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Living systems comprise interacting biochemical components in very
large networks. Given their high connectivity, biochemical dynamics are
surprisingly not chaotic but quite robust to perturbations—a feature C.H.
Waddington named canalization. Because organisms are also flexible
enough to evolve, they arguably operate in a critical dynamical regime
between order and chaos. The established theory of criticality is based on net-
works of interacting automata where Boolean truth values model presence/
absence of biochemical molecules. The dynamical regime is predicted using
network connectivity and node bias (to be on/off) as tuning parameters.
Revising this to account for canalization leads to a significant improvement
in dynamical regime prediction. The revision is based on effective connectivity,
a measure of dynamical redundancy that buffers automata response to some
inputs. In both random and experimentally validated systems biology
networks, reducing effective connectivity makes living systems operate in
stable or critical regimes even though the structure of their biochemical inter-
action networks predicts them to be chaotic. This suggests that dynamical
redundancy may be naturally selected to maintain living systems near critical
dynamics, providing both robustness and evolvability. By identifying how
dynamics propagates preferably via effective pathways, our approach helps
to identify precise ways to design and control network models of biochemical
regulation and signalling.
1. Introduction
The complex organization and dynamics of living and social systems have been
successfully studied with networks [1,2]. A network model of a complex multi-
variate system is defined by a graph G ; ðX, EÞ, where X is a set of nodes
(variables) and E is a set of edges (interactions). While the structure of G reveals
important properties of the organization of complex systems, we must consider
dynamics to be able to predict and control their behaviour [3,4]. The simplest way
to model interdependent nonlinear dynamics is with multivariate discrete dyna-
mical systems, also known as automata networks. Boolean networks (BNs) are
the simplest of such canonical models of complex systems, and exhibit a wide
range of dynamical behaviours [5,6]. A formal definition is provided in §4, but
let us now summarize their key features. Each node or variable in a BN is a
Boolean automaton xi∈X, which can take two states: xi(t) = {0, 1}, which indi-
cate, respectively, the absence or presence of the variable at time t in the
system dynamics;1 the state of xi (t) changes (transitions) according to the state
of ki input nodes at t− 1. Logical rules specify the causal mechanisms that lead
to state changes and are derived from qualitative (coarse-grained) molecular
data, capturing the combinatorial regulation that is pervasive in biochemical net-
works [7–12]. Perhaps the key advantage of using BNs to model biomedical
regulation and signalling is precisely that, unlike more traditional continuous
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dynamical systems, they do not require large amounts of
detailed molecular data. Instead, qualitative thresholds are
used to measure transitions in concentration/expression of
biochemical molecules in experimental data without the
need for precise parameter estimation [5,7]. Indeed, BNs
have been successfully used to study the dynamics of bio-
chemical regulation [13], cell signalling [14], metabolism
[15], anticancer drug response [16] and neuronal action poten-
tials [17], among other biomedical phenomena [7]. Dynamics
in BNs ensue as the configuration of all network nodes xi∈
X is updated synchronously or asynchronously at time t
until the network eventually settles into an attractor.2

An attractor can be a stable fixed-point—a configuration of
node states that leads to itself in the next time step—or a
sequence of configurations repeated periodically. Attractors
correspond to stable biochemical states such as cell type, cell
fate and healthy and disease conditions [9,10,18–20]. Famous
examples include the yeast cell cycle BN that reproduces natu-
ral dynamical trajectories from known initial conditions [21],
an intracellular signal transduction in a breast cancer BN that
reproduces known drug resistance mechanisms and has
uncovered new drug interventions [22] and a BN model used
to reprogramme differentiated cells [23].

In addition to modelling specific, experimentally vali-
dated systems of biochemical regulation and signalling [24],
BNs are an established modelling framework to study gen-
eral properties of complex systems, including important
principles of theoretical biology such as robustness and evol-
vability, and the two key concepts that are central to this
study: criticality and canalization [6,18,25–28].
1.1. Criticality and the structural theory of criticality
The notion of criticality stems from physics, specifically from
(and in analogy with) the observation of critical points in ther-
modynamic transitions between states of matter, which are
controlled by some critical parameter (e.g. critical temperature).
Tuning this parameter makes the system undergo phase tran-
sitions. When studying phase transitions in multivariate
dynamical systems [18,29,30] we are typically interested in
an ordered or stable phase, where the system dynamics is insen-
sitive to perturbations and changes in initial conditions, and a
chaotic phase, where dynamic trajectories are very sensitive to
slight perturbations and changes in initial conditions. Thus,
the transition of interest lies in a critical phase—between
order and chaos—where the dynamics is robust to small per-
turbations, yet sensitive to some, making it flexible to respond
differently to a range of inputs. It has been argued that com-
plex networks (including BNs and cellular automata) need to
exist in the critical phase to be able to perform collective infor-
mation processing, as only in that regime do the long
transients and repeating patterns necessary for long-range
communication and memory exist [18,29–33] and information
transfer is maximized [34,35].

This notion has similarly been used to think about the
characteristics of biochemical networks that are necessary to
support life. In particular, we know that evolvability requires
a trade-off between phenotypic stability (for life to be robust
to perturbations) and the ability to generate novelty from
genetic mutations [36,37]. In other words, living systems
cannot be so robust to perturbations that they cannot
evolve, but cannot be so responsive to changes that they
cannot persist. This has led to the idea that biochemical
networks (and the living systems they support) ought to
exist in a critical dynamics phase. Indeed, this idea is at the
centre of Kauffman’s introduction of BNs to study the so-
called attractor hypothesis: that stable configurations in BNs
are akin to stable states in biochemical regulatory networks.
From simulations, Kauffman and others further hypothesized
that biochemical components in regulatory networks should
have about two regulators on average, to be able to operate
in a critical regime between order and chaos [18]. Recently,
Bornholdt & Kauffman revisited this work and noted that
the attractor hypothesis has become an accepted fact [19].
They also examined the evidence for the criticality hypothesis,
highlighting the following findings: (i) the distribution of
genes damaged by the spreading effects of deleting genes
in a yeast mutant has a power-law distribution, indicating
criticality [38,39]; (ii) similar initial configurations in macro-
phage regulatory dynamics follow parallel trajectories; these
trajectories are neither identical (ordered) nor divergent
(chaotic) [40]; and (iii) a large battery of 67 Boolean models
of biochemical networks operate in the critical regime based
on the analysis of their structure and small dynamic pertur-
bations [41]. Indeed, it is now widely accepted that
biochemical networks are critical [42–46]. See Roli et al. [47],
and Muñoz [48] for recent reviews of the evidence for
criticality in living systems.

From this backdrop, several methods have been proposed
to quantify criticality and identify its critical parameters in
complex multivariate dynamical systems, such as complex
networks. Focusing on BNs, Derrida & Stauffer defined
what we refer to as the structural theory (ST) of criticality for
BNs [49], which defines the following surface as the critical
boundary between ordered and chaotic dynamics:

2kpð1� pÞ ¼ 1: ð1:1Þ

It is based on two critical parameters of BNs: in-degree k,
which is the number of inputs to each node, and bias p,
which is the probability that an automaton node goes ON, or
P(x = 1). The theory was originally defined for homogeneous
BNs, where each node has the same k and p, but it has since
been shown that it also holds for heterogeneous networks
where in-degree and bias are randomly sampled from
normal distributions with mean k and p [28].3

While equation (1.1) is theoretically well founded, we
show below that it is not an accurate predictor of the dynami-
cal regime, especially if the BN dynamics is in the critical
regime. Before that, let us point out that we follow Derrida &
Pomeau in how we measure the dynamical regime of BNs
[50]. Specifically, we use the Derrida parameter ζ derived
from the divergence of dynamical trajectories of the same
BN after small perturbations to an initial configuration. This
divergence is measured as the average number of different
node-states (Hamming distance) that separate two initial tra-
jectories (which differ in the perturbation to a single node)
after n time steps. The ζ parameter is the slope of the curve
of the divergence for each n (Derrida plot) at the origin. If
ζ < 1, the BN is classified in the ordered regime; if ζ > 1, it is
classified as chaotic. Thus a value ζ≈ 1 indicates criticality
(see §4 for details).

1.2. Canalized network dynamics
Waddington introduced the concept of canalization [51] to
characterize the buffering of genetic and epigenetic
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perturbations that lead to the stability of phenotypic traits
[52]. Recent experiments show that regulatory interactions
in genetic networks are often highly canalizing in Wadding-
ton’s sense [41,44,45,53]. Automata networks have been used
to formalize and study canalization theoretically and exper-
imentally [52]. In this context, canalization is formally
equated with dynamical redundancy in the state transition
rules of automata, whereby node variables are robust to
dynamic perturbations from many of their input variables,
but highly responsive to just a few [6]. Such dynamical
redundancy is a ubiquitous hallmark of BNs that has been
used to study canalization in biological complexity
[24,25,54]. Redundancy is linked with robustness of collective
network dynamics, which contributes to stability [45,54–57],
modularity [25] and controllability [4].

Canalization reveals that biochemical interactions are not
equally effective in transmitting signals across regulatory
networks [25]. Some interaction edges become entirely redun-
dant, or, conversely, essential in the dynamical trajectories to
attractors. This shows that the original interaction structure
(graph connectivity) does not describe the real way signals
propagate. Indeed, a very large ensemble of multivariate
dynamical systems can fit the same interaction graph [4].
However, by taking into account the canalizing logic of auto-
mata, an underlying effective graph can be revealed which
better characterizes the causal interactions that control cellu-
lar signalling and regulation [24]. Therefore, it is important
to study exactly how canalization (dynamical redundancy)
affects criticality in both random and experimentally
validated biological BN models.

Previous studies of the effects of canalization on network
stability and criticality have focused on strictly canalizing
state-transition rules [6]. These are automata where one
input—in at least one possible state—is sufficient to deter-
mine the state transition. Daniels et al. [41] have considered
a linear measure of canalization, the average sensitivity, to
study the effect of strictly canalizing functions on BN critical-
ity. In simple terms, this measure quantifies the independent
effect of each input in causing the automaton to transition,
subsequently adding or averaging the contributions of each
input at the node [58] and network [57] levels (see §4 for
more formal definition). Notably, the average network sensi-
tivity was shown to constrain the two terms of the ST
defined in equation (1.1) for predicting criticality [41]. That
is, criticality depends not only on the network connectivity
(k) and automata bias (p), but also on the logic of the auto-
mata in network—quantified by Daniels et al. as the
covariance between the two terms of equation (1.1): k and
p(1− p). Analysis of this covariance further revealed that
‘biological regulatory networks have an overabundance of
canalizing Boolean functions, meaning that these functions
have at least one input that can be fixed to a value that
forces the output to a specific value regardless of the other
inputs’ [41].

While only a few Boolean automata are strictly canalizing,
most contain some amount of collective canalization: present
when a subset of inputs, in some state combination, jointly
determines an automaton’s state transition [6]. In other
words, canalization is a much more frequent and nonlinear
phenomenon when we consider collective canalization and
not just strictly canalizing automata. Indeed, only the two
parity functions for any k have no redundancy whatsoever
in their logic (e.g. the exclusive OR, XOR, function and its
negation for k = 2) [6,25]. Thus, to thoroughly study the effect
of canalization on criticality below we introduce a new
theory of criticality based on effective connectivity, ke (x), as a
measure of all the canalization in the logic of an automaton
x. It is a measure of the mean number of inputs that is suffi-
cient to determine all state transitions of x [25]—ke is a
probabilistic parameter (not a sampled statistic) of the canaliz-
ing logic of automata [24]. Importantly, effective connectivity
accounts for both strict and (nonlinear) collective canalization.
By contrast, as detailed in §4, sensitivity does not quantify the
nonlinear or collective effects in the canalizing logic of auto-
mata (see also §3). Therefore, our new theory provides a
complete characterization of the canalization phenomenon in
BNs, which leads to a very significant improvement in the pre-
diction of criticality in both random and experimentally
validated biochemical regulation networks.
2. Results
2.1. The canalization theory of criticality
We approach developing a new canalization theory of criti-
cality with a hybrid deductive and inductive (data-driven)
approach. The hypothesis is that effective connectivity, as a
measure of the full canalization phenomenon, captures both
the connectivity and canalizing logic of automata networks
better than the structure parameters used in equation (1.1).
In order words, if we use ke to substitute k and even p in
the ST, we predict the dynamical regime of a BN more accu-
rately. Therefore, we inductively search the space of possible
‘criticality laws’ by optimizing for the prediction (classifi-
cation) of criticality using machine learning (see §4 for
details). To focus on the hypothesis, we also constrain the
form and complexity of the equations according the current
theoretical knowledge of the problem, namely by restricting
our search to the three parameters (k, p, ke) and the known
symmetry of p—this constitutes the deductive component
of our approach.

The new theory is searched by optimizing six model
classes of increasing complexity (and parameter interaction),
shown in equation (4.1) in §4. Each class is used as a binary
classifier using logistic regression (with cross-validation) to
best predict the dynamical regime of large random Boolean
network (RBN) ensembles. Each class accounts for connectivity
with a general parameter κ, allowing us to directly compare
the original interaction connectivity with the effective connec-
tivity that takes into account canalization. Specifically, for each
complexity class there is a model that uses the original connec-
tivity, κ≡ k, and another that uses κ≡ 〈ke〉. The bias parameter
p is the same for both instances; see §4.

The effective connectivity of a homogeneous BN is easily
computed as the mean effective connectivity of all its nodes:
〈ke〉 ¼ 1=jXj:Px[X keðxÞ. As detailed in §4, to construct RBN
ensembles, nodes x are sampled from a catalogue of auto-
mata whose effective connectivity varies uniformly in a
small interval: ke(x)∈ 〈ke〉 ± ϵ, with ϵ = 0.25. RBN ensembles
are further parameterized by a homogeneous bias parameter
p—or rather by the compound term p(1− p), given the prin-
ciple of bias symmetry in logical rules. In summary, each
RBN ensemble is very homogeneous and characterized by
three parameters: k, p and 〈ke〉. For every network, k and p
are constant, and effective connectivity is constrained to
bins of size Δke = 0.5 around a given 〈ke〉. Thus, in addition
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Figure 1. Dynamical regime of RBN in the (k, 〈ke〉) parameter space. Pie
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action term does not improve classification performance (see main text).
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to structure (k, p), RBN are also characterized by their
canalization logic (〈ke〉).

The dynamical regime of each BN is in turn inferred by
the value of its Derrida parameter, ζ: if ζ > 1 the BN is con-
sidered to be in the chaotic regime, and ordered/critical
otherwise (see §4). This classification of the dynamical
regime provides (ground-truth) labels to measure the dyna-
mical regime classification performance of each (logistic
regression) model and model class—the possible ‘criticality
laws’. Out of the 266 400 RBNs in our ensembles, 224 083
(approx. 84%) are classified as chaotic. Therefore, cross-vali-
dation prediction performance is best captured by measures
tailored for unbalanced classification scenarios such as the
Matthews correlation coefficient (MCC) [59]. We also show
results for McFadden’s R2 since we are performing logistic
regression and the area under the curve (AUC) for ranking per-
formance; see §4 for details.

The lowest complexity model class (1) is used to compare
the predictive power of k and 〈ke〉, disregarding bias p. It
yields the following optimal decision boundaries: −βk = 1
and 0.63〈ke〉 = 1. The corresponding critical values for the
tuning parameters are kc = 0 and 〈ke〉

c = 1.59. The model
instance based on k classifies every BN as chaotic,4 whereas
the instance based on 〈ke〉 partitions the data into two reason-
ably correct dynamical regimes. Effective connectivity (〈ke〉)
is a much better predictor than in-degree (k) for this
model class, as can be seen in figure 1. The (cross-validation)
classification performance is shown in figure 2, with model
class (1) depicted in the leftmost column. It is clear that
the model based on the original interaction structure cannot
discriminate the dynamical regime of BNs at all, with
MCC(κ≡ k)≈ 0. By contrast, the model based on effective
structure alone leads to a reasonable classification perform-
ance MCC(κ≡ 〈ke〉)≈ 0.49, even without using p; similar
behaviour is observed for R2. Moreover, AUC(κ≡ k)≈ 0.5,
while AUC(κ≡ 〈ke〉)≈ 0.88. Thus, the best classifier based
solely on in-degree k is equivalent to a random coin toss,
while the best classifier based solely on effective connectivity
ke yields reasonably good performance.

To test whether k and ke synergize to predict criticality, we
performed a logistic linear regression with an interaction
term between k and 〈ke〉, which model class (1) does not con-
sider. The optimal critical decision boundary obtained is
0.1k + 0.7〈ke〉− 0.1k〈ke〉 = 1. However, there is no improvement
in MCC≈ 0.49, which demonstrates that k does not provide
additional information about BN criticality that is not already
included in 〈ke〉. The coefficient of 〈ke〉 in the optimal model is
seven times larger than that of k, which further highlights the
relevance of each parameter in predicting BN criticality. In
summary, the optimal models from class (1), and the lack of
synergy between k and ke, demonstrate that the original net-
work connectivity on its own carries no information about
criticality exceeding that of ke—and that ke incorporates
almost all the necessary connectivity information. This
result strongly suggests that canalization plays an important
role in criticality.

Model class (2) is defined in equation (4.1) by the inter-
action between the bias parameter p(1− p) and either κ≡ k
or κ≡ 〈ke〉. The optimal decision boundaries obtained for
each instance are, respectively,

c1kpð1� pÞ ¼ 1, c1 ¼ 1:49 ð2:1Þ
and

c1hkeipð1� pÞ ¼ 1, c1 ¼ 3:94: ð2:2Þ

The corresponding performance metrics are shown in the
second column of figure 2. It is clear that the model class
(2) instance with κ≡ 〈ke〉 outperforms the instance with κ≡
〈ke〉 substantially. Indeed, the decision boundary of equation
(2.2) leads to near-perfect MCC= 0.96 and R2 = 0.94 scores,
and perfect ranking performance measured by AUC≈ 1. By
contrast, the decision boundary of equation (2.1), which rep-
resents the optimal, empirically derived ST,5 leads to
significantly lower classification performance for all three
performance measures, as shown in figure 3.

The difference between the two instances is clearly
observed in figure 4. Indeed, there are striking differences in
how the RBN ensembles are projected onto the phase tran-
sition spaces associated with each model instance. In the
effective connectivity space (right), a very crisp boundary
exists between stable and chaotic dynamics which is optimized
by equation (2.2); the two regimes are neatly separated with
almost no misclassifications on either side of the critical
boundary. This is in sharp contrast to the more uncertain
boundary observed in the original connectivity space (left).
This is true for both the theoretically derived ST (equation
(1.1)) and the experimentally optimized version (equation
(2.1)). In particular, note that stable networks are observed
well into the predicted chaotic regime, and vice versa.

The classification performance (figures 2 and 3) together
with the observation of the arrangement of dynamical
regimes around the critical boundaries in figure 4 demon-
strate that using effective connectivity instead of the
original connectivity of RBNs leads to a much more accurate,
near-perfect prediction of the critical boundary that separates
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stable and chaotic dynamics, as well as a more organized
characterization of both regimes. In other words, considering
the effect of canalization and interaction bias at the micro-
level leads to an optimal prediction of macro-level dynamics.
Indeed, model 2 with κ≡ 〈ke〉 (equation (2.2)) yields the
optimal critical boundary, as discussed below. Therefore,
henceforth we refer to this model, given by equation (2.2),
as the canalization theory (CT) of criticality in BNs.

2.2. The CT optimizes model complexity and
classification performance

We use a Pareto front analysis to identify the models from
equation (4.1) that best balance the trade-off between model
complexity and dynamical regime classification performance.
This method relies on the graphical representation shown in
figure 5, which depicts the classification performance (vertical
axis) against the different model classes ordered by increasing
complexity (horizontal axis). Model 2 with κ≡ 〈ke〉, the
CT, achieves near-perfect classification performance with
MCC= 0.96 and R2 = 0.94, and perfect ranking AUC≈ 1.
More complex models cannot improve much at all over such
performance, leading to very marginal or no increase in classi-
fication performance. Therefore, the CT is the Pareto-optimal
model for all performance measures (identified by arrows
in the figure). Regarding models with κ≡ k, even though
there is much room to improve classification performance,
increasing the complexity of the models does not lead to
relevant performance gains. This implies that unless canaliza-
tion is factored in, as in the model instances based on κ≡ 〈ke〉,
no increase in performance is gained over the (theoretical or
empirical) ST. We thus conclude that model class (2) is optimal
in terms of simplicity and performance for both instances, but
the instance that uses effective connectivity, the CT, is signifi-
cantly better at predicting the dynamical regime of BNs (see
also figures 2 and 3). It should be noted that a search for ‘criti-
cality laws’ that is not constrained to the model classes of
equation (4.1) also does not identify any decision surface that
outperforms the CT (equation (2.2)). We report the results of
using symbolic regression [60] (see §4) in the electronic sup-
plementary material. We used this method alongside the
main method used here to discover optimal critical regime
decision surfaces. Symbolic regression does not make any
assumptions about the form of the decision surface. It indepen-
dently identified anexpression that is almost identical to theCT,
which is further evidence for considering it an optimal
criticality theory for predicting dynamical regime in BNs.
2.3. The CT generalizes to out-of-sample networks and
significantly outperforms the ST

To estimate the statistical significance of the superior
performance of the CT (equation (2.2)) with regard to the
ST (equation (1.1) and (2.1)), as well as to ensure that it
does not derive from over-fitting the RBN ensemble data,
we compare both instances of models in every class
(equation (4.1)) under nested fourfold cross-validation
(details in §4). In other words, the reported performance
measures (MCC, AUC R2) in figure 2 refer to classification
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performance on (repeated) out-of-sample RBNs, i.e. predic-
tion. This demonstrates that the performance of the CT
generalizes to out-of-sample data. Furthermore, all (out-of-
sample) performance measures for the CT are significantly
better than for the empirically derived ST (equation (2.1)),
based on paired-sample t-tests (P < 0.001), shown in
figure 3.6 Additional Vuong and Clarke tests confirm the
results; see electronic supplementary material, §1 for details.

This analysis supports the assertion that the CT predicts
criticality in BNs significantly better than does the ST.

2.4. The CT characterizes the dynamical regime of
models in systems biology

To study how the CT characterizes the dynamical regime in
experimentally validated systems biology models of bio-
chemical regulation and signalling, we analyse 63 networks
from the Cell Collective (https://www.cellcollective.org/)
repository of such models [20]. Before studying the dynami-
cal regime of these BN models, it is worth measuring
the amount of canalization (dynamical redundancy) they
contain, and how it changes their original interaction
connectivity.

The 63 BN models from the Cell Collective that we
analysed comprise 2979 automata in total (after removing
Boolean functions that are tautologies or contradictions).
Additionally, we also removed the 48% of these automata
that have a single input from the comparison since ke = k = 1.
Therefore, only 52% of Cell Collective automata have k > 1
and can be canalizing functions of some kind: 50% with 2≤
k≤ 9, plus 2%with 10≤ k≤ 15. This set, denoted byC, contains
|C| = 1528 automata. Its in-degree distribution, kC, is shown
in figure 6a. It is right-skewed with skewness (Pearson’s
moment coefficient) ≈2, and leptokurtic, with normalized

https://www.cellcollective.org/
https://www.cellcollective.org/
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kurtosis≥ 5. The mean, median and interquartile range are
hkCi ¼ 3:41, ekC ¼ 3 and IQR(kC) = 4− 2, respectively.

The effective connectivity distribution ðkCe Þ for this auto-
mata set is also right-skewed and leptokurtic, with similar
skewness ≈2 and normalized kurtosis≥ 6. However, in con-
trast to what is observed for k, the central tendency of
effective connectivity is considerably smaller and its
dispersion much narrower: hkCe i ¼ 1:34, ekCe ¼ 1:25 and
IQRðkCe Þ ¼ 1:43� 1:25.7 In other words, while the original
interaction structure of these network models would lead
us to infer that the mean (median) number of regulators of
a biochemical variable is 3.4 (3), in reality, accounting for
the canalizing dynamics reveals that the mean (median)
number of effective regulators is only 1.34 (1.25)—i.e. on aver-
age, only 1.34 inputs are sufficient to control an automaton
(or half of all automata do not need more than 1.25 inputs
to be controlled). Moreover, while heterogeneous with high
skewness and kurtosis, the dispersion of effective connec-
tivity is circumscribed to a much smaller range than the
dispersion of k—even the median of the upper quartile is
only 1.43.8 In summary, effective connectivity varies hetero-
geneously but is much smaller and contained than the
original interaction connectivity of these experimentally vali-
dated models from the Cell Collective. Because the true
dynamical connectivity, as revealed by ke, is much smaller
in these networks than their interaction structure implies,
their dynamics should in turn be more stable than expected.
Therefore, the CT should characterize critical dynamics in
these models better than the ST, as we investigate next.

Similarly to the RBN ensembles, the dynamical regime of
the Cell Collective models can be inferred from their Derrida
parameter, ζ (§4), which varies very little: IQR (ζ) = 0.976− 0.9
and range ζ∈ [0.65, 1.15] (see figure S4-1 in electronic sup-
plementary material). Only 11 (out of 63) models are in the
chaotic regime ζ > 1, albeit very near the critical boundary
since ζ≥ 1.15. The other 52 models have ζ values slightly
below ζ = 1, and are thus stable but also near the critical
boundary. In summary, all Cell Collective models are in, or
very close to, the critical regime, coherently with what is
known about them [41].

As shown in figure 7, projecting all models onto the ST
space of (〈k〉, 〈p〉) does not reveal a similar dynamical
regime near the critical dynamics, with networks dispersed
over a large portion of the space. By contrast, the CT space
(〈ke〉, 〈p〉) correctly reveals that all networks are very near
each other (especially in their effective connectivity) and
near an optimal critical boundary. To quantify how well
each space characterizes the dynamical regime, optimal criti-
cal boundary curves are recomputed by fitting class-2 models
(equations (4.1)) representing the ST and the CT to maximize
the MCC score for Cell Collective models, instead of RBN
ensembles as above (equations (2.1) and (2.2) and figure 4).
The values of AUC obtained demonstrate that the CT
space is much better correlated with the dynamical regime:
AUC (ST) = 0.54 and AUC (CT) = 0.81. This shows that the
ST is only marginally better than a random toss according
to the AUC ranking measure, while ranking is far superior
for the CT. In other words, chaotic networks are ranked
above a stable network 81% of the time for the CT, but only
54% of the time for the ST. The classification performance
itself is also superior for the CT, even though the many
more stable than chaotic models (all very near-critical)
make the classification scenario very unbalanced with
the exact performance value less relevant: MCC (ST) = 0.44,
MCC (CT) = 0.58.

It should be noted that the analysis of the Cell Collective
models is based on assumptions made for RBNs. The CT
(equation (2.2)) was developed for homogeneous networks
with fixed k and p, but the Cell Collective networks are het-
erogeneous. Therefore, we use the mean values of these
quantities in our analysis, as shown in figure 7a. While the
CT can be properly developed for heterogeneous networks
in the future (see §3), for the Cell Collective analysis we
simply derived new critical boundary curves by re-fitting
model class 2 (equations 4.1) using the mean value of k, p
and ke for each network. Interestingly, the c coefficients of
the models optimized for the Cell Collective are not very
different from those optimized for the homogeneous RBNs
(equations (2.1) and (2.2), figure 4). In the (〈k〉, 〈p〉) space of
the ST, c = 1.03 for Cell Collective networks and c = 1.49 for
homogeneous RBNs (equation (2.1)). In the (〈ke〉, 〈p〉) space
of the (CT) =, c = 3.2 for Cell Collective networks and
c = 3.93 for the homogeneous RBNs. The change in c results
in a shift of the critical boundary slightly to the right in the
case of the heterogeneous networks of the Cell Collective,
thus increasing the area of the stable regime. This is
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an expected result, since we know that heterogeneous
connectivity leads to more stable BN dynamics [28].

Overall, and in summary, it is clear that including infor-
mation about canalizing dynamics in a model of criticality
yields a substantially better correlation with (cf. AUC score)
and prediction of (cf. MCC score) the dynamical regime of
both RBNs and systems biology automata network models.
3. Discussion
3.1. The CT based on effective connectivity is more

accurate in predicting criticality than the ST and
belongs to the same model class

Previous studies of criticality in automata networks have
relied on the ST, which characterizes networks and their criti-
cal boundary in the (k, p) space.

The CT introduced here includes the effects of node-level
canalization and characterizes networks and their critical
boundary in the (〈ke, p) space instead. This effective connec-
tivity space is much more correlated with the dynamical
regime than the original connectivity space for both random
ensembles (figure 4) and systems biology models (figure 7).
In this new space, the criticality boundary also leads to
much more accurate predictions (figures 2, 3 and 5).

Notably, the CT belongs to the same model class as
the ST.9 The Pareto-optimal model class is of the form cκp
(1− p), where the network connectivity term κ is the original
in-degree (k) in the ST or the effective connectivity (ke) in our
CT (§3). The bias of state transition rules in the network is
denoted p, and coefficient c defines where the curve is posi-
tioned in the relevant parameter space (κ is smallest when
p = 1/2). Thus, in both theories, the tuning of criticality
depends on interaction between the connectivity and bias
parameters. However, our work reveals that a correct
measure of connectivity must include the canalization that
influences node dynamics—howmany signals truly influence
each node. The effective connectivity used in the CT reveals
the true (canalized) connectivity of automata networks [24]
and thus, ultimately, their macro-level dynamical regime.
This is demonstrated by the superior prediction performance
of the CT compared with that of the ST. In other words,
criticality depends not only on structural connectivity and
bias but also very significantly on canalizing dynamics.
Indeed, a prediction of criticality without bias (model class
1 in §2) shows that effective connectivity alone yields a
reasonable prediction performance, but in-degree alone
does not (§2 and figures 1, 2 and 5).

3.2. Effective connectivity captures characteristic
properties of the dynamical regime

The ST implicitly assumes that all functions of the same k and
p contribute in the same way to the dynamical regime. We
demonstrate, however, that a finer characterization of the
canalized logic of individual automata is necessary to accu-
rately predict the dynamical regime of automata networks.
In figure 4a, homogeneous networks of the same size
whose nodes are automata with the exact same k and p are
shown to have opposite dynamical regimes, even far from
the critical boundary of the ST.10 By contrast, when we trans-
form the critical phase transition space to the finer
characterization enabled by ke, as in figure 4b, networks
with the same p and 〈ke〉 almost always display the same
dynamical regime—except very near the CT critical bound-
ary—as demonstrated by a near-perfect MCC score (§2).
Note further that in the latter case networks are not homo-
geneous in ke and are therefore grouped by 〈ke〉, so some
variation in dynamical regime for the same p and 〈ke〉 is
expected. Even so, such variation is only observed near the
critical boundary, which demonstrates that ke (and its mean
value 〈ke〉 in the BN) is very characteristic of the dynamical
regime. Finally, note that ke includes the contribution of col-
lective canalization, while other measures of canalization
such as sensitivity do not (§3). This means that the nonlinear
effects of collective canalization are included [24] and contrib-
ute to the finer characterization of criticality that the CT,
based on effective connectivity, provides.

3.3. Effective connectivity is smaller and more
contained than original connectivity

This study reveals that canalized dynamics typically alters the
original interaction structure of a BN. The resulting effective
structure is characterized by a smaller and more contained
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connectivity—smaller central tendency, dispersion and range
(§2). Indeed, a consistent observation in our results is that
〈ke〉≪ k for most automata both in the RBN ensembles and
in the 63 heterogeneous Boolean models of biochemical regu-
lation and signalling that we analysed; see figure 6b and S3-1
and S4-2 in the electronic supplementary material, which are
also coherent with the edge effectiveness analysis in [24].

Figure 6 highlights how much smaller and contained is
effective connectivity in comparison with the original inter-
action connectivity. Note, for instance, that even automata
with k≥ 10 have eke ¼ 1:5 and no automaton in the data
reaches ke = 3. In other words, even though the interaction
network leads us to infer that some biochemical variables
are regulated by more than 10 other variables, in reality,
once dynamical redundancy is factored in, they never need
more than three regulators to be expressed or inhibited; the
vast majority of automata never need more than two regula-
tors (see electronic supplementary material, §4 for additional
details). Furthermore, ke is significantly smaller in Cell Collec-
tive automata than for same sized and biased random
automata [24]. While some models in the Cell Collective
match experimental data only partially, we assume that the
dynamical behaviour of these models for initial conditions
that have not been experimentally validated is similar.
Since the logic of transition functions was selected such that
the overall network dynamics corresponds to what is exper-
imentally observed for validated initial conditions, the
observed redundancy (node-level effective connectivity) cor-
responds to experimentally validated regulatory and
signalling pathways anyway. The observed ubiquitous
redundancy suggests that biochemical regulation and signal-
ling dynamics is much more canalized (redundant) than
experimental interaction data imply (from which Cell
Collective models were derived). Indeed, dynamical redun-
dancy as conceptualized here may be a mechanism that
allows biological organisms to operate in near criticality for
greater robustness and evolvability (§1).

We are aware that the ST has been extended to consider
heterogeneous BNs—with, for example, power-law distri-
butions [28,61]. We do not consider such an extension for
the CT in the present work because the networks in the
random ensembles and Cell Collective are not large enough
to properly distinguish heterogeneous degree distributions
[62]. Nonetheless, the small and contained distribution of
effective connectivity we have observed occurs in both the
homogeneous random ensembles and the more hetero-
geneous biochemical regulation and signalling networks (§2).

This suggests that larger, very heterogeneous biological
regulation and signalling networks (lognormal or asymptotic
power-law degree distributions) may effectively function
dynamically with more contained and low-degree distri-
butions—even if the distribution of effective connectivity
remains heterogeneous within a small range (§2). An exhaus-
tive study of the topology of effective structure is still needed
to investigate this hypothesis, which we intend to do in
future work with larger, more heterogeneous networks.

It is known that the effective structure of automata net-
works impacts the dynamics and controllability of BNs
[4,25]. While effective structure can be easily computed [63]
and used to uncover specific control pathways in biochemical
regulation and signalling (including in response to input
nodes) [24,25], we do not yet know how its topology is orga-
nized to facilitate or hinder dynamical control, including
synchronization [64]. The present research demonstrates
that the canalizing dynamics that defines an underlying effec-
tive structure is an important factor in determining critical
dynamics in random and experimentally validated biochemi-
cal networks, suggesting that this happens because effective
connectivity is much smaller and contained than the original
interaction connectivity (§2).

3.4. Beyond criticality: harnessing canalization in
complex systems

The theoretical developments and experimental results we
present provide a new theory of criticality that accounts for
canalization. Based on the same class of mathematical func-
tions, the new theory does not increase the complexity of
the current theory, but increases substantially and signifi-
cantly the ability to accurately predict the dynamical
regime of automata networks. Given that automata networks
are canonical examples of complex multivariate dynamical
systems, the high classification accuracy of the new theory
strongly suggests that canalization (as dynamical redun-
dancy) is a prime mechanism for tuning the dynamical
regime of complex systems. This observation is consistent
with Waddington’s notion of canalization [51], whereby
most random dynamical perturbations are not effective and
only a few interactions control changes in network dynamics.
It suggests that evolution in biological regulation has selected
for redundancy, which has long been hypothesized as a
requirement for the trade-off between robustness to random
perturbations and selective responsiveness that is necessary
for evolvability [36,37]. Indeed, our results with experimen-
tally validated systems biology models suggest that
canalization plays a fundamental role in the dynamics of bio-
chemical regulation and signalling, which is missed by
studying the structure of biochemical interactions alone.
Therefore, beyond the study of criticality, a precise character-
ization of canalization is likely to enable the tailoring of
interventions in complex systems towards desirable dynami-
cal behaviour [4,24,25], including contributing to a better
understanding of when criticality is desirable or not.

It is important to note that the work presented focuses on
discrete dynamical systems cast as BNs. As discussed in §1,
these systems have proven very useful to accurately model
biochemical network dynamics via qualitative threshold esti-
mation. Indeed, many biochemical regulation and signalling
networks are likely to function more akin to discrete than
continuous processes because information transmission via
threshold dynamics is easier to implement by collections of
decentralized molecules and cells than signals that depend
on precise, meaningful gradations. For instance, we know
that gene expression patterns do not typically have meaning-
ful gradations of expression [65], which is why discrete,
qualitative modelling of gene regulation is feasible [7].
Indeed, discrete-like, threshold dynamics are quite common
in biology from neuronal firing dynamics [66], to T-cell acti-
vation [67,68] and even bacterial quorum sensing [69].
However, whether because of preference or best fit to exper-
imental data, many biological systems may be best modelled
by networks with continuous dynamics, for which there is
not yet a comparable theory of canalization. We could use
the Lyapunov exponent as a transition parameter between
order and chaos in continuous systems, since it is related to
the Derrida parameter [70]. But a measure of effective



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210659

10
connectivity in continuous dynamical systems, indeed a
theory of redundancy, remains a goal for future development.
Until there is such a measure and theory, we do not know if
our results will generalize for continuous multivariate dyna-
mical systems.

The concept of effective connectivity underlying the CT
integrates information about the structure and dynamics of
multivariate interactions—in-degree connectivity and input
redundancy in state transitions, respectively. It implies that
the behaviour and function of complex systems is dictated
by an effective structure that is revealed only after removal of
causal redundancy in the logic of how biochemical variables
integrate input signals. This truer structure of interactions
provides a more accurate portrait of causal multivariate
dynamics, which is more canalized than the original structure
of interactions implies. This is why we find stable (or critical)
dynamics in networks whose structure would be predicted
by the current ST to be chaotic, and vice versa (figures 4
and 7). In this sense, canalization is a network-level mechan-
ism that can be tailored by evolution to facilitate or hinder
effective cross-talk in biochemical regulation and signalling
[24]. Going forward, the methodology can provide powerful
analytical tools to uncover the causal pathways that deter-
mine control and resilience to interventions in various
complex systems [63], such as genetic regulation in biological
development [25] and treatment strategies in cancer and
other diseases [24].
4. Methods
4.1. Boolean automata definitions and notation
A Boolean automaton is a binary variable, x∈ {0, 1}, where state 0
is interpreted as false (off or unexpressed), and state 1 as true (on or
expressed). The states of x are updated in discrete time steps, t,
according to a Boolean state transition rule of k inputs:
xtþ1 ¼ f ðit1, . . . , itkÞ. Therefore, f : {0, 1}k→ {0, 1}. Such a rule can
be defined by a Boolean logic formula or by a look-up (truth) table
(LUT) with 2k entries. Each LUT entry of an automaton x, fα, is
defined by (i) a specific condition, which is a conjunction of k
inputs represented as a unique k-tuple of input-variable
(Boolean) states, and (ii) the automaton’s next state (transition)
xt+1, given the condition. We denote the entire state transition
rule of an automaton x in its LUT representation as
F ; ffa :a ¼ 1, . . . , 2kg.

4.2. Boolean networks
ABN is a graphB ; ðX, EÞ, whereX is a set of n Boolean automata
nodes xi∈X, i = 1, …, n, and E is a set of directed edges eji∈ E : xi,
xj∈X. If eji∈ E, then automaton xj is an input to automaton xi, as
computed by Fi. Xi = {xj ∈X : eji∈ E}, which denotes the set of
input automata of xi. Its cardinality, ki = |Xi|, is the in-degree of
node xi, which determines the size of its LUT, jFij ¼ 2ki . We refer
to each entry of Fi as fi : α, a ¼ 1 � � � 2ki . Not all nodes in a BN are
regulated by other nodes in the same network. Some nodes can
be input nodes that act as regulators of other nodes, but that are
not regulated by nodes in the network. In biochemical network
models such nodes are used to capture the regulatory effects of
external factors such as temperature, biochemical signals and
others, which have state transitions regulated outside the net-
work. Input nodes are often modelled as nodes that remain
fixed in their initial state throughout simulations of BN dynamic
trajectories, i.e. they are modelled as nodes that regulate
themselves through a simple self-loop, and thus k = 1. At any
given time t, B is in a specific configuration of node states,
x t = [x1, x2, …, xn]. We use the terms state for individual automata
(x) and configuration (x) for the collection of states of the set of auto-
mata of B, i.e. the collective network state. Starting from an initial
configuration, x0, the nodes of a BN are updated with a synchro-
nous or asynchronous policy. The dynamics of B is thus defined by
the temporal sequence of the 2n possible configurations that
ensue. The transitions between configurations can be represented
as a state transition graph (STG), where each vertex is a confi-
guration, and each directed edge denotes a transition from x t to
x t+1. The STG of B thus encodes the network’s entire dynamical
landscape. Under the synchronous updating scheme (used in the
studies reported in this paper) configurations that repeat, such
that x t+μ = x t, are known as attractors; fixed point when μ = 1; and
limit cycle, with period μ, when μ > 1. The disconnected sub-
graphs of a STG that lead to an attractor are known as basins of
attraction. A BNB has a finite number of attractors, b, each denoted
by Ai : i ¼ 1, . . . , b.
4.3. Effective connectivity
The effective connectivity (ke) tallies the expected number of inputs
of an automaton xi that are minimally sufficient to determine its
state transitions. When a subset of such minimal inputs is in a
certain state combination, the remaining inputs are effectively
redundant—they can be in any state with no effect on the tran-
sition of xi. These effective inputs, or enputs for short, can be
identified using the schema redescription methodology intro-
duced by Marques-Pita & Rocha [25], which we illustrate next.
The formula for the logic rule OR with two inputs can be written
as x ¼ i1 _ i2. The truth table for this expression can be rede-
scribed as wildcard schemata as follows: F01 = {(1, #), (#, 1)} and
F00 = {(0, 0)}, where F01 denotes the set of wildcard schemata
that prescribe transitions to 1 (ON), and, conversely, F00 denotes
the wildcard schemata prescribing transitions to 0 (OFF), a set
that contains only one schema in this case. The wildcard
symbol ‘#’ in a schema denotes a redundant input state. For
example, (1, #) is interpreted as follows: given i1 = 1, then the
transition xt+1 = 1 is guaranteed, regardless of the state of i2.
A closer look at F01 reveals that only one input is necessary to
settle transitions to 1 (ON) in this example, and this is the case
for the OR rule with any number of inputs. The entire set of
schemata for a given automaton can be used to determine its
effective connectivity. This requires the computation of the aver-
age minimal number of enputs necessary to determine its state
transition. Effective connectivity is computed from the upper
bound on input redundancy [25], yielding a sum of the minimal
number of enputs required to settle each of the possible 2k state
transitions specified in the automaton’s LUT. This value is then
divided by 2k to obtain ke. For this computation, we iterate
over the entire LUT of the automaton; for each LUT entry we
accumulate the number of enputs of the wildcard schema
matched, with the largest number of wildcard symbols; once
all LUT entries have been processed, the final accumulated
sum is divided by the LUT size. In our example ke = 1.25. This
is the case since three of the four look-up entries in the LUT
have one of the inputs in the on state, which is sufficient to
settle the transition, while one of the entries requires two (i1 = 0,
i2 = 0), so in this case ke = [(3 × 1) + (1 × 2)]/4; see [25] for details.
Note that ke≤ k and that the higher the difference between ke
and k, the more canalization there is in the automaton rule,
and, also, the lower the effective connectivity the automaton
will have as a node in a BN.

Other measures of canalization in Boolean automata exist and
have been linked to criticality, such as average sensitivity [57] and
the more general c-sensitivity [71]. Effective connectivity presents
several advantages over these measures. First and foremost, it is
designed to capture collective canalization [25], a very common
nonlinear phenomenon in automata whereby a subset of inputs
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jointly determine the state of an automaton, while rendering
redundant the complement subset of inputs [6]. By contrast,
sensitivity independently aggregates the influence (activity) of
each individual input to an automaton. It is thus a linear measure
of canalization. This means that effective connectivity provides
a more nuanced and realistic measurement of canalization that
includes nonlinear effects [24,70]. For instance, even for automata
of k = 2, sensitivity does not discriminate between such common
Boolean functions as conjunction/disjunction and proposition/
negation: sðx1 ^ x2Þ ¼ sðx1 _ x2Þ ¼ sðx1Þ ¼ sð:x1Þ ¼ 1. Effective
connectivity, on the other hand, correctlyaccounts for the additional
collective canalization that is present in the conjunction/disjunction
(and other) functions: keðx1 ^ x2Þ ¼ keðx1 _ x2Þ ¼ 5=4 ¼ 1:25,while
keðx1Þ ¼ keðx1Þ ¼ 1k. Since nonlinear, collective canalization
increaseswith k [6,24], the finer characterizationof the phenomenon
provided by effective connectivity becomes more relevant as well.
Interestingly, both sensitivity and effective connectivity can be
easily computed from our schema description methodology [24],
which is available in theCANAPythonpackage [63]. Finally, ‘c-sen-
sitivity’ [71] extends sensitivity to subsets of c inputs, but it results in
a vector of k values for each c, which is much less amenable to the
regression analysis of criticality boundaries we pursue in this
study than is the scalar value measured by ke.

4.4. Generation of RBN ensembles
Each of the ensembles of RBNs that we produced for this study is
characterized by a set of tuning parameters, namely (k, ke, p). The
network connectivity k is a fixed (homogeneous) variable. This
means that in our ensembles every node xi is connected to k
nodes. The effective connectivity is the mean value in a small
interval (bin), and the bias is also fixed (homogeneous). Note
that the values of these parameters are always homogeneously
distributed, in alignment with the assumptions made by the ST
in equation (1.1). For a given value combination of (k, ke, p), a
single random BN is generated by choosing: (i) for each constitu-
ent node, a random set of k input nodes; and (ii) a random
Boolean automaton with k inputs, output-bias p and effective
connectivity in a small range ke ± ϵ from an existing catalogue.
The reason for binning ke is that the possible values for this par-
ameter vary significantly for each combination of k and p, which
leads to a sparse matrix of viable ensembles (k, ke, p), where via-
bility is determined by the existence of Boolean state transition
rules that satisfy specific combinations of the parameter values
(see electronic supplementary material, appendix S3 for further
details). Thus, without loss of information, we bin ke using a
small bin size ϵ = 0.25, leading to ke being homogeneously dis-
tributed in regular intervals of size Δke = 0.5 and to a more
dense matrix of viable ensembles. Because the values of ke are
binned, we refer to the ke tuning parameter as 〈ke〉. Producing a
random Boolean automaton with a given (k, p) is simple: (i) gen-
erate an all-zeros vector of length 2k; (ii) assign the state 1 (on) to
(2k)p LUT random entries in the resulting vector; and (iii) assume
the updated vector represents the state transitions of the automa-
ton in the lexicographic order of input combinations. To control
for ke, we generate a catalogue of Boolean automata with a large
number of (k, ke, p) value combinations, from which automata
with the appropriate parameter values are picked during the
generation of the RBN ensembles. The catalogues for Boolean
rules of k = 2, 3, 4 are exhaustive. For larger k, automata are
first obtained by random generation for a given k and p, with
their ke subsequently computed. The number of possible auto-

mata for a given k and p is 2k

pð2kÞ
� �

. Thus, for k > 4, the

catalogues contain a random sample of 104 Boolean rules for each
(k, p) if the total number possible is greater than 104, and all the Boo-
lean state transition rules otherwise. Additionally, to obtain
automatawith ke in ranges essentially inaccessible to randomgener-
ation via k and p alone, we use a genetic algorithm. We refer the
interested reader to electronic supplementary material, appendix
S3 for details. We have considered the following ranges for our
tuning parameters: the number of nodes per network N = 100,
k∈ {2, 3, 4, 6, 8}, p = [0.01, 0.5] with Δp = 1/2k, and 〈ke〉 = [1, k] with
Δke = 0.5. By sweeping the space of values for our ensemble
parameters, we have generated a total of 266.4K RBNs.

4.5. Computation of the Derrida parameter
For a given BN, we compute the ζ parameter [18,49,50] by first gen-
erating I = 250 random initial configurations, producing an almost
identical copy for each, where the copy differs only in the state of
a small number m of states that have been perturbed (flipped).
We set this value to be a random integer m∈ [1, …, N/10].
Second, allowing the BN to advance each pair of initial configur-
ations (original and perturbed) for t time steps, we set t = 1. Third,
computing the Hamming distance between the two resulting con-
figurations. Fourth, for each value of m, averaging the Hamming
distances obtained in the previous step and plotting them against
m to produce the Derrida plot. Finally, fifth, calculating ζ as the
slope of the Derrida plot at the origin. A value of ζ = 1 indicates
criticality. A value above (below) this is interpreted as meaning
the BN is in the chaotic (stable) dynamical regime.

The Derrida parameter is a network measure that does not
distinguish different roles nodes may play in a BN model, e.g.
being an input node or a node regulated by other nodes. Thus,
while input nodes receive only a self-loop, they are as likely to
be perturbed as any other node when computing ζ. This is a
reasonable procedure because perturbations to any node—
input or not—can in principle propagate downstream.

4.6. Constrained search for best decision boundaries
classifying the dynamical regime

The dataset we produce contains individual RBNs, each character-
ized by the independent variables k, p, and ke, and with one
dependent variable with value one (1) if ζ > 1 (chaos), and zero
(0) otherwise. We perform binary logistic regression to identify
the decision boundary separating dynamic regimes using a set
of predefined model classes. The general form of all models in
every class is: R=step(logistic(model)), where the output of the
logistic function is the probability that the dependent variable
has value 1 (chaotic regime). The output of the step function is
the predicted binary value of the dependent variable given a
threshold τ = 0.5. If the output of the step function for the BN vari-
ables in a given model is greater than τ then the classifier predicts
that BN is in the chaotic regime, and critical/stable otherwise.
Each model tested belongs to one of the following model classes,
where κ is the in-degree k in the ST or the mean effective connec-
tivity 〈ke〉 in the CT, listed in increasing order of model complexity.
Model complexity is defined by the number of terms and the
number of predictors in each term (in that order),

1: c1k;
2: c1kpð1� pÞ;
3: c1kþ c2pð1� pÞ;
4: c1kþ c2kpð1� pÞ;
5: c1kpð1� pÞ þ c2pð1� pÞ;
6: c1kþ c2kpð1� pÞ þ c3pð1� pÞ:

ð4:1Þ

In our binary logistic regression, we use the p(1− p) as a
single independent variable accounting for the bias, rather than
just p due to the principle of duality in Boolean logic. The coeffi-
cients derived for each criticality model are used to construct a
decision surface. For this, the resulting equations have been
manipulated so that the independent variables and their
coefficients are on the left-hand side and the value (1) on the
right-hand side, thus facilitating comparisons with the ST.
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4.7. Performance measures
Mc-Fadden’s R2 is a standard goodness-of-fit measure used for
logistic regression models. It is computed as one minus the ratio
of the log-likelihood of the model to that of the intercept-only
model [72]. The maximum value of this pseudo-R2 is 1. The MCC
is ideal for computing classification performance in unbalanced
scenarios [59], such as the one studied here, whereby there are
many more instances of chaotic automata networks in the random
ensembles than instances of stable network dynamics. Computed
for the classifier using model predictions and test data, it is defined
as a function of the number of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN): MCC=
ðTP�TN�FP�FNÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp
[59]. The MCC ranges between −1 and 1, where −1 indicates
perfect opposite classification, 1 indicates perfect classification
and 0 indicates random classification. Here, the positive label is
associated with the chaotic dynamical regime R = 1, and the
negative label with the stable (stable/critical) regime R = 0. The
AUC is defined as a function of the true positive rate (TPR), the
proportion of true positives in the total number of positive
instances, false positive rate (FPR) and the proportion of false
positives in the total number of negative instances, as follows:
AUC ¼ Ð 0

1 TPRðTÞFPR0ðTÞdT. The AUC ranges between 0 and
1, for perfectly incorrect and correct ranking of true class labels,
respectively. A random classifier yields a value of 0.5. It is inter-
preted as the probability with which the classifier ranks positive
instances (label 1) higher than negative instances (label 0) [73].
4.8. Nested fourfold cross-validation
The full dataset was randomly split into four non-overlapping
equally sized partitions (75–25% training and testing splits).
This was repeated four times, thus yielding outer foldings. A simi-
lar procedure was followed on each of the training splits,
yielding a total of 16 training–testing pairs (see electronic sup-
plementary material, appendix S1 for further details). Measures
of classification and regression performance (as with the full
dataset) on the testing splits were collected. The 16 sets of per-
formance scores were averaged to produce an estimate of
generalization performance score for each measure. Between-
model comparisons were made using pair-sample t-tests because
the two models were evaluated on the same set of 16 test folds.
The paired t-tests were one-sided with the alternative hypothesis
that the mean score of model 2 (〈ke〉) is greater than that of
model 2 (k).
4.9. Symbolic regression
A supplementary study was performed using a different curve-
fitting method to find the critical decision surface. We used sym-
bolic regression (a type of unconstrained search), which is, in
essence, a genetic programming algorithm [60]. The symmetric
effect of the biases p and 1− p on the Derrida parameter was
used to prune the search space by considering 0 < p≤ 0.5 only.
Note that symbolic regression works in a much larger space of
many function classes than the space of six model classes con-
sidered in our main methodology. Because of this, it can be
hard to find an optimal function that is both consistent and guar-
antees minimal complexity. Furthermore, the obtained classifiers
and coefficients can be hard to interpret in some cases. One of the
relevant uses of this kind of method is to find different models
for a given classification problem, for example, and compare
them. One of the benefits of this is to help in determining suitable
function classes to describe a classification decision boundary.

Symbolic regression was performed on our dataset from
different (random) seeds eight times. We allowed for any for-
mula in evolving populations that included basic arithmetic
operators, coefficients, exponents and the sine, cosine and
logarithmic functions. In every execution of the algorithm, we
consistently obtained a classifier with the same function form
based on an interaction between ke and p with a coefficient that
varied slightly in different runs. The ensembles were defined in
the same way as in the main methods with the only difference
that we used networks of size N = 48 instead of N = 100. The
best classifier found was the function 3.125〈ke〉p = 1, with per-
formance values very close to those of the CT. See electronic
supplementary material, appendix S2 for further details.
Endnotes
1Automata models of biochemical regulation may include variables
that can take multiple states (beyond the two in Boolean logic); how-
ever, there is always a larger BN that is isomorphic to any multi-state
automata network [7,74].
2Various sources of stochasticity can also be added to the updating
scheme [5,25].
3The theory was also expanded to allow k to be randomly sampled
from scale-free distributions [28]. However, we do not consider
such extreme heterogeneous connectivity in the present work
because the experimentally validated systems biology networks we
test are far from scale-free, with values of k that span little more
than a scale. Moreover, our effective connectivity measure has an
even smaller range (§2). See also §3 for of heterogeneous connectivity
and possible expansions of the work.
4Indeed, the specific positive coefficient β obtained (β = 0.09 in our
analysis) is arbitrary and selected in the optimization search from
infinite positive values leading to the same performance; all that mat-
ters for this model is that the critical value kc≤ 0, so that every
network (k > 0) is predicted to be chaotic.
5Notice that a slightly different critical boundary defines the ST in
equation (1.1) (c1 = 2) than what we obtained in equation (2.1) by
optimizing model class (2) for κ≡ k against random ensemble data
(c1 = 1.49). This is likely because the ST was derived theoretically,
while our model 2 is optimized for empirical data circumscribed to
a finite k range. Indeed, the theoretical ST is not optimal in this
range, and leads to slightly worse classification performance than
the optimized version of equation (2.1) on the RBN ensembles:
MCC= 0.73 and R2 = 0.28.
6Since the theoretically derived ST (equation (1.1)) underperforms its
empirical counterpart, there is no need to report significance for the
former.
6 ekCe ¼ Q1 ¼ 1:25 (median and lower quartile) in the distribution of ke
for Cell Collective automata because almost half of the automata in
data are logical AND or OR functions of k = 2 (see figure 6a) that
have exactly ke = 1.25 (see figure 6b). In addition, automata with
k > 2 frequently have ke = 1.25, e.g. when all inputs are fully redundant
except for two that implement a logical AND or OR.
8The distribution of ke is right-skewed and leptokurtic with skewness
and kurtosis values that suggest a log-normal distribution. But such a
heterogeneous distribution is still circumscribed to a very small dis-
persion range, as seen by the narrow IQRðkCe Þ and boxplots in figure 6.
9We pursue both class-constrained regression (equations (4.1)) and
unconstrained symbolic regression analyses that lead to almost iden-
tical critical boundaries in the same model class (§3.2).
10In the space of 22

k
possible logical rules for a given k, there are only

(2k)− 2 distinct values of p when tautologies and contradictions are
ignored, and this number is halved when accounting for bias sym-
metry in Boolean functions. Thus, automata with very different
logic can have the same k and p; ke, on the other hand, allows us to
differentiate when such automata have distinct canalization logic as
shown in Figure S3-1 in the electronic supplementary material.
11Note that, when there is a single input (k = 1), there are no redun-
dant inputs and thus ke = 1, except for a tautology or contradiction
where ke = 0 [24,25]. It follows that input nodes, which have k = ke =
1 due to a single incoming self-loop, do not affect our canalization
theory of criticality as they contribute equally to the ST and the CT.

Data accessibility. We include an electronic supplementary material
document with further theoretical, methodological and data details.
In addition, we also include the Boolean automata source catalogues,
and the R scripts used to produce all of the reported results. See the
electronic supplementary material for details.
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