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Interactions of the extracellular matrix (ECM) and cellular receptors constitute one of the
crucial pathways involved in colorectal cancer progression and metastasis. With the use of
bioinformatics analysis, we comprehensively evaluated the prognostic information
concentrated in the genes from this pathway. First, we constructed a ECM–receptor
regulatory network by integrating the transcription factor (TF) and 5’-isomiR interaction
databases with mRNA/miRNA-seq data from The Cancer Genome Atlas Colon
Adenocarcinoma (TCGA-COAD). Notably, one-third of interactions mediated by 5’-
isomiRs was represented by noncanonical isomiRs (isomiRs, whose 5’-end sequence
did not match with the canonical miRBase version). Then, exhaustive search-based feature
selection was used to fit prognostic signatures composed of nodes from the network for
overall survival prediction. Two reliable prognostic signatures were identified and validated
on the independent The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ)
cohort. The first signature was made up by six genes, directly involved in ECM–receptor
interaction: AGRN, DAG1, FN1, ITGA5, THBS3, and TNC (concordance index 0.61,
logrank test p � 0.0164, 3-years ROC AUC � 0.68). The second hybrid signature was
composed of three regulators: hsa-miR-32-5p, NR1H2, and SNAI1 (concordance index
0.64, logrank test p � 0.0229, 3-years ROC AUC � 0.71). While hsa-miR-32-5p exclusively
regulated ECM-related genes (COL1A2 and ITGA5), NR1H2 and SNAI1 also targeted
other pathways (adhesion, cell cycle, and cell division). Concordant distributions of the
respective risk scores across four stages of colorectal cancer and adjacent normal
mucosa additionally confirmed reliability of the models.
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1 INTRODUCTION

The extracellular matrix (ECM) is a noncellular component of tissue, which biochemically and
structurally supports cells. The ECM is composed of different glycoproteins such as collagens,
laminins, and fibronectins (Theocharis et al., 2016), and there are dozens of cellular receptors which
directly interact with the components of the ECM, for example, integrins or cadherins (Barczyk et al.,
2010). Interactions between the ECM and receptors on the cellular surface regulate cell behavior and
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play an important role in communications between cells, cell
proliferation, adhesion, and migration (Nguyen-Ngoc et al., 2012;
Plotnikov et al., 2012; Schlie-Wolter et al., 2013; Lange et al.,
2014).

A number of studies revealed a crucial role of the
ECM–receptor interaction in colorectal cancer development
and metastasis formation (Stankevicius et al., 2016; Crotti
et al., 2017; Maltseva and Rodin, 2018). We recently showed
the contribution of α5 laminin in differentiation of colorectal
cancer cells and chemotherapy resistance (Maltseva et al., 2020).
Several works describe biomarkers and signatures for assessment
of colorectal cancer prognosis based on the expression of
particular genes involved in ECM–receptor interaction,
including genes encoding integrins (Boudjadi et al., 2013;
Gong et al., 2019), E- and P-cadherin (Sun et al., 2011;
Christou et al., 2017), and different laminins (Galatenko et al.,
2018). ECM-based prognostic gene signatures were constructed
for gastric (Yang et al., 2020), breast (Bergamaschi et al., 2008),
prostate (Pang et al., 2019), and bladder (Qing et al., 2020)
cancers. However, to the best of our knowledge, no
comprehensive prognostic analysis of ECM–receptor
interaction–based colorectal cancer gene signatures has been
done so far.

Another dimension useful for the construction of prognostic
signatures is the analysis of regulatory networks (Ahmad et al.,
2012; Guo et al., 2020; Nersisyan et al., 2021b). Specifically, gene
expression levels could be dynamically regulated by other
molecules, such as transcription factors (TFs), microRNAs
(miRNAs), and others. Recently, it was shown that miRNAs
are present in a cell in different variants, called miRNA isoforms
(isomiRs) (Morin et al., 2008; Loher et al., 2014). As a result of
imprecise enzymatic cleavage, miRNA hairpins give rise to
mature forms, which differ from each other in 1–3 nucleotides
at the ends of the molecule (Zhiyanov et al., 2021). Importantly,
the targetome of isomiRs with differences at 5’-ends (5’-isomiRs)
significantly differ from the canonical form (Tan et al., 2014; van
der Kwast et al., 2020). Thus, 5’-isomiRs could be considered
separate miRNAs with their own sets of targets.

In this work, we analyzed expression patterns of genes
involved in the ECM–receptor interaction pathway using RNA
sequencing data of colorectal cancer samples taken from The
Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD)
and Rectum Adenocarcinoma (TCGA-READ) projects
(Network, 2012). First, we constructed and analyzed a
regulatory network to infer 5’-isomiRs and TFs, which are
direct regulators of genes from the ECM–receptor interaction
pathway. The network was built with miRGTF-net—the recently
developed tool which integrates both expression and database-
level data for the network construction (Nersisyan et al., 2021b).
Next, the obtained network was used to construct hybrid isomiR-
gene signatures for predicting overall survival in colorectal
cancer. For this analysis, we employed a novel technique of
exhaustive search-based Cox model fitting. Namely, ExhauFS
software (Nersisyan et al., 2021c) was used to construct
prognostic models for all gene/5’-isomiR pairs, triples, etc;
then, the best performing model was picked.

2 METHODS

2.1 TCGA mRNA and miRNA Sequencing
Data
RNA and miRNA sequencing read count tables were downloaded
from the GDCData Portal for n � 426 TCGA-COAD and n � 161
TCGA-READ colorectal cancer samples (tumors with
unmatched miRNA/mRNA profiles or without clinical
information were not considered). For the comparison of
primary tumors and adjacent normal mucosa, n � 7 TCGA-
COAD normal samples were also included. With the use of the
trimmed mean of M-values (TMM) algorithm implemented in
the edgeR v3.30.3 package (Robinson et al., 2010), the obtained
mRNA-seq and miRNA-seq count matrices were processed into
the TMM-FPKM and TMM-RPM tables, respectively. Low
expressed genes and miRNAs were filtered out using the
default procedure available in edgeR.

The conventional nomenclature was used to annotate 5’-
isomiRs (Telonis et al., 2015; Zhiyanov et al., 2021). For
example, hsa-miR-30e-5p|+1 stands for the mature hsa-miR-
30e-5p miRNA without the first nucleotide at the 5’-end
(i.e., the number after | represents the offset at the 5’-end in
the direction from the 5’-end to the 3’-end).

2.2 Network Analysis
A recently developed miRGTF-net tool (Nersisyan et al., 2021b)
was applied to the TCGA-COAD dataset for the construction of a
colorectal cancer miRNA-gene-TF regulatory network. The main
feature of this approach consists in the integration of expression
data (TCGA-COAD) with the biological interaction databases:

• TFLink database (https://tflink.net) was used to extract TF-
gene interactions;

• TF-miRNA interactions were obtained from TransmiR v2.0
(Tong et al., 2019);

• miRDB v6.0 (Chen and Wang, 2020) custom prediction
mode was employed to predict targets of 5′-isomiRs (as
recommended by the tool authors, interactions with target
scores ≥ 80 were considered).

First, the initial network was constructed based on the
interactions listed in these databases. Second, all uncorrelated
and wrong-directional edges (like positively correlated miRNAs
and their targets) were discarded. Then, interaction scores were
assigned to each edge and node of the network. The interaction
scores are based on the strength of the linear dependence between
expressions levels of the connected nodes. After filtering out
nodes and edges with low interaction scores, the resulting
network consisted of nodes with significant influence on some
other nodes and/or significantly regulated by some other node.
Configuration for miRGTF-net execution is listed in
Supplementary Material.

ECM–receptor interaction–related genes were taken from the
KEGG hsa04512 pathway (Kanehisa et al., 2021) (we refer to
these genes as ECM set). Next, the output of miRGTF-net was
used to construct a subnetwork composed of molecules, which
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either regulates a gene from the ECM–receptor interaction
pathway or is regulated by a gene from the pathway (ECM+ set).

2.3 Construction of Prognostic Signatures
The TCGA-COAD cohort was split into training (75% of
samples) and filtration (25%) sets with a stratification by
outcome indicator (death or censoring) and overall survival
time (date of death or date of the last follow-up). Namely, we
first sorted samples by outcome indicator and then sorted
samples by overall survival time within each outcome group.
Finally, every fourth sample was added to the filtration set, and
the resting samples were labeled as the training ones. The
independent TCGA-READ dataset was used for the model
validation (test set).

The ExhauFS tool (Nersisyan et al., 2021c) was used to fit Cox
survival regression models. For each length of prognostic
signature (k � 1, 2, . . . , 10), we first selected n most
individually predictive features (see the next paragraph for the

details) and then fit Cox models for all possible
n
k

( ) feature

subsets. The values of n were chosen for reasons of limiting the
computational time by the default procedure available in
ExhauFS (Supplementary Table S1). The pipeline was
executed in two modes: in the first one, genes from the ECM
set were pre-selected, and in the second run, all 537 genes and
isomiRs from the ECM+ set were considered for the model
construction.

The concordance index was used as the main model accuracy
metric, including the feature selection step. That is, features (genes and
isomiRs) were selected according to the concordance index of the
respective univariate model. In addition, patients were separated into
high- and low-risk groups (the median risk score calculated on the
training set was used as a cut-off value). This allowed us to construct
Kaplan–Meier curves and compare low- and high-risk groups with
the hazard ratio metric and the logrank test. Finally, time-dependent
ROCAUCwas calculated to measure discriminative power of models
for predicting 3-year patient survival. Configuration for ExhauFS
execution is listed in Supplementary Material.

The set of reliable models was defined by the following
thresholds, set on both training and filtration sets:
concordance index > 0.6, hazard ratio > 2, logrank test p-
value < 0.01, and 3-year ROC AUC > 0.6. The best
performing model was chosen by taking the signature with the
maximal concordance index on the training set.

2.4 Enrichment Analysis
Enrichment analysis of gene sets was conducted using DAVID
v6.8 (Huang et al., 2009). Significantly enriched terms were
identified by setting a 0.05 threshold on false discovery rates
(FDRs).

2.5 Statistical Analysis
A hypergeometric test was applied to

• identify regulators (TFs and isomiRs) with an
overrepresented number of target genes in the ECM set;

• identify genes and isomiRs, which were overrepresented in
the reliable prognostic signatures.

“Over”-regulated genes from the ECM set were determined by
the binomial test. In all the cases, the Benjamini–Hochberg
procedure was employed to adjust for multiple testing
correction. SciPy implementation of statistical tests was used
(Virtanen et al., 2020).

3 RESULTS

3.1 Regulatory Network of ECM–Receptor
Interaction Pathway
The first step of our analysis was the inference of regulatory
interactions affecting genes from the ECM–receptor interaction
pathway (from here onward, we refer to these genes as ECM set).
The MiRGTF-net tool allows one to construct miRNA–gene–TF
interaction networks combining both database-level and
integrative miRNA/gene expression data. At the beginning, the
database-level network was constructed; it contained interactions
of the three types:

• TFs regulating target genes;
• TFs regulating target miRNAs;
• 5’-isomiRs downregulating target genes.

Then, TCGA-COAD gene and isomiR expression data were
analyzed to filter only those interactions which are supported by a
significant correlation in considered samples.

The resulting ECM–receptor regulatory network consisted of
522 nodes, which included 442 TFs, 27 5’-isomiRs, and 53 genes
from the ECM–receptor interaction pathway (here onward,
ECM+ set). First, we analyzed out-degrees of the network
nodes, that is, the numbers of regulatory interactions
outgoing from TFs and isomiRs. The network had 49
hubs—regulators whose targets were significantly enriched by
the ECM set (Figure 1A, Supplementary Table S2). Aside from
well-known TFs, regulating hundreds and thousands of genes
(e.g., ZEB1, TWIST1, SPI1, etc.), there were three isomiRs (hsa-
miR-148a-3p|-1, hsa-miR-29b-3p|0, and hsa-miR-32–5p|0)
narrowly regulating the ECM set. Reciprocally, network in-
degree analysis revealed nine “over”-regulated genes from the
ECM set, mainly integrins and laminins (Figure 1B,
Supplementary Table S3).

Interestingly, one-third of isomiR–target gene interactions (13
out of 39) were mediated by noncanonical 5’-isomiRs
(i.e., isomiRs whose 5’-ends do not match with canonical
the miRBase version). This included four mRNA targets of
hsa-miR-148a-3p|-1 (LAMA4, LAMB2, ITGA11, and
COL4A1), two targets of hsa-miR-335-3p|-1 and hsa-miR-
30e-5p|+1 (both isomiRs regulated ITGA1 and COL1A2),
and five isolated isomiR–gene interactions: hsa-miR-92a-
3p|+2 and ITGAV, hsa-miR-203a-3p|+1 and COL4A1, hsa-
miR-200b-3p|+1 and LAMA4, hsa-miR-194-5p|-1 and
ITGA2, and hsa-miR-142-3p|+1 and LAMC1. Thus,
consideration of 5’-isomiRs as distinct functional units

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7826993

Nersisyan et al. ECM Network and Colorectal Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


added much information about RNA interference–mediated
gene silencing.

3.2 Prognostic Power of the ECM and ECM+
Sets
Next, we assessed whether it is possible to find an accurate overall
survival prediction model constructed of molecules from the
ECM and ECM+ sets. We used our recently developed
ExhauFS tool to go over all possible prognostic signatures

composed of ECM/ECM+ genes and 5’-isomiRs, where the
signature length varied from 1 to 10. While it was possible to
search over all possible gene/isomiR pairs composed of 537
molecules (cardinality of the ECM+ set), the exhaustive search
was computationally infeasible already for the triples. To tackle
this problem, ExhauFS selects the relevant number of the most
individually informative features and then performs exhaustive
search among them (see Methods for the details).

For the pipeline evaluation, 75% of the TCGA-COAD cohort
was used for the Cox model training, and the remaining 25% was

FIGURE 1 | ECM–receptor regulatory network. Blue nodes represent TFs, red nodes represent genes, and green nodes represent 5′-isomiRs. The node size
indicates the value of the node degree; (A) out-degree; (B) in-degree.

FIGURE 2 | Distribution of the concordance indices of the reliable models for different lengths of signatures. (A) ECM+ models. (B) ECM models.
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used for the filtration. The TCGA-READ dataset was used as an
independent validation set. We set up several accuracy thresholds
to discard models which demonstrated unreliable quality either
on the training or the filtration sets (see Methods). The
distribution of model accuracies (concordance indices) for
each signature length (k) is shown in Figure 2. As it can be
seen, both ECM+ and ECM models started to overfit from some
point: quality of the models monotonically increased on the
training set and started to drop on the filtration set after a
certain signature length. The filtration set accuracy peak for
the ECM+ set fell on gene/isomiR triples and quadruples
(Figure 2); for the downstream analysis, we selected the
shorter signatures, since there was no statistically significant
difference between concordance indices for k � 3 and k � 4
(Mann–Whitney U-test p � 0.11). As for the ECM set, the highest
filtration concordance indices were detected for the 6-gene
signatures.

Among the ECM+ triples, the best model (according to the
concordance index on the training set) was constructed with one
canonical miRNA and two TFs: hsa-miR-32-5p|0, NR1H2, and
SNAI1. The risk score (RS) for the model was calculated as
follows:

RS � 0.25 p hsa-miR-32-5p|0 + 0.34 pNR1H2 + 0.25 p SNAI1.

The signature demonstrated reliable performance on the
TCGA-READ validation set: the concordance index was equal
to 0.64, difference in survival between groups of low- and high-
risk was statistically significant (hazard ratio � 2.25, logrank test
p � 0.0229, Figure 3A), and the model accurately classified 3-year
patient survival (3-year ROC AUC � 0.71, Figure 3B).

Similarly to the ECM+ case, the most reliable signature in the
ECM set was identified as follows:

RS � 0.30 pAGRN − 0.57 pDAG1 + 0.11 p FN1 + 0.36 p ITGA5

+ 0.29 pTHBS3 − 0.42 pTNC.

The quality of this signature, composed of six genes directly
involved in ECM–receptor interaction, was comparable to the
quality of hybrid ECM+ prognostic triple: concordance index �
0.61, hazard ratio � 2.14, logrank test p � 0.0164 (Figure 4A), 3-
year ROC AUC � 0.68 (Figure 4B). The complete list of accuracy
metrics (including training and filtration sets) is presented in
Supplementary Table S4 and Supplementary Figure S1.

To assess the relationship between expression levels of nine
identified prognostic molecules, we performed hierarchical clustering
using both sample-wise expression values (Figure 5A) and correlation
matrix (Figure 5B). Notably, three genes (FN1, ITGA5, and TNC)
showed a strong co-expression pattern, while the other molecules did
not formclear cluster structures. For both signatures, we compared the
distributions of the underlying risk scores between four stages of
colorectal cancer and adjacent normal tissues. In all cases, the risk
scores monotonically increased from the normal mucosa to stage IV
cancer (Figure 6). This observation is an additional piece of evidence
of reliability of two constructed models.

3.3 Regulatory Neighborhood of the
Prognostic 5’-isomiR/Gene Triple
Since the best ECM+ model was composed of three regulators
(one miRNA and two TFs), the next step of our analysis was to

FIGURE3 | Performance of hsa-miR-32-5p|0, NR1H2, and SNAI1 signature on the validation set. (A)Kaplan–Meier curves. (B) 3-year ROC curve. Red point on the
ROC curve corresponds to the risk score threshold, calculated as a median score on the training set.
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explore the landscape of regulatory interactions mediated by these
molecules (Figure 7). Out of three regulators, onlymiR-32 specifically
regulated the ECM–interaction pathway: two (COL1A2 and ITGA5)
out of nine predicted targets were from the ECMset (adjusted p� 8.92
× 10–3). Moreover, DAVID enrichment analysis of this set of nine
genes revealed only two pathways tightly related to the ECM:
ECM–receptor interaction (KEGG hsa04512, adjusted p � 0.0168)
and focal adhesion (KEGG hsa04510, p � 0.0463).

Unlike miR-32, targetomes of NR1H2 and SNAI1 were not
focused on the ECM set; only 4/705 targets of NR1H2 (HMMR,

ITGA3, ITGB4, and LAMB3, p � 0.86) and 1/6 targets of SNAI1
(FN1, p � 0.16) were associated with ECM–receptor interaction.
To uncover the regulatory role of NR1H2 and SNAI1 in colorectal
cancer, we also performed DAVID functional enrichment
analysis of the sets of their target genes inferred by miRGTF-
net. Multiple pathways were enriched in the set of NR1H2 targets,
including cell cycle, cell division, DNA repair, and RNA splicing
(SupplementaryTable S5). In case of SNAI1, the cell adhesion
pathway was enriched when no multiple testing correction was
applied (Supplementary Table S5). Thus, the inclusion of

FIGURE 4 | Performance of AGRN, DAG1, FN1, ITGA5, THBS3, and TNC signature on the validation set. (A) Kaplan–Meier curves. (B) 3-year ROC curve. Red
point on the ROC curve corresponds to the risk score threshold, calculated as a median score on the training set.

FIGURE 5 | Expression distribution of the nine prognostic molecules. (A) Normalized and log 2-transformed expression units. (B) Spearman correlation matrix.
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regulators in the prognostic signatures expanded the scope of the
considered ECM pathway.

4 DISCUSSION

In this work, we used expression data of genes constituting the
ECM–receptor interaction pathway and its direct 5’-isomiR and TF
regulators to compose prognostic signatures for colorectal cancer. The
novel feature of the network construction step consisted in accounting
for 5’-isomiR targeting. Importantly, one-third of all isomiR–gene
interactions were mediated by noncanonical 5’-isomiRs. These
numbers are in agreement with previous experimental findings,
which demonstrated biological activity of noncanonical 5’-isomiRs,
for example,miR-411|-1 (vanderKwast et al., 2020) ormiR-9|+1 (Tan
et al., 2014).

With the use of the ECM–receptor regulatory network, we
constructed two reliable signatures for overall survival prediction.
The first hybrid signature was composed of one canonical

miRNA and two TFs: hsa-miR-32-5p|0, NR1H2, and SNAI1.
The second signature was composed of six genes, directly
involved in ECM–receptor interaction: AGRN, DAG1, FN1,
ITGA5, THBS3, and TNC. A number of studies already
highlighted the role of several markers from the constructed
signatures in colorectal cancer. In two recent reports, miR-32 was
shown to promote tumorigenesis, radioresistance, migration, and
invasion of colorectal cancer by targeting BMP5 and TOB1 (Chen
et al., 2018; Liang et al., 2019). With the use of sequence-based
target prediction coupled with co-expression analysis, here, we first
showed that miR-32 targets are overrepresented in the ECM–receptor
interaction pathway (adjusted p-value � 8.92 × 10–3). Thus, the new
possible regulatory role ofmiR-32was uncovered. Anothermember of
the ECM+ prognostic triple, the SNAI1 transcription factor, was also
linked to the poor prognosis of colorectal cancer. Namely, SNAI1
regulates epithelial–mesenchymal transition (EMT) by suppressing
E-cadherin and promotes chemoresistance in colorectal cancer
(Hoshino et al., 2009; Wang et al., 2018). Nevertheless, we did not
find specific roles of NR1H2 in the colorectal cancer development,

FIGURE 6 | Distribution of the risk scores across normal tissues and four stages of colorectal cancer. (A) hsa-miR-32-5p|0, NR1H2, and SNAI1 signature. (B)
AGRN, DAG1, FN1, ITGA5, THBS3, and TNC signature.

FIGURE 7 | Regulatory neighborhood of the prognostic 5′-isomiR/gene triple. (A) NR1H2. (B) hsa-miR-32–5p|0. (C) SNAI1.
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progression, or metastasis. Functional enrichment analysis of NR1H2
downstream targets suggested the contribution of this TF to the
regulation of core cellular pathways, such as cell cycle and cell division.

The second signature was also partially composed of well-
studied genes. We previously showed the strong upregulation of
ITGA5 in Caco-2 human colorectal cancer cell lines exposed to
hypoxia, as a consequence of hypoxia-induced decrease in
expression of its direct regulator—miR-148a (Nersisyan et al.,
2021a). Notably, this regulatory interaction (miR-148a
suppressing ITGA5) was also supported by the negative
correlation in our miRGTF-net analysis. In the same work, the
negative association between ITGA5 expression levels and
patients’ overall survival was observed. Other studies showed
that reduced DAG1 protein expression is associated with poor
outcome of colorectal cancer (Coco et al., 2012); downregulation
of FN1 decreases proliferation, migration, and invasion of
colorectal cancer cells (Cai et al., 2018), while TNC induces
EMT and proliferation (Yang et al., 2018). As for AGRN and
THBS3, we have not found evidence on their role in colorectal
cancer pathogenesis. The comprehensive reference list
summarizing the role of the selected genes in colorectal cancer
prognosis is presented in Supplementary Table S6.
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