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Abstract. Chronic obstructive pulmonary disease (COPD) 
and asthma are chronic respiratory diseases with high preva‑
lence and mortality that significantly alter the quality of life 
in affected patients. While the cellular and molecular mecha‑
nisms engaged in the development and evolution of these two 
conditions are different, COPD and asthma share a wide array 
of symptoms and clinical signs that may impede differential 
diagnosis. However, the distinct signaling pathways regulating 
cough and airway hyperresponsiveness employ the interaction 
of different cells, molecules, and receptors. Transient receptor 
potential cation channel subfamily V member 1 (TRPV1) plays 
a major role in cough and airway inflammation. Consequently, 
its agonist, capsaicin, is of substantial interest in exploring the 
cellular effects and regulatory pathways that mediate these 
respiratory conditions. Increasingly more studies emphasize 

the use of capsaicin for the inhalation cough challenge, yet the 
involvement of TRPV1 in cough, bronchoconstriction, and the 
initiation of inflammation has not been entirely revealed. This 
review outlines a comparative perspective on the effects of 
capsaicin and its receptor in the pathophysiology of COPD and 
asthma, underlying the complex entanglement of molecular 
signals that bridge the alteration of cellular function with the 
multitude of clinical effects.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) and asthma 
are two common respiratory diseases with distinct patho‑
physiology that share some clinical features such as cough, 
shortness of breath, and wheezing, making differential diag‑
nosis an essential step in their management (1‑3). Despite 
great progress in understanding the molecular mechanisms 
governing the development and evolution of these conditions, 
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there is still room for improvement in setting an early diag‑
nosis and providing effective therapy.

COPD is one of the most common causes of death, 
an important chronic morbidity, and is characterized by 
persistent respiratory symptoms and airflow limitation due 
to anomalies of the airways and/or alveolae caused by expo‑
sure to toxic particles or gases (1). Asthma is a treatable and 
common disease that causes symptoms such as shortness of 
breath, chest tightness, and wheezing (2). Even though the 
two diseases are characterized by an obstructive syndrome, 
there are many differences between the two entities, the most 
representative consisting of the fact that COPD has less vari‑
ability and is never completely cured, while asthma shows 
reversibility. Some patients may be affected by both diseases 
simultaneously (3). The comparative pathogenesis of COPD 
and asthma is shown in Fig. 1.

Capsaicin, the most pungent substance in chilli peppers, 
is an intensely studied molecule, with many applications in 
various diseases due to its anti‑inflammatory and antitumoral 
properties (4‑7). In the pulmonary system, capsaicin is used as 
an index of bronchial hypersensitivity, being able to produce 
cough and sustained bronchoconstriction, in a dose‑dependent 
manner when inhaled (8‑10). Transient receptor potential 
cation channel subfamily V member 1 (TRPV1) is the receptor 
for capsaicin in the human body. Capsaicin cough challenge 
shows a good correlation with the presence or absence of 
pathological cough (11). Capsaicin is used in many studies 
as a chemical agent in the diagnosis or treatment of various 
disorders, including respiratory conditions (12‑15). A better 
understanding of the effects of capsaicin in COPD and asthma 
may reveal new ways to diagnose and differentiate these 
diseases and potentially new directions of treatment.

2. Capsaicin and its receptor in the pulmonary system

Intensely studied in various conditions and on different 
experimental models, in the respiratory system, capsaicin has 
demonstrated great pleomorphism in its actions and is closely 
involved in triggering an abundance of signaling pathways, 
at times showing converse effects in pathological situa‑
tions (16). Prolonged exposure to capsaicin aerosols such as 
those dispersed for crowd control may be toxic, irritating the 
respiratory tract and causing nerve damage (17,18). In extreme 
doses and under certain conditions, capsaicin may cause 
significant respiratory symptoms such as sneezing, cough, 
excessive mucus secretion, pain, and severe complications, 
and was demonstrated to be lethal in certain concentrations on 
test animals (18,19). Moreover, in murine models, it was shown 
that the intravenous administration of capsaicin instantly 
induces apnea, followed by an increase in the respiratory 
rate (20). These acute effects could be reduced by vagotomy, 
but not in all situations (20,21). However, in a clinical setting, 
when studying the beneficial effects of capsaicin in respiratory 
conditions, the doses of inhaled capsaicin are far too low to 
trigger significant adverse effects (22‑24).

While capable of inducing direct effects, most of capsa‑
icin's actions are mediated through its receptor, TRPV1. 
TRPV1 is a non‑selective receptor that structurally belongs 
to the TRP family of ion channels. Besides capsaicin, it may 
be activated by different factors such as high temperature, 

acidity (pH <6.0), endocannabinoids, endogenous lipids, 
and other potential activators, such as numerous mediators 
of inflammation or various neurotransmitters (25,26). The 
receptor activation sends impulses to the spinal cord and 
brain producing a variety of effects, such as sensations of 
burning, stinging, itching, warming, or tingling. The termi‑
nations of the capsaicin‑sensitive nerves include numerous 
neuropeptides, for example, substance P (SP) or calcitonin 
gene‑related peptide (CGRP). Their activation is followed 
by a temporary inflammatory process known as neurogenic 
inflammation because of the local release of pro‑inflammatory 
peptides (27‑30). Even though the number of TRPV1 receptors 
in the respiratory tract is not as high as in the other regions of 
the body (31), they can be found in all organs and structures 
of the respiratory system (32). Various pathogenic processes 
may influence the distribution of receptors, as was revealed in 
patients with emphysema which show higher levels of TRPV1 
receptors in the respiratory system compared with healthy 
subjects (33,34). TRPV1 receptors are mainly expressed 
in lung C‑fiber afferents (35) generally recognized as fibers 
with polymodal sensitivity, which originate from nociceptive 
neurons (36). Most C‑fibers are receptive to capsaicin, which 
acts as an important respiratory irritant (37). TRPV1 was also 
identified in bronchial epithelial cells (28). Alongside TRPV1, 
the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor 
was revealed as being co‑expressed in the airways in a popula‑
tion of C‑fibers, and it was shown to be permeable to calcium 
ions (38). Although not directly stimulated by capsaicin, 
TRPA1 may be activated by various natural products (39), 
but also may be sensitized through inflammatory signaling 
pathways that also involve TRPV1, potentially contributing to 
increased chemical sensitivity (38,40,41).

TRPV1 may be activated by various ligands, including 
derivates of ployunsaturated fatty acids, oxytocin, 
neurotransmitters, chalcone derivatives, and cannabi‑
noids (42‑46). Cannabinoids are of particular interest, as they 
have demonstrated some similarities to capsaicin in regard to 
their anti‑inflammatory and anti‑tumoral effects in various 
organs, albeit some of these are mediated by specific recep‑
tors (47). Cannabinoids are not able to induce similar channel 
states as capsaicin on TRPV1 but they manage to target the 
receptor and can interact with other receptors from the TRP 
family, as well, which emphasises the potential interaction 
and synergic effects of these substances (48). Cannabinoids 
exert a series of TRPV1 effects and the modulation of the 
endocannabinoid system has proven extremely important in 
managing a variety of disorders affecting the central nervous 
system as well as conditions with intestinal, pulmonary, and 
cutaneous locations, a virtual structure termed ‘gut‑lung‑skin 
axis’ (49‑52).

The activation of TRPV1 has demonstrated a variety of 
effects (53). Several studies have shown that TRPV1 agonists 
may cause apoptosis of human lung cells in alveolar epithe‑
lial cells (54,55). The inhalation of capsaicinoids for 30 min 
in rats causes an inflammatory reaction of the airways, 
destruction of epithelial cells of the trachea and nasal 
cavity, and injury to the bronchiolar and alveolar cells (54). 
Furthermore, an in vivo murine study has shown that a 
TRPV1 antagonism reduces the destruction of epithelial 
cells, preventing apoptosis (56). One of the frequently studied 
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TRPV1 antagonists is capsazepine. Capsazepine is a specific 
antagonist of capsaicin‑induced C‑fiber activation and has 
been used to uncover additional roles of the TRPV1 receptor, 
specifically, its involvement in the onset of clinical respiratory 
symptoms (57‑59).

TRPV1 may mediate cough (60) and bronchoconstriction, 
and the use of capsazepine reduces these symptoms in vivo (61). 
Furthermore, two additional TRPV1 antagonists demonstrated 
similar effects in inhibiting acid‑induced cough in guinea pigs. 
These antagonists have similar effects and efficacy to that of 
codeine (62).

Within the respiratory system, identical signaling pathways 
regulate the onset of cough, bronchoconstriction, and airway 
narrowing, while also enhancing the sensation of irritation as 
well as fluid secretion. Stimulation of airway neurons may have 
favorable or unfavorable effects. It was reported that it might 
contribute to airway protection, disposing of chemical irritants 
and pathogens that cause infections, while preserving and 
initiating tissue recovery and favoring the immune responses 
in murine models (63,64). However, the stimulation of airway 
neurons may cause inflammation in the respiratory airways 
that complicates underlying diseases, as was demonstrated 
on TRPV1 neurons in mouse models of asthma (65). A recent 
study by Baral et al indicates that pulmonary TRPV1 neurons 
are involved in cross‑talk with immune cells via CGRP, SP, 
glutamate, and other signaling molecules, showing that these 
neurons may cause neutrophil depletion as well as cytokine and 
T‑cell release impairment (66). These converse findings rein‑
force the need to further study the cascade of intricate effects 
triggered by TRPV1 activation and to develop novel models 

capable of properly translating the in vivo actions of capsaicin. 
In some respiratory diseases, a variety of pro‑inflammatory 
mediators and peptides are involved, such as histamine, pros‑
taglandins, cysteinyl leukotrienes, proteases, growth factors, 
and bradykinin (64,67). Bradykinin is a pro‑inflammatory 
molecule, acting through B1 and B2 receptors found in the 
respiratory system, which can also be involved in neuroin‑
flammation associated with an increase in SP and CGRP (64). 
Bradykinin causes cough and bronchoconstriction (67,68) and 
is involved in airway chronic inflammation, responsiveness, 
and remodeling through activation of a variety of cells that 
cause these unfavorable effects (69).

Capsaicin and the major clinical respiratory symptoms. 
Inhaled capsaicin is the main agent for the measurement of 
cough reflex sensitivity because of a lack of side effects when 
properly administered, low price, and good correlation with 
the presence or absence of pathological cough. A review from 
2005 that contained 122 published studies (1984‑2005) on 
4.833 subjects, including healthy subjects, patients with COPD, 
asthma, and other diagnoses, did not manage to isolate a single 
serious adverse effect of inhaled capsaicin in controlled condi‑
tions when using regulated concentrations (11). The usual 
symptoms reported during capsaicin cough challenge are 
increased cough, rhinorrhea, and throat and eye irritation (70).

Asthmatics without cough could not be differentiated 
from healthy individuals after the capsaicin cough challenge. 
Moreover, it was demonstrated that hyperresponsiveness of 
airways and cough were mediated through different neural 
pathways (71).

Figure 1. Comparative presentation of the most common cellular mechanisms involved in the development of the major symptoms and clinical elements of 
COPD and asthma. COPD, chronic obstructive pulmonary disease; TNF, tumor necrosis factor; PG, prostaglandin; SP, substance P; IL‑13, interleukin‑13.
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In vitro research using fiberoptic bronchoscopy in order to 
obtain mucosal biopsies from 29 patients with chronic cough 
showed an increase in the number of TRPV1 receptors in these 
subjects compared to 16 controls. Those data demonstrate a 
correlation between chronic cough and TRPV1 receptors. 
The cause of the increase was not determined. The subjects 
also received aerosols of a capsaicin solution dissolved in 
0.9% sodium chloride until cough was produced five or more 
times. Results suggest an increased frequency of cough when 
capsaicin was inhaled by patients with chronic cough (72). In 
addition, cold air seems to increase the sensitivity of TRPV1 
to capsaicin and increase cough sensitivity (73).

In an in vivo study on guinea pigs, the delivery of capsaicin 
by aerosol to the airways induced cough, while the admin‑
istration of a capsaicin antagonist caused a decrease in the 
induced cough (74). The antagonist for capsaicin used in 
that study completely blocked the receptor for capsaicin and 
prevented its response to the variation of pH. Additionally, it 
inhibited the influx of Ca2+ that blocks the effects of capsaicin. 
This is paramount evidence of the major role of capsaicin in 
cough and is an important finding for basing future human 
trials. In terms of the action mechanism, it appears that the 
effects of capsaicin were carried on by direct TRPV1 effects 
but also mediated by tachykinins such as SP and neurokinin 
A (NKA) (74).

Long‑term respiratory effects after exposure to capsaicin 
aerosols were analyzed in several major studies. Two studies 
showed no difference between hot pepper workers and healthy 
individuals in regard to their pulmonary function (75,76).

In vitro and in vivo studies suggested that capsaicin can be 
mutagenic; conversely, multiple studies revealed that topical, 
dietary, or injected capsaicin may demonstrate a chemoprotec‑
tive effect (77‑80).

Two decades of experience with capsaicin demonstrated 
that the capsaicin cough challenge is a safe investigation, and 
this procedure may prove to be an extremely important tool for 
future research.

The effects of capsaicin on mucus secretion in COPD and 
asthma were also investigated. In vitro, findings of several 
studies showed that SP stimulates mucus secretion in the 
respiratory system (81‑83) and an increase of SP appears 
after stimulation of sensory nerves by capsaicin (84). In an 
in vivo study by Karmouty‑Quintana et al increased mucus 
production caused by the activation of airway sensory nerves 
with intratracheal administered capsaicin was observed, and 
the results were confirmed showing a reduced level of mucin 
concentration after administration of capsazepine, a TRPV‑1 
antagonist. These effects seem to be mostly determined by 
SP, CGRP, and NKA released as a response to sensory nerve 
stimulation by capsaicin (85).

Dyspnea is a common respiratory symptom in both 
COPD and asthma, however, it has different attributes. In 
COPD, dyspnea is progressive and proportional to the airflow 
obstruction, while in asthma it appears simultaneously with 
the transitory bronchoconstriction (86). Dyspnea is a symptom 
that appears after the stimulation of adenosine receptors, and 
capsaicin shows no interference with these receptors (87). 
When investigated in clinical applications, no evidence that 
capsaicin may cause dyspnea was found, neither inhaled nor 
administered intravenously, in tolerable doses (88,89).

Smoking is a major causative and aggravating factor in 
lung inflammation. However, acute and chronic infection, 
whether viral, bacterial, or fungal, may influence the prog‑
nosis of these patients and their response to treatment (90). 
Some of the infections trigger exacerbations and cause a 
decline in lung function, while the patient does not benefit 
from effective therapeutical strategies, which poses signifi‑
cant problems in the management of these patients (91). The 
lung microbiome may experience changes related to the 
exacerbations and may influence biomarkers such as sputum 
neutrophils percentage and IL‑8, as well as serum IL‑10 and 
MMP‑7 (92). Capsaicin has demonstrated antimicrobial prop‑
erties and may provide an added benefit in COPD patients 
with concurring infections, a research direction which needs 
to be further explored (93).

3. Capsaicin in chronic obstructive pulmonary disease

COPD is one of the leading causes of death and an impor‑
tant chronic morbidity featuring limitation of airflow, cough, 
mucus hypersecretion, and dyspnea. It is caused by long‑term 
exposure to toxic particles or gases, usually tobacco smoke, 
and may sometimes affect patients with various genetic 
abnormalities or concurring respiratory diseases (94). COPD 
demonstrates a steady increase in mortality and morbidity 
and is estimated to maintain this trend (95). Besides the 
clinical context, spirometry is necessary for the diagnosis 
by confirming the airflow limitation that is established when 
forced expiratory volume in one second (FEV1) to forced vital 
capacity (FVC) ratio is under 70% of the normal limits after 
the use of a bronchodilator (96). In their clinical evolution, 
patients with COPD can have periods of time when they show 
no symptoms, and periods of exacerbations (1).

Capsaicin, smoking and inflammation in COPD. Inflammation 
is one of the fundamental characteristics of COPD. It accelerates 
the disease progression and it is not reversible. Inflammation in 
COPD is usually a consequence of smoking, which is a major 
factor in the pathogenesis of COPD. Most cigarette smokers 
have a chronic cough, which is usually present prior to the onset 
of airflow obstruction. Smoking induces airway inflammation 
causing an increase in the number of neutrophils, macrophages, 
and T lymphocytes (CD8+ and CD4+) (97). These cells release 
a large number of cytokines and mediators that initiate and 
maintain the inflammatory process (98). The mediators with 
increased concentrations in COPD are leukotriene B4, neutro‑
phil and T‑cell chemoattractant, chemotactic factors such as 
interleukin (IL)‑8 and growth‑related oncogene α, pro‑inflam‑
matory cytokine (TNF)‑α, IL‑1β, IL‑6), and transforming 
growth factor‑β (98,99). Alongside the inflammatory process, 
an imbalance between protease and antiprotease activity 
can be identified in COPD. This results from the intensified 
production and activity of proteases and decreased produc‑
tion and activity of antiprotease, caused by cigarette smoke 
and inflammation. Neutrophils release elastase, cathepsin G, 
and protease 3, while macrophages produce cysteine protease, 
cathepsins E, A, L, S, and matrix metalloproteinase‑8, ‑9 and 
‑12. α1 antitrypsin, secretory leucoprotease inhibitor, and tissue 
inhibitors of metalloproteases are the major antiproteases that 
participate in emphysema in COPD (31,98,100). The alteration 
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of parasympathetic afferent and efferent fibers may contribute 
to the onset of bronchospasm, cough, and dyspnea (101).

In vivo, in a study on mice after exposure to cigarette 
smoke, the levels of leukocyte infiltration and the high level 
of inflammatory mediators caused the progression of COPD 
and the decline of lung function. These processes increased 
the production of IL‑1β and IL‑18, two cytokines released in 
association with the stimulating action of TRPV1 agonists, 
including capsaicin, in a cell‑based model using primary 
human cells (33). Moreover, TRPV1 is found in CD4‑ T cells 
in mice. These receptors are activated after stimulation of the 
T‑cell antigen receptor, which contributes to the influx of Ca2+. 
After this influx, the T cells are activated playing an impor‑
tant role in the development of inflammation. This process 
indicates that TRPV1 may have a fundamental function in 
the inflammatory process, particularly after smoke exposure, 
which is the main cause of COPD (102).

Recent studies also revealed the role of TRPV1 in medi‑
ating the effects of cigarette smoke on the alveolar epithelial 
cells through the increase of inflammation, oxidative stress, 
and mitochondrial damage (103,104). In patients with COPD, 
TRPV1 mRNA expression is increased in comparison with 
non‑smokers (33).

The expression of TRPV1 is related to the intensity of the 
inflammatory process induced by cigarette smoking (105). 
In a mouse model, Jian et al have shown that the decreased 
expression of TRPV1 by using total flavonoids is followed by a 
subsequent decrease in the inflammation and oxidative stress 
in the lung parenchyma (106). A 2020 article has shown that 
single nucleotide polymorphisms of TRPV1 are associated 
with a higher risk of developing COPD in smokers (107).

In another study, human cells were exposed to cigarette 
smoking, and the expression of TRPV1 in pulmonary tissue 
was increased, as was the concentration of pro‑inflammatory 
cytokines (108).

Stimulation of TRPV1 in COPD releases inflammatory 
neuropeptides which increase vascular permeability, cause 
extravasation of plasma proteins, bronchoconstriction, and 
amplify the concentration of mucus (109,110). Mucus hyper‑
secretion causes increased sputum production and seems to 
correlate with the severity of COPD (111).

Interestingly, in vitro studies showed that cigarette smoke 
can cause neuropeptide release by stimulating TRPA1 and 
acetylcholine receptors, contributing to the inflammatory 
process, with decreased or lack of TRPV1 involvement (112). 
Conversely, in vivo murine models suggest that the mediation 
of inflammation is exclusively performed by activation TRPV1 
and 4, and not by TRPA1 (33). These contradictory findings 
require the need for future studies, ideally on human subjects.

Capsaicin stimulates TRPV1 with further release of 
pro‑inflammatory cytokines in the airways. Activation of 
TRPV1 by capsaicin in patients with COPD stimulates the 
secretion of ILs, TNF‑α, and prostaglandin E2 (PGE2) (113). 
Special attention was paid to the capsaicin‑induced stimulation 
of IL‑6 production in human respiratory epithelial cells (114). 
IL‑6 has a very important role in the transition from acute to 
chronic inflammation because it stimulates T‑cells and B‑cells. 
This stimulation favors a chronic inflammatory response due to 
the activation of endothelial cells that release IL‑8 and mono‑
cyte chemoattractant protein 1 and activate the expression of 

adhesion molecules (115). Nassini et al used mouse models 
and in vitro studies on human small airway epithelial cells, 
fibroblasts and smooth muscle cells exposed to cigarette smoke 
to demonstrate that capsaicin inhalation stimulates TRPV1 
receptors in sensitive nerve fibers promoting neurogenic 
inflammation and favoring the release of IL‑8, most likely 
through coactivation of TRPA1 receptors in non‑neuronal 
cells (116). This mechanism may maintain and even increase 
inflammation in patients with COPD, enhancing its negative 
effects. Furthermore, bronchoconstriction may exacerbate the 
airflow limitation and intensify the dyspnea of patients.

Studying the in vivo response of the exposure of guinea 
pigs to cigarette smoke revealed that nebulized capsaicin 
enhances cough production in smoke‑exposed animals, 
through a non‑cyclo‑oxygenase‑mediated mechanism. The 
increased responsiveness to capsaicin appears to depend 
on sensory nerves containing CGRP‑like substances (117). 
Moreover, while increasing sensitivity to capsaicin, exposure 
to smoke seems to decrease the response to PGE2, promoting 
the concept that sensory nerves are affected in COPD in a 
disease‑specific manner (118).

A consensus was not yet reached regarding the overall 
effects of capsaicin in patients with airflow obstruction. A 
large cross‑sectional study by Blanc et al (119) compared the 
effects of inhaled capsaicin on non‑smokers and smokers with 
and without airflow obstruction. An increase of responsiveness 
in all groups of patients was demonstrated, more significantly 
in patients with COPD. Asymptomatic smokers registered 
no complaint, despite their hyperresponsiveness to capsaicin 
compared to non‑smokers. In the same study, women were 
more sensitive than men in all three groups (119). However, no 
correlation was identified between the cough response intensity 
and the degree of airflow obstruction in COPD patients appre‑
ciated by FEV1 values, and these findings were confirmed in 
another study, by Doherty et al (120). Conversely, research 
data published in 1999 showed no significant difference in 
cough sensitivity to capsaicin between patients with COPD 
and airflow obstruction compared to healthy controls (121).

Capsaicin and cough in COPD. TRP channels have a protec‑
tive role in physiological situations when the airways are not 
affected by pathological changes. In a disorder such as COPD, 
this role can be altered, and TRP channels may be responsible 
for the symptoms of COPD, especially cough and they may 
also participate in the inflammatory process identified in 
COPD (32).

Cough is usually the first symptom in patients with COPD. 
Cough may be sporadic and sometimes unproductive (1), it 
can affect the quality of life in patients with COPD and this 
is an important reason to research it and potentially identify 
new therapies (122). C and Aδ fibers are expressed in the 
mechanism of pathological cough, so TRP ion channels are 
an important component of this process (38). Capsaicin is the 
most common and usable agonist of TRPV1, used in a variety 
of studies on patients with chronic cough, a category that 
includes patients suffering from COPD (123,124).

Several clinical studies using capsaicin aerosols have 
been developed for patients with cough and COPD. Capsaicin 
responsiveness and cough in COPD was researched in a study 
by Doherty et al (120). The presented data suggest that inhaled 



DUMITRACHE et al:  CAPSAICIN IN COPD AND ASTHMA6

capsaicin caused an increase in cough in patients with COPD 
and no relationship between cough and airflow limitation after 
exposure to capsaicin was observed (120). Another study, by 
Terada et al (125), showed an increase in the number and 
frequency of exacerbations after capsaicin inhalation in patients 
with COPD compared to controls, demonstrated by lower 
concentrations of capsaicin needed to produce five or more 
coughs; furthermore, bronchial hypersensitivity correlated 
with the frequency of exacerbations and the serum C‑reactive 
protein, indicating that ongoing airway inflammation is asso‑
ciated with hypersensitivity of the cough reflex to capsaicin 
and may precipitate the exacerbations (125). Capsaicin cough 
challenge may be an important aid in assessing, managing 
COPD and its complications, and advancing the development 
of a new antitussive therapy. It does not yield serious adverse 
effects as it was demonstrated in a paper reviewing 20 years of 
practicing capsaicin cough challenge (11). A cough challenge 
test performed on 20 patients with exacerbated COPD revealed 
that their sensitivity to capsaicin was increased compared to 
the repeated test after recovery, and if hypersensitivity was 
maintained during recovery this announced future exacerba‑
tions (126).

4. Capsaicin in asthma

Asthma is a chronic, frequent, and treatable pulmonary disease 
characterized by respiratory symptoms, limitation of activity, 
and exacerbations that occasionally need urgent medical care, 
and can be a potentially lethal condition. The most common 
respiratory symptoms in asthma are wheezing, shortness of 
breath, cough, chest tightness, and variable expiratory airflow. 
The main risk factors that may aggravate asthma are viral 
infections, allergens, tobacco smoke, pollens, food, drugs, or 
exercise. Spirometry is required to set the diagnosis: FEV1 
increases by 12% and a minimum of 200 ml of the baseline 
values post‑bronchodilator (2).

Asthma is regarded as a typical Th2 disease, with increased 
immunoglobulin E (IgE) levels, airway inflammation, and the 
presence of numerous eosinophils. Usually, patients begin 
suffering from asthma in childhood. The allergens are inhaled 
and stimulate Th2‑helper cell proliferation and the increase 
of IL‑4, IL‑5, and IL‑13 levels (127). A fundamental charac‑
teristic of these patients is long‑term airway inflammation. 
Consequently, chronicity and disease evolution disease may 
occur. The roles of IL‑4 are to support B‑cell isotype swap‑
ping, increase the response of stimulus of adhesion molecules, 
eotaxin creation, and improvement of airway hyperrespon‑
siveness and goblet cell metaplasia (128‑130). IL‑13 partly 
shares its receptor with IL‑4 and plays a critical role in the 
pathophysiology of asthma by increasing mucus secretion and 
modulating the functions of epithelial cells (131). Eosinophils 
and IgE are also of great importance in asthma and act via 
distinctive pathways which do not interfere with the mecha‑
nisms of IL‑13 (132,133).

TRPV1 and allergens in asthma. TRPV1 may play important 
roles in the modulation of the pathogenic changes occurring 
in asthma (105). The expression of TRPV1 and Th2 levels 
seems to correlate with the asthmatic debut in the pediatric 
population (134). Recent data showed that TRPV1 can mediate 

the response of epithelial cells to allergens, increasing IL‑33 
secretion and the activation of dual oxidase 1 and epidermal 
growth factor receptor (135). Furthermore, an in vivo study 
on mice published in 2020 has shown that TRPV1 stimu‑
lates the production of mucus and cytokines in asthma by 
regulating the expression of MUC5AC and nuclear factor 
kappa‑light‑chain‑enhancer of activated B‑cell pathway, with 
probable involvement of neuropeptides SP and CGRP (136). 
TRPV1 also mediates the appearance of cough via a neuronal 
mechanism and shows increased expression after exposure 
to allergens (137,138). Although expressed on airway smooth 
muscle cells, TRPV1 activation does not significantly 
contribute to the initiation of bronchoconstriction (139). In vitro 
studies have shown that coal fly ash causes TRPV1 activation 
and worsens asthma symptom control (140). A study on oval‑
bumin (OVA)‑induced asthmatic mice showed that exposure 
to nanoparticles causes neuroinflammation mediated through 
TRPV1 and TRPV4, and is accompanied by an increase in 
SP, CGRP, and bradykinin (64). A similar study showed 
that a pollutant known as trimellitic anhydride can increase 
TRPV1 expression as well as amplify the levels of IL‑13, SP, 
prostaglandin D2, and nerve growth factor in the lungs of OVA 
asthmatic mice (141). In the same experimental model, Li et al 
identified ozone as an environmental pollutant with similar 
effects on TRPV1 and the inflammation pattern in asthma as 
the allergens mentioned above (142). Small particulate matter 
can also inflict bronchial mucosal damage and thickening of 
bronchial smooth muscles in asthmatic mice (143). Combining 
pollutants builds a model closer to real‑life situations (144), 
and, by doing so on allergic Balb/c mice, activation of TRPV1 
signaling and increases of CGRP and SP levels were observed 
contributing to the neurogenic inflammation of asthma (145). 
Allergen exposure may lead to pathological changes outside 
the respiratory tract. In an in vivo study, Spaziano et al (146) 
showed that sensitization of the nucleus solitary tract (NST) 
occurs following exposure to allergens, and this is a basis for 
increased airway sensitivity. When capsaicin was inhaled, 
an increase in the neural firings of the NST were identified. 
However, TRPV1 may play a complex role in modulating 
excitation as its activation by endocannabinoids may stimulate 
glutamatergic signaling and alter the bronchoconstrictive 
reflex (146).

These observations were demonstrated by studies on the 
same animal model showing that inhibition of the TRPV1 
mRNA and protein expression using various antagonists 
including capsazepine caused an improvement in pulmonary 
function, decreased airway hyperresponsiveness, and reduced 
cytokine concentrations in aggravated asthma (145,147‑149). 
In addition, the use of allergens to induce bronchoconstric‑
tion seems to increase the TRPV1 response to capsaicin, 
increasing cough reflex sensitivity, as demonstrated in a recent 
clinical trial (150). The effects of stimulating TRPV1 receptors 
with capsaicin are increased in mice with atopic dermatitis to 
the extent that asthmatic‑like inflammation of the airways is 
produced while compliance of the lungs is decreased (151).

In an in vitro study, by McGarvey et al, the TRPV1 protein 
was found in a culture with primary bronchial epithelial cells 
through patch‑clamp experiments. That study confirmed that 
capsaicin induces the release of IL‑8 especially in patients 
with chronic airway inflammation (152).



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  917,  2021 7

Capsaicin and inflammation in asthma. In asthma, chronic 
inflammation is one of the fundamental features of the 
disease. Inflammation progresses when inflammatory cells 
interact with local cells to create a cascade of events that trig‑
gers and maintains chronic inflammation and causes clinical 
symptoms. The consequences of inflammation in asthma are 
bronchospasm, airways mucus secretion and edema, broncho‑
constriction, and bronchial epithelial damage (153).

The role of capsaicin in the process of inflammation in 
asthma is unclear, as some studies cite pro‑inflammatory 
properties of capsaicin, while other recent studies revealed its 
anti‑inflammatory effects (154).

However, TRPV1 activation seems to play an important 
role in the inflammatory cascade of asthma, and pharmaco‑
logical inhibition of TRPV1 leads to a reduction in IgE levels 
as well as an attenuation of airway inflammation in mice (155).

In vitro, after using a TRPV1 antagonist, inflammation 
in the airway tissues of patients with chronic asthma was 
attenuated. These results may suggest that blocking TRPV1 
may be a new direction for the anti‑inflammatory treatment in 
asthma (156).

A study by Rehman et al showed in vivo that blocking 
TRPV1 in a murine model attenuates the symptomatology 
of asthma, probably by alleviating the inflammation of the 
airways. TRPV1 inhibition reduced the concentration of IL‑13 
and its effects on inflammation in the airways. Consequently, 
hyperresponsiveness and inflammation were reduced (157). 
Conversely, a different murine study revealed that inhibition 
of the TRPV1 gene may increase airway inflammation. The 
levels of the IgE, eosinophils, and IL‑4 may be increased 
in the bronchoalveolar lavage fluid in this case. The authors 
revealed that the effects achieved by TRPV1 employ multiple 
mechanisms, both direct and mediated by SP, CGRP, NkA, 
and somatostatin (158).

Capsaicin and cough in asthma. Cough is a frequent and 
important symptom that influences the quality of life in patients 
with asthma (159) and is regulated by sensory nerves in the 
airways (60,160). In the previously mentioned in vitro study by 
McGarvey et al, the expression of TRPV1 in bronchial biop‑
sies from asthmatics refractory to corticotherapy was found to 
be higher than that in patients without asthma or in those with 
asthma that were responsive to corticoids (152). Those findings 
were supported by Chen et al by analyzing TRPV1 mRNA in 
the peripheral blood of asthmatics and concluding that TRPV1 
expression levels are major factors for bronchial asthma in 
children (161). As mentioned before, cold air seems to increase 
the effects of capsaicin on TRPV1, but humified warm air has 
been shown to trigger cough and bronchoconstriction in mild 
asthmatic patients via increased activation of C‑fibers (162). 
While spirometry is useful in investigating the response of the 
large airways to capsaicin, impulse oscillometry system has 
proven more sensitive in detecting peripheral airway function 
in asthmatics and the changes induced by capsaicin (163).

In a study performed in vivo on asthmatic mice with cough, 
the inhalation of capsaicin caused a more frequent cough and 
was accompanied by eosinophil infiltration detected in the 
bronchoalveolar lavage fluid (164). There are also data showing 
neutrophil infiltration in the submucosal layer in asthmatic rats 
after the capsaicin cough challenge, an effect of both direct 

TRPV1 action as well as due to the release of neuropeptides 
(SP and CGRP) inducing neurogenic inflammation (165). A 
study on guinea pigs sensitized with capsaicin showed that 
the rate of coughs was notably increased, and the proposed 
mechanism was associated with airway tract eosinophilic 
inflammation (166).

Previous findings showed an increase in the frequency of 
cough in patients with asthma after inhalation of capsaicin. 
This is an effect of the hyperresponsiveness that character‑
izes patients with asthma. The mechanism probably involves 
neuronal dysfunction. When capsaicin stimulates the TRPV1 
receptor, inflammatory mediators are released with further 
increased stimulation of the nerve fibers. This process 
determines membrane depolarization and release of the 
inflammatory mediators which are in high concentration in 
asthmatic patients (167). This is a possible explanation of why 
increased sensitivity to capsaicin has been identified as a risk 
factor for severe forms of asthma (168).

A study from 2019 comparing asthmatics and healthy 
controls showed no difference in the cough threshold after 
inhaled capsaicin between the two groups (163). However, in 
patients with asthma, the frequency of cough is higher than in 
healthy subjects. In addition, a higher sensitivity to capsaicin 
was identified in women and older patients (169). In asthmatic 
children, there is a decreased sensitivity to capsaicin compared 
to controls, which seems to be mediated by neurotransmitters 
released from parasympathetic neurons (170). This finding 
is strengthened by another recent study showing that some 
nervous phenotypes may induce excessive coughing in 
asthmatic patients due to a neuronal dysfunction (137,171). 
Capsaicin cough challenge is more sensitive in patients with 
cough‑variant asthma even if bronchodilators were used in 
these patients (120). These patients have a lower quality of life 
because of their frequent exposure to irritants in daily life and 
due to their permanent discomfort. Research data have shown 
a direct correlation between the quality of life and sensitivity 
to capsaicin, as asthmatic patients with hyperactivity to 
inhaled capsaicin have a significantly poorer quality of life 
than controls (172,173).

A study published in 2020 tested the effects of inhaled 
capsaicin on 385 chronic cough patients, revealing that the 
capsaicin cough challenge is a proper method for investi‑
gating patients with variable clinical factors in asthma (174). 
Additionally, the test is a safe method to employ in severe 
asthma (175).

However, in regard to therapeutic prognostic, cough sensi‑
tivity to capsaicin may hold an important role in predicting 
the response to bronchial thermoplasty when used for treating 
patients with severe asthma (176). Alongside the different 
diagnostic benefits cited in asthma, capsaicin is a molecule 
gaining attention and is increasingly studied in animal models 
and human trials.

The intended finality of these findings is to improve the 
management of asthmatic cough. The use of the antimuscarinic 
bronchodilator Tiotropium has proved effective in controlling 
asthmatic cough in patients unresponsive to corticosteroids 
and long‑acting β2 agonists, and it improved capsaicin cough 
reflex sensitivity, leading to the conclusion that its effects are 
mediated through sensory nerves, rather than effective bron‑
choconstrictors (177).
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In summary, capsaicin demonstrates complex effects on 
cough and inflammation in COPD and asthma, either through 
direct TRPV1 activity or mediated by released factors, and 
these findings were summarized in Table I.

5. Conclusions

Capsaicin may exhibit a variety of clinical and paraclinical 
effects in COPD and asthma. Some are similar in both 
diseases, while others may be significantly different or 
opposite. In many cited studies, the frequency and intensity 
of cough are increased after capsaicin inhalation in COPD, 
while other authors report only an increase in the frequency 
of cough in asthmatic patients. The effects of capsaicin on 
inflammation in these two diseases are different. In COPD, 
several studies showed that capsaicin has pro‑inflammatory 
effects, while, in asthma, the role of capsaicin in inflammation 
is unclear, as various studies showed conflicting results, citing 
pro‑inflammatory as well as anti‑inflammatory effects. Most 
authors revealed that the hyperresponsiveness to capsaicin is 
higher in smokers with airflow obstruction than non‑smokers 
and smokers without airflow obstruction. Capsaicin appears to 
be a safe product as we failed to identify any studies showing 
an increase of dyspnea in COPD or asthma after capsaicin 
administration, when used in tolerable doses. Capsaicin may 
be a very promising, cost‑effective, natural, and safe tool in 
expediting the diagnosis of COPD and asthma in the future, 
with increased accuracy in selected cases, especially due to its 
effects on cough and inflammation.
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Table I. Comparison of capsaicin effects on cough and inflammation in COPD and asthma.

Component Effect Study type (Refs.)

COPD
Cough Increase in frequency In vitro (mucosal cells) (60)
 Increase in frequency In vivo (guinea pigs) (62)
 Increase in frequency Trial (104,109)
 Rise of exacerbation incidence  (109)
Inflammation Release of IL‑1α, TNF‑α and PGE2 In vitro (human primary bronchial fibroblasts) (97)
 Release IL‑8 and pro‑inflammatory cytokines In vitro (primary bronchial epithelia cells) (92,136)
 Release  IL‑1β and IL‑18
 Maintain inflammation In vivo (mice) (32)

Asthma
Cough Increase in frequency In vitro (bronchial cells) (136)
 Increase in frequency In vivo (guinea pigs) (149,150)
 Increase in frequency Trial (151,153)
Inflammation Pro‑inflammatory In vitro (bronchial cells) (140)
 Eosinophil infiltration In vivo (guinea pigs) (150)
 Pro‑ and anti‑inflammatory In vivo (mice) (141,142)

COPD, chronic obstructive pulmonary disease; TNF‑α, tumor necrosis factor‑α; PG, prostaglandin; IL, interleukin.
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