways, and apoptosis, inducing macrophage phenotype 
polarization from M1 to M2, thus effectively alleviating acute lung injury.108 Ma et al developed folic acid-modified 
DNA origami nanostructures (FA-tDONs)109 by utilizing the inherent ROS and NO scavenging abilities of DNA 
molecules. FA-tDONs could effectively scavenge ROS and NO, actively target M1 macrophages at inflammatory 
sites, and promote M1-M2 transformation.

Specific Receptors
Compared to conventional nanosystems, active targeting nanocarriers that transfer cargo to disease sites with higher selectivity 
have shown advantages in treating inflammation, cancer, and other chronic diseases.110,111 Some active targeting nanoparticles 
have been developed to target macrophages by localizing to specific cell receptor surfaces in particular situations.112 Current 
approaches for targeting macrophages include targeting CD44, coupling folic acid, coupling mannose, microbial mimicry, and 
lactoferrin modification. Yang et al designed an injectable hydrogel (Gel/FA-PDA@Leon) based on mammalian collagen and 
peptides.113 Gel/FA-PDA@Leon can target and deliver Leon to M1 macrophages, reducing the secretion of pro-inflammatory 
cytokines by inhibiting the JAK2/STAT3 inflammatory signaling pathway. The hydrogel can also protect collagen cells from 
the effects of ferroptosis. Gel/FA-PDA@Leon hydrogel significantly inhibits the inflammatory response associated with 
rheumatoid arthritis (RA) and protects the integrity of joint structures, thereby promoting the recovery of joint function, 
making it effective for the treatment of RA. Feng Jie et al prepared a Mannose-PEG-PCL targeted nanomedicine that actively 
targets macrophage membrane receptors, increasing the endocytic uptake of nanoparticles by macrophages.114 The nanome-
dicine reshapes the synovial inflammatory microenvironment by activating the AKT/STAT6 pathway. Na et al developed 
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a macrophage-based encapsulated hydrogel nanoformulation (MZ@PNM@GCP).115 MZ@PNM@GCP specifically blocks 
the binding of P.g. to immune cells through Toll-like receptor complex 2/1 (TLR2/1) targeting, preventing P.g. from disrupting 
the periodontal host immune response. Furthermore, FR2, a membrane protein overexpressed on inflammatory macrophages, 
can selectively recognize and internalize folic acid (FA)-modified nanodrug delivery systems into inflammatory 
macrophages.116 The Wang research group developed folic acid-modified genistein liposomes that target macrophages.106 

These liposomes can regulate the TLR4/MyD88/NF-κB axis in macrophages and promote the osteogenic differentiation of 
PDLSCs. Sun et al constructed the M2M@PLGA/COX-siRNA delivery system, which has low toxicity and obvious targeting 
to the injured site, reducing inflammatory reactions and significantly improving tendon adhesion.117 Hyaluronic acid possesses 
unique biological properties that enable it to specifically combine with the overexpressed CD44 receptors on the surface of 
macrophages, endowing nanodrug delivery systems with the ability to target macrophages. Nanoparticles containing 
hyaluronic acid can be used to target macrophages for the treatment of inflammatory diseases.118

Nanomedicines selectively deliver drugs to the damaged regions of rheumatoid arthritis (RA) through passive targeting 
effects. The surfaces of nanomedicines are then modified with targeting ligands connected to specific receptors for active 
targeting of macrophages. 98 Jia et al constructed a pH-responsive dual-targeted nanodrug delivery system, RBA-NPs, loaded 
with targeting CD44 and folate receptors. The study found that intra-articular M1 macrophages were reprogrammed to M2 type 
through RBA. RBA-NPs can also drive M1-to-M2 phenotype conversion by downregulating glycolysis levels through blocking 
the ERK/HIF-1α/GLUT1 pathway. This nanocarrier effectively delivers RBA to inflammatory sites, significantly reducing 
inflammatory cytokine levels and promoting tissue repair, improving the efficiency of rheumatoid arthritis treatment. The study 
also identified a potential molecular target for regulating macrophage reverse reprogramming through energy metabolism.119 

Feng Naibo et al designed and constructed a dual-responsive, macrophage-targeting nanocarrier loaded with small interfering 
RNA (si ERN1), effectively achieving targeted therapy for rheumatoid arthritis (RA). The nanocarrier demonstrated superior 
therapeutic effects, immune homeostasis regulation, and cartilage protection in collagen-induced arthritis (CIA) model mice.120 

Tand et al developed an FA receptor-targeted GER nanocarrier, FA-NPs/GER. In vitro experiments confirmed that FA-NPs/GER 
could promote the transformation of M1 macrophages to M2 macrophages. In animal experiments, the drug selectively 
accumulated at inflammatory sites, significantly reducing inflammatory infiltration. Therefore, macrophage-targeted nanocarriers 
loaded with GER represent a safe and effective method for treating RA (Table 1).121

Natural Nanoparticles
In recent years, natural products have attracted growing interest as a potential therapy for various diseases because of 
their high therapeutic potential, low cost, and high safety.122–124 Natural products also possess antimicrobial, antioxidant, 
and anti-inflammatory properties. For example, plant-derived exosome-like nanoparticles (pELNs) are natural nanocar-
riers with sizes ranging from 50 to 500 nm. pELNs contain lipids, RNA, and other active molecules.122 pELNs can be 
derived from many plants and fruits, such as ginger, blueberries, and coconuts.125 ELNs derived from grapefruit, carrots, 
and ginger induce macrophages to express IL-10 and promote the activation of nuclear factor 2 (Nrf2) in macrophages, 
blocking the assembly of NLRP3 inflammasomes in macrophages.126 This suggests that G-ELNs are novel and effective 
drugs for blocking the assembly and activation of NLRP3 inflammasomes. NLRP3 inflammasomes regulate the release 
of interleukin-related inflammatory factors, and their activation promotes inflammation, making them a key factor in 
improving inflammatory responses. Ginseng-derived ELNs inhibit IL-4 and IL-13-induced M2-like polarization in 
macrophages and increase the secretion of M1-macrophage-related cytokines (including TNF-α, IL-12, and IL-6).127

pELNs are lipid bilayer membrane nanovesicles rich in lipids, proteins, RNA, and other active molecules. They have 
high bioavailability and low immunogenicity, making them relatively safe. pELNs have demonstrated the capability to 
penetrate mammalian cells and modulate cellular functions.122,128 Due to their wide availability, cost-effectiveness, and 
ease of acquisition, pELNs can serve as better alternatives to animal-derived exosomes (ADEs).129 pELNs not only have 
great potential in regulating immune function, inflammation, and tissue regeneration, but they also can act as drug 
carriers, cellular uptake in vivo and enhancing drug stability. Meng et al utilized exosome-like natural tea-derived carbon 
nanotubes to reduce ROS production, decrease the levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-12, and 
significantly increase the levels of anti-inflammatory IL-10 secreted by macrophages, effectively preventing or reducing 
inflammation.130 pELNs can also regulate inflammatory responses by blocking the activation and release of NLRP3 
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Table 1 Macrophage-Targeted Nanomaterials

Nanomaterials Chronic 
Diseases

Mechanisms of Action In vivo Main Results Reference

Que@MOF/Man Inflammatory 

myocardial 

infarction

Reprogramming macrophage 

polarization and neutralizing ROS

Myocardial 

infarction rats

Validated the rational design of 

inflammation-targeting delivery 

strategy, alleviating oxidative stress 
and regulating inflammatory 

responses in the damaged heart, 

providing a therapeutic approach 
for MI treatment

[104]

Cerium @ce6 
multifunctional 

nanocomposites

Periodontitis Exerting ROS-based aPDT and anti- 
inflammatory effects

Animal model 
of 

periodontitis

Provides new insights for 
eliminating the deficiencies of aPDT 

in the treatment of periodontal 

disease and even in future clinical 
applications of anti-infective therapy

[102]

Gel/FA-PDA 

@Leon

Rheumatoid 

arthritis (RA)

CeO2 charge conversion effect, 

regulating local ROS levels induced 

by inflammatory pathways for an 
extended period

collagen- 

induced 

Arthritis rat 
model

Protecting collagen cells from 

ferroptosis, contributing to 

maintaining the structural integrity 
of articular cartilage and 

accelerating the recovery of joint 

function

[113]

(CeO2@QU) Periodontitis Downregulating pro-inflammatory 

cytokines and upregulating anti- 
inflammatory cytokines

Animal model 

of 
periodontitis

Effectively clearing ROS and driving 

the conversion of pro-inflammatory 
macrophages to an anti- 

inflammatory phenotype to 

eliminate inflammation, providing 
a promising candidate drug for the 

treatment of periodontal 

inflammation

[106]

Lipo-RSV 

lipidosome

Periodontitis Activating p-STAT3 and 

downregulating p-STAT1, 
converting macrophages from M1 

to M2 type; Lipo-RSV clearing ROS, 

inhibiting NF-κB signaling and 
inflammasomes, and reducing pro- 

inflammatory cytokines IL-1β, IL-6, 

and TNF-α

Animal model 

of 
periodontitis

Lipo-RSV provides a promising 

antibiotic-free treatment method 
for periodontitis management

[107]

PFTU@DEX NPs Pneumonia Inhibiting the expression of NLRP3, 

Caspase1, and IL-1β, effectively 
suppressing inflammatory cells, 

ROS signaling pathways, and 

apoptosis, and inducing macrophage 
phenotype polarization from M1 to 

M2

Lung injury 

rats

Reduced neutrophil infiltration, 

inhibited the release of proteins and 
inflammatory mediators, and thus 

decreased acute lung injury in vivo

[108]

MZ@PNM@GCP Periodontitis Toll-like receptor complex 2/1 

(TLR2/1) targeting to block the 

specific binding of P.g. to immune 
cells, preventing P.g. from disrupting 

the periodontal host immune 

response

Animal model 

of 

periodontitis

Treating periodontal inflammation, 

restoring local immune function, 

and killing pathogens with good 
biocompatibility

[115]

(Continued)
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inflammasomes. Liu et al found that ELNs derived from shiitake mushrooms (S-ELNs) can inhibit the activation of 
NLRP3 inflammasomes by preventing the formation of inflammasomes in primary macrophages. S-ELNs also inhibit 
pro-inflammatory cytokines such as IL-6, thus exhibiting good anti-inflammatory activity.131 Professor Lu Jiahong’s team 
prepared biomimetic nanoparticles (Effero-RLP) by fusing apoptotic red blood cell membranes with liposomes. The 
PPAR-γ agonist rosiglitazone was loaded into the biomimetic nanoparticles to regulate macrophage function and achieve 
anti-inflammatory effects. Experiments demonstrated that Effero-RLP has good macrophage targeting and efficient 
cellular uptake properties. Compared with other liposome carriers, Effero-RLP exhibited superior anti-inflammatory 
efficacy. In drug release experiments, Effero-RLP showed a relatively slow release rate. Therefore, Effero-RLP has great 
application potential in the treatment of inflammatory bowel disease132 Figure 4.

Neutrophil-Targeted Nanomaterials
Neutrophil Receptors
Typically activated neutrophils are considered to be primarily induced by Toll-like receptor (TLR) and interferon (IFN) γ 
signaling stimulation, which are enhanced during infection, stroke, and myocardial infarction. Naina et al demonstrated 
that the G protein-coupled receptor (GPCR) Mrgpra1 expressed by neutrophils drives anti-inflammatory neutrophils and 

Table 1 (Continued). 

Nanomaterials Chronic 
Diseases

Mechanisms of Action In vivo Main Results Reference

RBA-NPs Rheumatoid 
arthritis (RA)

Blocking the ERK/HIF-1α/GLUT1 
pathway to downregulate glycolysis 

levels, thereby driving M1-to-M2 

phenotype conversion

Rat 
rheumatoid 

arthritis model

Not only developed a targeted 
delivery system to improve the 

anti-RA efficiency of RBA but also 

discovered a potential molecular 
target for regulating the reverse 

reprogramming of macrophages 

through energy metabolism

[119]

FA-NPs/GER Rheumatoid 

arthritis (RA)

Promoting the transformation of 

M1 macrophages to M2 
macrophages

Adjuvant- 

induced 
arthritis (AIA) 

rats

Selectively accumulating at 

inflammatory sites, significantly 
reducing inflammatory infiltration, 

providing a safe and effective 

method for treating RA

[121]

Figure 4 The preparation of LP, RLP and Effero-RLP. The schematic of apoptotic RBC membrane preparation and the fusion with liposome particles. Reproduced from Han 
R, Ren Z, Wang Q, et al. Synthetic Biomimetic Liposomes Harness Efferocytosis Machinery for Highly Efficient Macrophages-Targeted Drug Delivery to Alleviate 
Inflammation. Adv Sci. 2024;11(29):e2308325.132
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inhibits activated neutrophils, serving as a negative regulator of neutrophil killing function.133 Mrgpra1-mediated signal 
transduction is driven by its ligand neuropeptide FF (NPFF), which determines the balance between pro-inflammatory 
and anti-inflammatory programming. Kang et al prepared neutrophil membrane-coated poly(lactic-co-glycolic acid) 
(PLGA) nanoparticles.134 Because of the high expression of adhesion molecules and chemokine receptors on neutrophils, 
the neutrophil membrane coating can endow nanocarriers with the ability to target synovitis and be recruited to the 
synovial fluid under the chemotactic effect of IL-8. Yang et al engineered a biomimetic ApoA-I mimetic peptide- 
modified neutrophil membrane-encapsulated F127 polymer (R4F-NM@F127)135 for targeted drug administration during 
rheumatoid arthritis (RA) therapy, effectively inhibiting synovial inflammation and reducing joint damage.

The Mrgpra1-NPFF axis mediates the counter-regulation of interferon (IFN) γ-mediated neutrophil polarization 
during acute lung infection, suggesting that it may balance excessive neutrophil responses. Therefore, intrinsic pathways 
within neutrophils determine their cell fate, function, and the extent of infection. Albumin NPs manufactured using 
organic solvents can specifically bind to FcγRIII receptors on activated neutrophils,136 and albumin NPs can be absorbed 
by activated neutrophils in the blood, mediating the delivery of nanotherapeutic drugs in inflammation or tumors. This 
provides numerous opportunities for the rational design and engineering of targeted drug delivery to activated neutro-
phils. The NLRP3 inflammasome is a protein complex, it can help the body resist pathogen invasion under physiological 
conditions, but its overactivation may lead to excessive release of inflammatory mediators and overactivation of 
inflammatory cells, disrupting the immune balance within tissues and ultimately leading to various inflammatory 
diseases, including periodontitis. The NLRP3 inflammasome can be involved within the activation regarding neutrophils, 
macrophages, osteoclasts (OCs), and human periodontal ligament fibroblasts (HPLFs) and may contribute to the 
progression of various inflammatory as well as autoimmune conditions. Therefore, targeted therapy to regulate the 
function of the NLRP3 inflammasome provides a new approach for the adjuvant treatment of periodontitis.137 The 
MCC950 targeted therapeutic strategy has high specificity and can significantly reduce the levels of the pro-inflammatory 
cytokine IL-1β without affecting other types of inflammasomes and their corresponding inflammatory factor 
expression.138,139

Targeted Regulation of NETs for Inflammation Treatment
The balance of NETs is crucial for maintaining health and homeostasis in the body. NETs have become potential 
therapeutic targets for inflammatory and autoimmune diseases. The excessive production of NETs and the degradation of 
their components can be inhibited by drugs, thereby achieving targeted treatment of inflammation.140 Hu et al designed 
anti-inflammatory nanoparticles based on a luminol-conjugated α-cyclodextrin material (LaCD).141 The results showed 
that LaCD NPs could effectively inhibit neutrophil-mediated aortic aneurysm inflammation by attenuating the structure 
of NETs and suppressing NET-mediated pro-inflammatory events. This study demonstrated the effectiveness and 
potential mechanism of anti-NETosis nanotherapy for the targeted treatment of abdominal aortic aneurysms and provided 
a promising reference for the precise treatment of other inflammatory diseases. Chen et al designed NET-like structures 
using DNA and ZnO nanoparticles.142 In the anti-inflammatory assay, ZnO/DNA-HCl NG significantly inhibited the 
expression of TNF-α, IL-6, iNOS, and COX-2 in LPS-stimulated Raw264.7 cells. Furthermore, ZnO/DNA-HCl NG 
significantly alleviated the clinical symptoms of LPS-induced peritonitis in mice. Hu et al found that LaCD NPs could 
effectively attenuate the formation of neutrophil extracellular traps (NETs), thereby inhibiting NET-mediated pro- 
inflammatory events and NETosis-related inflammatory progression, demonstrating the effectiveness and potential 
mechanism of anti-NETosis nanotherapy for targeted treatment of inflammatory diseases.143 Liu et al prepared RGD- 
modified bovine serum albumin (BSA) nanoparticles (CBR NPs). These nanoparticles could selectively target inflam-
matory neutrophils (INEs) in circulation and induce INE apoptosis. Simultaneously, they were able to suppress the 
activation of NETs through the NF-κB pathway and block the release process of NETs, thereby inhibiting the infiltration 
of circulating neutrophils (INEs) into inflamed joints and reducing tissue damage by suppressing NET release.143 Zhou 
et al modified the surface of Prussian blue nanoparticles (PB NPs) with a neutrophil elastase (NE)-binding peptide to 
target activated neutrophils. These NET-targeted nanoparticles exhibited effective treatment for antiphospholipid anti-
body-mediated thrombosis during pregnancy.144
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Biomembrane Targeting
Nanoparticles, while being the ideal drug carriers, can enhance targeting to a certain degree. However, the straightfor-
ward biofunctionalization of nanoparticles still encounters significant challenges within the complex intercellular 
environment. The clinical application of nanoparticles also presents some issues; once synthesized, nanoparticles are 
engulfed by immune cells of the immune system, triggering immune responses and toxic effects. Some nanomaterials 
may inherently possess biological toxicity, such as cardiotoxicity and cytotoxicity, and they can also negatively impact 
the environment, thus raising concerns about their safety. It is imperative to further investigate the toxicity and 
biocompatibility of nanomaterials. Consequently, researchers have been inspired by the bionics strategy to coat 
nanomedicine with a biofilm, which not only reduces rejection reactions and other adverse effects but also enhances 
targeting capabilities and mitigates toxic reactions.Cell membrane-mimicking nanomaterials have emerged in the fields 
of disease diagnosis and targeted drug delivery, becoming a new therapeutic strategy.145

Nanomaterials modified with cell membrane derivatives retain antigens and cell membrane structures, enabling them 
to acquire the unique functions of the original cells, such as active targeting, long-term blood circulation, and immune 
escape.146 Therefore, this biomimetic strategy demonstrates long-term circulation of nanoparticles that are difficult for 
the immune system to recognize. By coating nanoparticles with cell membranes, various functional proteins can be 
modified on the surface to form biomimetic nanoparticles, providing multiple pathways for nanoparticles to participate in 
physiological and pathological processes. The constructed cell membrane-coated nanoparticles retain the various 
characteristics and inherent targeting capabilities of the core nanoparticles. These advantages make these materials 
show application potential in inflammation treatment. Drug delivery systems specifically targeting the inflammatory 
microenvironment have been developed. Currently, various biomembrane nanocarriers have been developed, mainly 
including macrophage membranes, neutrophil membranes, extracellular vesicles, and hybrid cell membranes.146 The 
most prominent are macrophage and neutrophil-targeting nanoparticles and their derived biomimetic nanoparticles.146

Macrophage Cell Membrane
The macrophage membrane inherits the surface protein spectrum and biointerface characteristics of the source cells, 
protecting synthetic nanoparticles from being engulfed by immune cells and accurately recognizing antigens to target 
inflamed tissues.147 Luo et al prepared alginate microspheres (Motor@M2M@SAM) combined with Janus nanomotors 
and M2 macrophage membranes for targeted treatment of ulcerative colitis63 Figure 5. Zhao et al utilized the character-
istics of the CCL2/CCR2 chemokine axis to recruit macrophages and prepared macrophage membrane-coated nanopar-
ticles, which showed significant accumulation in breast cancer lung metastasis.148 Ma et al used mouse macrophage 
membranes to cover nanogelatin and ChS, constructing an “egg yolk-shell” structured artificial M2 macrophage for the 
treatment of osteoarthritis.149 Compared with nanohydrogels without cell membrane coating, the artificial M2 macro-
phages exhibited significant adhesion and accumulation on the surface of inflamed cartilage and synovium, producing 
a notable anti-inflammatory effect. Gao et al reported a biomimetic drug delivery system of macrophage membrane- 
coated ROS-responsive nanoparticles. The macrophage membrane not only prevented the clearance of NPs from the 
endothelial system and assisted NPs in entering inflamed tissues but also isolated pro-inflammatory cytokines and 
inhibited local inflammation, improving the therapeutic effect on atherosclerosis. This experiment demonstrated that 
cell membrane-coated drug delivery methods might be more suitable for treating inflammatory diseases than live cell 
methods.150 Although macrophage membrane-camouflaged nanoparticles are currently in the embryonic stage, there is 
still great potential and challenges in exploring their translational models in clinical settings.

Neutrophil Cell Membrane
Recently, some nanomedicines have been used to alleviate rheumatoid arthritis (RA) by targeting functional cells 
modified with regulatory ligands. Other nanoparticles disguised with membranes or extracellular vesicles (EVs) of 
these functional cells have been employed to target and attack lesions for RA treatment.151 Yu et al coated self- 
assembled PEGylated L-arginine nanoparticles with inflammatory neutrophil membranes to construct a neutrophil 
membrane-based biomimetic nanoplatform, NM-LANPs@Ru.152 In vivo studies on a mouse osteoarthritis model 
showed that the biomimetic nanoplatform could specifically target inflammatory sites through dual-modal imaging, 

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S497590                                                                                                                                                                                                                       

DovePress                                                                                                                      
13939

Dovepress                                                                                                                                                                Ci et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


exhibiting higher penetration depth compared to non-membrane-coated nanomaterials. Yang Ni et al developed an R4 
peptide-modified neutrophil membrane-coated biomimetic nanomedicine (R4F-NM@F127-Cel) with a clear targeting 
ability for SR-B1+ cells. By targeting the synovial membrane through the SR-B receptor, it effectively inhibited 
synovial inflammation and improved joint damage, providing a promising strategy for the clinical treatment of RA.153 

Wang et al developed a biomimetic neutrophil-like aggregation-induced emission (AIE) nanorobot (CM@AIE NPs). 
The neutrophil membrane on the surface enabled CM@AIE NPs to mimic source cells and interact with immune 
regulatory molecules. Additionally, the excellent photothermal properties of AIE allowed precise localization of 
inflammatory sites and exerted the anti-inflammatory effect of nanoparticles, minimizing damage to surrounding 
normal tissues.154 Zang et al found that neutrophil membrane-coated nanoparticles (NM-NPs) could prevent the 
infiltration of neutrophils and macrophages to inflammatory sites by capturing chemokines and blocking adhesion to 

Figure 5 Schematic illustration of Motor@M2M@SAM preparation and its mechanism for UC treatment. (A) Scheme depicting the fabrication process of Motor@M2M. 
(B) Scheme illustrating the fabrication process of Motor@M2M@SAM using microfluidic technology. (C) Mechanism for UC Treatment: Upon oral administration, SAM is 
disrupted as it enters the colon. Subsequently, Motor@M2M is released from the hydrogel into the colonic lumen. The propelling force of O2 bubbles, generated by the 
decomposition of local H2O2 in the inflammatory microenvironment, facilitates the penetration of Motor@M2M through the mucus layer. These nanomotors then target 
inflammatory colon cells through a macrophage-like function. They specifically interact with colon epithelial cells. Acting as decoys, Motor@M2M neutralizes inflammatory 
cytokines through receptor-ligand interactions and absorption. Ultimately, Motor@M2M exerts therapeutic effects against UC by scavenging ROS, reducing inflammation, 
reprogramming macrophages, repairing the epithelial barrier, and rebalancing the microbiota. Reproduced from Luo R, Liu J, Cheng Q, Shionoya M, Gao C, Wang R. Oral 
microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. Sci Adv. 2024;10(26):eado6798.63
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inflammatory endothelial cells. NM-NPs showed a significant anti-inflammatory effect in vivo on endotoxin-induced 
inflammatory liver injury without drug loading. This experimental study revealed the anti-inflammatory effects and 
mechanisms of NM-NPs in the absence of drug loading, providing new insights and evidence for developing safer and 
more effective targeted drug delivery systems.155

Conclusion
In chronic inflammatory diseases such as pneumonia, periodontitis and rheumatoid arthritis, controlling the progression 
of inflammation is a key step in treating the disease. In recent years, nanodrug delivery systems have received widespread 
attention due to their different functions of immune cells and extracellular matrix factors, which are highly expressed in 
the inflammatory microenvironment. With the increased understanding and comprehension of various aspects of 
inflammation, researchers have developed various nanotargeted drug delivery systems. The unique physicochemical 
and targeting properties of nanodrug delivery systems have created a favorable platform for drug delivery to treat 
inflammation. In this review, we briefly outlined the relationship between inflammation and immune cells, and reviewed 
nanotreatment strategies to provide insights for future advances in inflammation treatment and the design of immune- 
targeted nanodrug delivery systems. Overall, immune-targeted nanomaterials have shown great potential in anti- 
inflammation, but the greater challenge lies in clinically evaluating the risks and benefits of candidate drugs. Inducing 
neutrophil apoptosis, inhibiting neutrophil extracellular traps, or targeting neutrophils for drug delivery are therapeutic 
strategies that can help alleviate inflammation and cure diseases, but relevant research is still in the exploratory stage, and 
clinical application has a long way to go. Therefore, we need more scientific research to continuously improve the 
development of new nanotreatment strategies. Immune-targeted nanomaterials will soon provide new opportunities for 
inflammation treatment, thereby reducing the suffering of patients and the medical burden on society.

Advanced nanomaterials have broad application prospects and can be applied to more fields in the future, exhibiting more 
excellent properties. With in-depth research on the pathogenesis of various inflammations, new understandings and discov-
eries are constantly emerging. These new insights not only provide new targets for anti-inflammatory drugs but also offer new 
ideas for the development of treatment methods, which will bring better treatment options for patients. We can not only start 
from the perspective of immune cells and immune factors but also delve into relevant inflammatory signaling pathways (NF- 
κB, MAPK, Akt, Jak/Stat, etc) to understand the role of related pathways in the disease and find effective targets for 
inflammation. With the deepening understanding of chronic inflammation mechanisms and the discovery of new targets, 
I believe that the research and development of anti-inflammatory drugs will achieve more innovations and breakthroughs. 
Although many specific targeted nanomaterials are relatively new, targeted anti-inflammatory nanomaterials will have a bright 
future in advancing the field of nanomedicine, enabling new applications to become possible.
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