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Diabetic skin manifestations, previous to ulcers and wounds, are not highly accounted as part of diagnosis even when they represent
the first symptom of vascular damage and are present in up to 70% of patients with diabetes mellitus type II. Here, an application for
skinmacules characterization based on a three-stage segmentation and characterization algorithm used to classify vascular, petechiae,
trophic changes, and traumamacules from digital photographs of the lower limbs is presented. First, in order to find the skin region, a
logical multiplication is performed on two skin masks obtained from color space transformations; dynamic thresholds are stabilised
to self-adjust to a variety of skin tones. 0en, in order to locate the lesion region, illumination enhancement is performed using a
chromatic model color space, followed by a principal component analysis gray-scale transformation. Finally, characteristics of each
type of macule are considered and classified;morphologic properties (area, axes, perimeter, and solidity), intensity properties, and a set
of shade indices (red, green, blue, and brown) are proposed as a measure to obviate skin color differences among subjects. 0e values
calculated show differences between macules with a statistical significance, which agree with the physician’s diagnosis. Later, macule
properties are fed to an artificial neural network classifier, which proved a 97.5% accuracy, to differentiate between them.
Characterization is useful in order to trackmacule changes and development along time, providesmeaningful information to provide
early treatments, and offers support in the prevention of amputations due to diabetic feet. A graphical user interface was designed to
show the properties of the macules; this application could be the background of a future Diagnosis Assistance Tool for educational
(i.e., untrained physicians) and preventive assistance technology purposes.

1. Introduction

Diabetes is a rapidly growing chronic disease with a 20%
prevalence and which is catalogued as a noncommunicable
disease [1]. Diabetesmellitus type II is characterized by insulin
resistance. Insulin is a hormone that helps deliver glucose to
cells, e.g., to muscular cells where it is metabolized as energy

[2]. Insulin resistance is a sign of diabetes development. In this
process, which is called hyperglycemia, glucose is not de-
livered to the cells and builds up in the body.

According to the 2014 diabetes report from the World
Health Organization (WHO) [3], in the world there are 422
million people livingwith diabetes. In developing countries, the
prevalence is increasing. InMexico, the Health Department via
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the 2016 National Health and Nutrition Survey (ENSANUT
2016) [4] reported that 9.4% of Mexican adults (i.e., 6.5 mil-
lions) have been diagnosed with diabetes. However, in 2017,
the International Diabetes Federation (IDF) [5] reported that
there are 12millions ofMexican adults living with diabetes, but
37.5% are not aware that they have this disease.

Comorbidities such as obesity, hypertension, and dys-
lipidemia, among others, are precipitating factors to develop
diabetes [6]. Even more, when these comorbidities are
present along with diabetes, a rapid deterioration of body
functions could arise and persist; diabetic retinopathy and
diabetic foot [4] can cause blindness or lead to amputations
which lead to disabilities.

Diabetes is associated, in the long-term, with de-
generative processes that affect the cardiovascular and
nervous system, as well as the eyes and skin [7]. From 30 to
70% of patients with diabetes develop skin problems [7, 8].
Neuropathy, microangiopathy, and macroangiopathy are
the main predisposing factors for diabetic foot. 0eir evo-
lution leads to blood flow reduction and ischemia, structural
and functional damage, and an overloaded extremity due to
the lack of sensitivity; all these put the foot at risk. Moreover,
just adding up anything like a simple trauma or an infection
could lead to ulcers, lesions, and even necrosis [9].

Although microangiopathy and macroangiopathy are
major contributors to complications like skin lesions or
diabetic foot, metabolic disruptions also have a significant
direct effect, especially in alterations of the skin [7]. Some of
these manifestations are called macules [10], which are
defined as a flat, distinct, and discolored area of skin. Other
manifestations may include lack of body hair, yellowish
coloration, callous formation, onychomycosis, foot and toe
deformation, and others [7, 8]. Even though macules occur
commonly, they are not taken into account as a diagnose
element [11, 12], nor are they registered as information that
could lead to an early diabetic foot diagnosis [12, 13].

Relevantly, microangiopathy and macroangiopathy are
also the cause of most skin manifestations found in patients
with diabetes mellitus who have not been diagnosed with
diabetic foot [14].

In the case of diabetes mellitus, skin manifestations have
not been accounted as an important aspect of the disease
[15]. 0ere is a high prevalence of skin disorders among
these patients as a matter of fact, and various authors report
that these disorders are present in ∼70% of their patients
[14].

Kiziltan et al. [14] state that diabetic dermopathy is more
common on patients with neuropathy or large vessel disease;
also, they report it as frequently present in patients with
signs and symptoms of polyneuropathy. Pavicic and Korting
[16] report that peripheral arterial obstructive disease
(PAOD) is up to 6 times more frequent in patients with
diabetes and PAOD, neuropathy, and macroangiopathy are
key pathophysiologic factors in its development.

Several related studies report that 73% [15] to 80% [17] of
the sampled patients present skin lesions or changes. Di-
abetic dermopathy always comes first as the most common
skin manifestation in patients with diabetes. Pavicic and
Korting [16] also state that the increasing duration of the

disease rise the possibility of skin involvement; 45% of
patients suffering diabetes for more than 20 years developed
a peripheral vascular disease, and 75–82.1% presented
xerosis, which could cause skin tears [16].

Any change in skin pigmentation is called a macule.
Macules can be erythematosus (originated by blood vessels
dilation or formation of new vessels), pigmentosae (which
can be hyperpigmented, hypopigmented, or achromatic), or
artificial, among others. Vascular macules occur as a sec-
ondary reaction, e.g., to medication, due to peripheral ve-
nous insufficiency or trauma [18].

A vascular macule is the one originated from a micro- or
macrovascular problem, where the vessels underneath the
skin are affected. 0ese macules are rounded and are of
reddish to brown color; normally, they present a diameter of
1 cm, but they can be smaller. Petechiae are very small (the
size of a pinhead), reddish, rounded spots that appear on the
shins and usually are a secondary effect of treatment with
acetylsalicylic acid. Macules due to trophic changes are
present when the patient has chronic venous insufficiency.
0ey are darker patches of skin, have a larger area than other
macules, and appear mainly in the ankles and shins.Macules
due to trauma are the evidence (different than a scar or scab)
of a traumatic event such as a hit in the shin. 0ey are of
brownish color, and the shape varies according to the trauma
presented. 0is macule lingers in the skin of the patient with
diabetes for a longer period of time than it would on a
healthy patient.

All these skin manifestations are present previous to a
diabetic foot diagnosis; patients can present them all at the
same time, and they are generally overlaid. 0ese macules
appear in different parts of the leg and have large areas with
undefined borders. 0eir localization and ulterior seg-
mentation represent a challenging task, but the results can
eventually be used as a tool for macule characterization,
foot health prognosis, and even for amputation risk
assessment.

Regarding the algorithms for image processing, these
types of macules are not evaluated or processed until they
become lesions or ulcers [19]. Computer aid diagnosis has
been used in skin lesions for dermatology and dermoscopy
(e.g., carcinomas and melanomas) [20–22] by means of
support vector machines [21], support vector classifica-
tion [20], or seeded region growing [22], but not in the
prevention of diabetic foot development. Generally, tools
for assessing skin problems due to diabetes mellitus type 2
are focused on advanced lesions and use questionnaires
[18] that evaluate lesions like ingrown toenails, ulcers,
calluses, or fissures, which take place after the diabetic foot
diagnosis.

In this paper, we present the design of a graphical user
interface (GUI) developed in Matlab® as an application for
the characterization of skin macules. 0e GUI is based on a
segmentation algorithm that applies image-processing
techniques in order to find the region of interest (ROI)
and characterize the macules present in images of the leg and
foot of patients with diabetes mellitus type 2.We also present
a statistical study of the calculated properties and a classifier
of the 4 types of macules.
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2. Materials and Methods

0e first step was to acquire color digital photographs of skin
macules “skin images” from the lower limb. For this purpose,
a device called Wireless Image Acquisition System (WIAS)
[23] was used. 0e device included a digital wireless camera
(Sony DCS–QX100, 18MP), which provided an RGB image
(Figure 1). Zoom and flash were never used in order to avoid
changes in resolution or capturing bright areas, respectively.
Changes in area, shape, and coloration of macules were
document by the skin images.

0e macules studied in this work were vascular macules,
petechiae, macules due to trophic changes, and macules due
to trauma. 0e study was performed at the Cardiac Re-
habilitation Service of a National Institute in Mexico City.
Skin images were processed using the Image Processing
Toolbox of Matlab®. 0ey were taken from 19 Mexican
patients diagnosed with diabetes mellitus type II, but not yet
with diabetic foot, who gave their signed informed consent.

Segmentation and characterization were performed
through a proposed 3-stage image-processing algorithm, as
described below:

Stage 1. (skin region). Skin identification in the color
photography.

Stage 2. (Skin region-lesion region). Identification of pos-
sible lesions.

Stage 3. (lesion region). Characterization of macules.

2.1. Stage 1 (SkinRegion). 0e aim of using the WIAS device
was to be able to acquire repeatable digital photographs
from areas of interest form the lower limb, and these
images were called skin images. 0e color skin image
contained elements that were not of interest, e.g., the robe,
the bed clothing, and other background components. So,
the first objective was to segment the legs of the patient
from it.

A color image can be transformed to different color
spaces [24] (i.e., domain transformation) in order to en-
hance the characteristics of interest, i.e., the differences
between skin and nonskin and the similarity among
different skin tones. If we see the skin image as a matrix,
size is determined by the resolution of the camera. 0e
image has 3 levels of depth; each level corresponds to
one RGB color matrix, and each cell in these matrices
corresponds to a pixel, whose value is the level of intensity
in 8 bits.

In Stage 1, the first step was to transform the image from
RGB to HSV color space. RGB describes an image for the
amount of red, green, and blue in it. HSV color space does
the same but in terms of Hue, saturation, and value. 0e
algorithm [25] is described by equation (1). 0e RGB values
should be normalized to the range [0 1]:

HSV �

V � max(R, G, B),

S �
V−X

V
, where X � min(R, G, B),

H �

5 +((V−B)/(V−X))

6
for R � V and G � X,

1−((V−G)/(V−X))

6
for R � V and G≠X,

1 +((V−R)/(V−X))

6
for G � V and B � X,

3−((V−B)/(V−X))

6
for G � V and B≠X,

3 +((V−G)/(V−X))

6
for R≠V, G≠V, and R � X,

5−((V−R)/(V−X))

6
for R≠V, G≠V, and R≠X,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where V represented the brightness value, S is the saturation,
and H is the Hue matrix. 0e R, G, and B values had to be
divided by 255 (e.g., R � R/255) in order to satisfy the
normalization condition. 0e Hue matrix was selected (this

property allowed the differentiation between ROIs and
background), a fixed threshold was set, and an intensity
range was determined to find a tone—set of values (equation
(2)). 0is became the first skin mask:
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Skin Mask 1 �
hue (m, n), 0.01≤ intensity ≤ 0.1,

0, else.
􏼨

(2)

With the Skin Mask 1, it was not possible to identify a
wide range of skin tones, so it was necessary to make the
algorithm more robust. 0erefore, a second color space
transformation was applied using the YCbCr color space
transformation matrix determined as follows [26]:

Y

Cb

Cr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0

128

128

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0.299 0.587 0.114

−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

0en, a dynamic range was used. 0e histograms for the
Cb and Cr matrix were calculated; then, these values were
used to set dynamic limits in order to process different skin
colors and tones in a wide range. 0is means that depending
on the histogram values, the algorithm would adjust the
threshold, so it would tune itself to the skin tone of the
patient. 0e values found within the dynamic range outlined
the second skin mask:

Skin Mask 2 �

1, min(Cb)≤ Cb≤mean (Cb) and

mean(Cr)≤Cr≤maxCr,

0, else,

⎧⎪⎪⎨

⎪⎪⎩

(4)

where the limit values of Cb and Cr used in the equation
changed for every skin tone found.

0en, in order to link the data from both color spaces,
the HSV and YCbCr masks were added in an AND oper-
ation; this allowed for the resulting mask to work in a wide
range of skin tones.0is yielded a more robust algorithm for
this stage and a more precise skin region.

2.2. Stage 2 (Lesion Region). Once the skin region was seg-
mented, skin lesions had to be identified. From the raw image
in RGB color space, pixel values had to be amplified, so they
became darker or lighter as they corresponded to healthy or

damaged regions. For this purpose, the process described
below was followed.

0e color space CIE 1976 L∗a∗b∗ was used to handle
luminosity [27], in order to saturate the intensity values. 0is
transformation was derived from the following equations [28]:

X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0.4125 0.3576 0.1804

0.2127 0.7152 0.0722

0.0193 0.1192 0.9502

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L �

116
Y

Yn

􏼠 􏼡

1/3

− 16, if
Y

Yn

> 0.008856,

903.3, else,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a � 500
X1/3

Xn

−
Y1/3

Yn

􏼢 􏼣,

b � 200
Y1/3

Yn

−
Z1/3

Zn

􏼢 􏼣.

(5)

For this stage, the L matrix corresponded to luminosity
from black to white and was the one selected [29]. 0e
resulting saturated image was then reenhanced by con-
verting it to grayscale using principal component analysis
(PCA) [30]. Lesion regionwas calculated using the histogram
of the PCA grayscale image, where a threshold was set to find
the damaged areas. 0is threshold also shifted depending on
the tones detected from the healthy and the lesioned skin,
but it took approximately 10% of the values found in the
image (Figure 2).

2.3. Stage 3 (Characterization). Characterization of the
damage in the lower limbs of the patients was performed in 2
stages:

(1) Data values of extracted features at the segmented
lesion region were classified into 2 types: morpho-
logic properties—area, major axis, minor axis,

(a) (b)

Figure 1: Description of WIAS. 0e camera is located on top of the device, and it can be moved along the arc; also, the frame can be slid
horizontally. (a) Bottom view of the device. 0e arrow shows how the camera slides on the arc. (b) Top view of the device. 0e arrows show
how the frame slides.
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perimeter, solidity—and intensity properties—
maximum intensity and minimum intensity.

(2) 0e Shade Index (ShI) was a parameter used to
measure color variations from the RGB raw image. An
equation was designed for each color, where equation
(6) was used for the Shade Index Red (ShIR), equation
(7) for the Shade Index Green (ShIG), and equation
(8) for the Shade Index Blue (ShIB):

ShIR �
mean Mred( 􏼁

mean HSred( 􏼁
, (6)

ShIG �
mean Mgreen􏼐 􏼑

mean HSgreen􏼐 􏼑
, (7)

ShIB �
mean Mblue( 􏼁

mean HSblue( 􏼁
, (8)

where Mred is the red component of the area inside
the segmented macule, Mgreen is the green compo-
nent of the area inside the segmented macule, and
Mblue is the blue component of the area inside the
segmented macule in RGB; HSred is the red com-
ponent of an area of healthy skin around the macule,
HSgreen is the green component of an area of healthy
skin around the macule, and HSblue is the blue
component of an area of healthy skin around the
macule, in RGB. Finally, a Shade Index Brown
(ShIBR) (equation (9)) was used to identify brownish
changes in the skin:

ShIBR �
mean Mred( 􏼁 + mean Mblue( 􏼁

mean HSred( 􏼁 + mean HSblue( 􏼁
. (9)

Figure 3 shows the flow diagram for the 3-stage algo-
rithm for skin and lesion region segmentation in addition to
the characterization feature.

It was necessary to find out if the differences were
statistically significant among the values calculated for the
extracted features in the algorithm for each type of macule.
In order to validate this, Student’s t-test was performed using
SPSS v17 with a confidence interval of 95% (p< 0.05).

Also, a classifier was designed in order to identify each
macule by means of building an artificial neural network and
the feature vectors that characterize each of them. 60% of the
data was used to train the network and 40% to test it.

3. Results and Discussion

0e 3-stage image-processing algorithm reported in this
paper is composed by segmentation of skin and its lesions, as

well as the values of the features obtained from the shade
indices.

Using the skin images acquired with the WAIS, the
specialist classified the macules found in the patients as
vascular and petechiae, due to trophic changes, or due to
trauma macules. 0e results of image processing for the
segmentation of skin region are shown in Results for Stage 1.
Segmentation of lesion region is later displayed in Results for
Stage 2, and the features of macule characterization are
obtained and analyzed in Results for Stage 3.

3.1. Results for Stage 1 (Skin Region). An example of the
histogram obtained after the YCbCr color space trans-
formation used to find the dynamic range that self-adjusted
to a wide variety of skin tones is shown in Figure 4. Mean
value for each matrix fell in the valley of the histograms; the
first section of Cb and the second section of Cr were selected
in order to find the values that outlined the second skin
mask.

Skin region was obtained from skin image, as shown in
Figure 5. 0e background was eliminated with the intention
of avoiding segmentation errors due to, e.g., the logo of the
bed sheets or any object in the back.

3.2. Results for Stage 2 (Lesion Region). Figure 6 shows ex-
amples of different lesion regions (which include vascular,
petechiae, trophic changes, and trauma macules) found in 4
patients. 0ese images were the result of applying the novel
proposed algorithm. From these examples, it was noticeable
that some areas could be overseen in the RGB images, but
after the processing enhancement with the CIE 1976 L∗a∗b∗

color space transformation, the selection of the luminosity
matrix, and the PCA gray-scale transformation, these hidden
macules are now within the spectrum of the dynamic range
selected from the histogram. From this stage, a general state
of health of the extremity was calculated and displayed as
percentage of damage (29% for patient no. 1, 24% for patient
no. 2, 31% for patient no. 3, and 21% for patient no. 4).

3.3. Results for Stage 3 (Characterization of Features). In
order to characterize the macules (vascular, petechiae, due to
trophic changes, or due to trauma), feature extraction for
morphologic properties, intensity properties, and Shade
Indices was performed in 82 macules obtained from the
lesion regions found. Table 1 shows the values obtained.

By means of statistical analysis, significant differences
(p< 0.05) were found among the macules studied; these p

values are shown in Table 2. According to it, petechiae
and vascular macules can be differentiated through mor-
phologic properties and Shade Indices (except ShIB). Dif-
ferences between petechiae and macules due to trophic
changes can be found comparing their morphologic prop-
erties; morphologic properties and Shade Indices, ShIR, were
significantly different for petechiae and trauma macules.
Vascular macules and those resulting from trophic changes
can only be differentiated through their morphologic prop-
erties, while traumamacules can be differentiated comparing

0 255a b

~10%

127

Figure 2: Selected PCA grayscale values. 0e values from a to b

represented approximately 10% of the total and were the ones used
to determine lesion region.
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all properties expected for solidity and minimum intensity.
Macules due to trophic changes and trauma can be differ-
entiated using the Shade Indices: ShIG, ShIB, and ShIBR, and 4
other properties.

0e concatenation of properties, calculated for each
macule evaluated, form the feature vector for each example.
Figures 7(a) and 7(b) show the average value for each
property and macule, or the average feature vector.

So, in order to identify each macule, the proposed
architecture is a feedforward backpropagation network
with 2 hidden layers and 4 neurons per layer; the transfer
functions are hyperbolic tangent sigmoid and logsigmoid.
0e training function updates weight and bias values
according to the Levenberg–Marquardt optimization [31].
In order to train the classifier, an 11 × 40 matrix was built,

where each type of macule yielded 10 examples; 60% of the
data was used for the training, and the remaining 40% was
used to test the network. 0e results were displayed
through a confusion matrix (Figure 8(a)), where the co-
incidence between one of the 10 feature vectors and the
target class was demonstrated. 0e correct identification of
the data corresponded to 97.5%. A linear regression of the
data (Figure 8(b)) shows the relation between the target
data and the results obtained from the network, where R �

0.95054 indicates that the model was capable of identifying
∼95% of the segmented lesions.

3.4. Skin Macules Characterization (SMaC) Software. A
Matlab® GUI, called skin macules characterization (SMaC)

Original
image RGB

Transform to
HSV color space

Transform to
YCbCr color space

Threshold for Hue

Fix range

Threshold for Cr and Cb

Dynamic range
a b

+

Skin
mask

1

Skin
mask

2
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Figure 3: 0ree-stage algorithm: (a) Stage 1—processing from skin image to segment a skin region using the AND of two skin masks (via
HSV and YCbCr color space transformation). (b) Stage 2—lesion region segmentation from the skin region by means of CIE 1976 L∗a∗b∗

transformation followed by luminosity enhancement and PCA grayscale transformation. (c) Stage 3—Characterization of the lesion region.
Calculation of the parameters for intensity, morphologic and the shade indices for macules.
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Figure 6: Example of segmentation of skin regions and lesion regions found in Stage 2 for four patients: (a) patient no. 1, skin region; (b)
patient no. 1 shows 29% damage due to vascular damage and a trauma; (c) patient no. 2, skin region; (d) patient no. 2 shows 24% damage due
to petechiae and vascular damage; (e) patient no. 3, skin region; (f ) patient no. 3 shows 31% damage due to trophic changes, a trauma, and
vascular damage; (g) patient no. 4, skin region; (h) patient no. 4 shows 21% damage due to traumatic lesions and vascular damage.
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Table 1: Characteristic feature values found for vascular, petechiae, trophic changes, and trauma macules.

Macule Vascular (n � 47) Petechiae (n � 10) Due to trophic changes (n � 10) Due to trauma (n � 15)
Morphologic properties
Area (pixels) 1010.29 ± 1893.99 18.50 ± 5.99 2152.90 ± 1541.85 2133.60 ± 3684.09
Major axis (pixels) 46.97 ± 48.96 6.48 ± 1.60 109.97 ± 54.13 59.08 ± 63.30
Minor axis (pixels) 23.76 ± 17.75 3.88 ± 1.08 30.67 ± 13.49 29.85 ± 24.87
Perimeter (pixels) 143.90 ± 154.46 15.83 ± 4.76 289.46 ± 116.72 166.16 ± 173.27
Solidity (%) 72.56 ± 12.76 88.00 ± 12.97 70.40 ± 11.96 79.87 ± 9.31
Intensity properties
Maximum intensity 0.55 ± 0.18 0.61 ± 0.14 0.47 ± 0.16 0.62 ± 0.13
Minimum intensity 0.35 ± 0.18 0.55 ± 0.14 0.28 ± 0.19 0.31 ± 0.21
Shade index
ShIR 0.90 ± 0.06 0.95 ± 0.03 0.88 ± 0.07 0.86 ± 0.08
ShIG 0.84 ± 0.08 0.90 ± 0.07 0.84 ± 0.09 0.74 ± 0.14
ShIB 0.82 ± 0.11 0.87 ± 0.09 0.84 ± 0.08 0.68 ± 0.15
ShIBR 0.87 ± 0.11 0.92 ± 0.04 0.87 ± 0.07 0.79 ± 0.10

Table 2: p values for the differences among features data distribution for each macule relation.

Macule Petechiae
vs vascular

Petechiae vs
trophic changes

Petechiae
vs trauma

Vascular vs
trophic changes

Vascular
vs trauma

Trophic changes
vs trauma

Morphologic properties
Area 0.0001∗ 0.0001∗ 0.043∗ 0.0001∗ 0.002∗ 0.986
Major axis 0.0001∗ 0.0001∗ 0.006∗ 0.0001∗ 0.012∗ 0.043∗
Minor axis 0.0001∗ 0.0001∗ 0.001∗ 0.0001∗ 0.003∗ 0.916
Perimeter 0.0001∗ 0.0001∗ 0.005∗ 0.0001∗ 0.011∗ 0.044∗
Solidity 0.003∗ 0.005∗ 0.080 0.457 0.054 0.036∗
Intensity properties
Maximum intensity 0.129 0.059 0.776 0.406 0.026∗ 0.015∗
Minimum intensity 0.0001∗ 0.002∗ 0.002∗ 0.343 0.632 0.682
Shade index
ShIR 0.0001∗ 0.023∗ 0.0001∗ 0.598 0.038∗ 0.373
ShIG 0.024∗ 0.157 0.0001∗ 0.668 0.004∗ 0.035∗
ShIB 0.104 0.435 0.0001∗ 0.448 0.001∗ 0.003∗
ShIBR 0.004∗ 0.072 0.0001∗ 0.899 0.001∗ 0.035∗
∗Statistically significant p values (p< 0.05).
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Figure 7: Average values of (a) morphologic properties and (b) intensity properties and shade indices.
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Software©, showed the results of the 3-stage image-
processing algorithm for segmentation of the skin mac-
ules, feature extraction, and characterization of 4 types of
macules: vascular, petechiae, trophic changes, and trauma,
as seen in Figure 9. 0is software was registered at the
National Copyright Institution of Mexico (INDAutor, no.
03–2017–071912253000–01).

Macule images need special processing algorithms as
they are very peculiar and present different features
depending on the patient. 0ere are no algorithms reported
to address this particular problem. Moreover, because of the
wide range of human skin color tones, the major challenge to
overcome was to find the macules in spite of the changes in
illumination among the skin images.

Color space transformations became a useful tool to find
different views of the image that allowed enhancing char-
acteristics that were convenient to solve the segmentation
problem. In the HSV color space transformation, the Hue
values selected showed a good performance with medium
skin colors, but it depended of the light in the room. In order
to address this situation, a second color space trans-
formation was applied (YCbCr). 0is color space extracted
red and blue components from the image; sincemacule color
varies from red to brownish, these components became very
helpful for macule location and segmentation.

In this case, a fix range for the Cb and Cr values was not
useful, even when it is the method of choice in the literature
[26, 28] because it limits the variety of human skin tones
detected to a small selection. However, the dynamic range
proposed in this paper allowed the algorithm to adjust to a

wide range of skin tones, which increases its usefulness
meaningfully. 0e minimum and maximum values taken
from the Cb and Cr matrices represented the illumination
range of the image. Histogram values allowed the algorithm
to self-tune to the specific image and hence to the specific
skin tone and illumination, maintaining the simplicity and
efficiency of the algorithm without adding the computa-
tional cost of neural networks. 0e position of the camera
can be adjusted using the WIAS device in order to avoid
areas with too much brightness or intense illumination.

A normal grayscale transformation was not useful for
skin segmentation because it equalizes the distribution of
gray levels, which is counterproductive for this scenario. On
the contrary, PCA generates an image in gray levels within
the limit values of the histogram of one specific image every
time, it gets rid of the healthy tissue in the image and keeps
the sections with clear manifestations of saturation, and
these sections are classified and selected as lesioned skin.
0is technique helps take advantage of the illumination
enhancements achieved by the CIE 1976 L∗a∗b∗ trans-
formation used in Stage 2. And, again, to set thresholds and
ranges through histogram, values allow the algorithm to
adjust to the particularities of the lesion region found without
the need to use more complex processing in order to classify
between healthy and lesioned skin. So, this algorithm is a
simple and efficient solution for processing macules, which
can have multiple applications.

Ideally, in an image identification process posterior to a
segmentation, it is important to have a feature or property
that allows distinguishing between classes of a group of data.
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0is can be complicated depending on the characteristics of
what is being identified in the image, so quantitative pa-
rameters are preferred to guarantee a more robust result.

0erefore, the macules measured were characterized
using morphologic properties, to define shape and geometry;
intensity properties, to establish maximum and minimum
values of the pixels within the lesion and to separate them
from the healthy skin; and the proposed Shade Indices, to
identify lesions by color tone. During the development of the
characterization (Stage 3), it became evident that, e.g., color
red (in the RGB image) did not look the same in every skin
tone or even with different illumination, so the reference
value could not be fixed. 0e solution to overcome these
problems was to come up with a novel set of Shade Indices,
where the healthy skin around the macule was used as a
reference for color tone shifts. On the contrary, ShIR and
ShIBR turned out to be the indices that helped differentiating
the most between the macules studied.

Morphologic properties are features of the macule in
which it was possible to point out geometric and shape
variations among most of them. Intensity properties did not
seem to have a considerable input for classification of data
since their p values were significant in less than 40% of the
relations studied.

In general, from this analysis, it was comprehensible how
complex the problem was since different kinds of macules
were present at the same time and, even more, they were
overlaid. From the image segmentation and processing point
of view, there was a high difficulty to isolate the lesion region
to provide an accurate assessment. Nevertheless, with the
macule properties chosen and calculated, it was possible to
classify each type of macule with 97.5% of accuracy.

With the use of the SMaC Software© characterization
and latter classification, the macules of patients with diabetes
can be measured and tracked along the development of the
disease in order to prevent further disabilities and comor-
bidities. 0e use of this software can be especially beneficial
for those physicians who do not have specialized training or

enough expertise to identify specific macules; it can also be
used as an educational tool. 0e perception of the impor-
tance on skin manifestations that appear previous to ulcers
or amputations must be changed since they seem to be the
first symptom of endothelial decay and vascular damage
which lead to worse symptoms of diabetic foot and, even-
tually, to amputation. From the clinical perspective, the
origin of skin and limb damage is multifactorial, but it relates
mainly to endothelial decay.

In the future, we aim to turn this GUI Software into a
Diagnosis Assistance Tool, which would include clinical
variables and other diabetic foot manifestations in order to
gather enough data to eventually form a database of patients
with diabetes, for preventive purposes.

4. Conclusion

Nowadays, lower limb skin manifestations are not taken into
account in the general evaluation of the state and devel-
opment of diabetes mellitus type II, even when they have an
underlying vascular origin. 0is paper presents the appli-
cation of an algorithm for the segmentation, characteriza-
tion, and classification of skin manifestations from
photographic images and the identification of them in the
lower limbs of diabetic patients. An efficient algorithm for
image processing of skin macules characterization per-
formed by means of extracting morphologic and intensity
properties is proposed, along to a new set of Shade Indices
used to assess color shifts in different skin tones. From the
three sets of features, morphologic properties and Shade
Indices resulted statistically significant in order to differ-
entiate among macules of various origins. 0e indices de-
scribed here are a new way to assess changes in color for
different skin tones, which increase the usefulness of the
application. 0e properties extracted are used as feature
vectors for the input of a classification network which
resulted in a 97.5% accuracy for the 4 types of macules
studied in this paper: vascular, petechiae, trophic changes,

Figure 9: SMaC Software© for segmentation and characterization. 0is example shows the segmentation and characterization of a trauma
macule.
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and trauma. 0e SMaC Software© was designed to bring the
proposed algorithm as a tool for the physician in order to aid
in the identification and assessment of skin lesions in the
lower limbs of patients with diabetes.
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