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The pandemic of the coronavirus disease 2019 (COVID-19) has posed huge threats to healthcare systems and the global economy.
However, the host response towards COVID-19 on the molecular and cellular levels still lacks full understanding and effective
therapies are in urgent need. Here, we integrate three datasets, GSE152641, GSE161777, and GSE157103. Compared to healthy
people, 314 differentially expressed genes were identified, which were mostly involved in neutrophil degranulation and cell
division. The protein-protein network was established and two significant subsets were filtered by MCODE: ssGSEA and
CIBERSORT, which comprehensively revealed the alternation of immune cell abundance. Weighted gene coexpression network
analysis (WGCNA) as well as GO and KEGG analyses unveiled the role of neutrophils and T cells during the progress of the
disease. Based on the hospital-free days after 45 days of follow-up and statistical methods such as nonnegative matrix
factorization (NMF), submap, and linear correlation analysis, 31 genes were regarded as the signature of the peripheral blood
of COVID-19. Various immune cells were identified to be related to the prognosis of the patients. Drugs were predicted for the
genes in the signature by DGIdb. Overall, our study comprehensively revealed the relationship between the inflammatory
response and the disease course, which provided strategies for the treatment of COVID-19.

1. Introduction

The global pandemic of the coronavirus disease 2019
(COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), exhibits high levels of
mortality and morbidity and has posed huge threats to
healthcare systems and the global economy [1, 2]. The cur-
rent COVID-19 pandemic is unprecedented; globally, there
have been over 108 million confirmed cases of COVID-19
that have led to over 2.37 million deaths, released by the
World Health Organization (WHO) on February 14, 2021
(https://www.worldometers.info/coronavirus/). It is urgent

to understand the molecular mechanisms of COVID-19
and identify the patients’ susceptibilities so as to find thera-
peutic interventions.

SARS-CoV-2 belongs to the family of single-stranded
RNA viruses known as coronavirus. Its cellular entry
requires angiotensin-converting enzyme 2 (ACE2) and
transmembrane protease serine 2 (TMPRSS2) for membrane
fusion or through the endosomal pathway to infect the host
[3–5]. With an oxidative stress and excessive inflammatory
response, COVID-19 is being regarded as a systemic disease.
With diverse clinical manifestations, COVID-19 patients
may present as asymptomatic, with mild respiratory tract
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infection, acute respiratory distress syndrome, respiratory
failure, or even death [6–8]. The imbalance of host immune
response and the activation of inflammatory cytokines are
called “cytokine storm,” which is related to the severity of
the disease and poor prognosis [9].

So far, several immunological characteristics of COVID-
19 patients have been demonstrated. Serum c-reactive pro-
tein (CRP) and interleukin-6 (IL-6) will increase, while
CD4+ and CD8+ T lymphocytes decrease [10–12]. Elevated
levels of other inflammatory cytokines and chemokines such
as interleukin-2 (IL-2) and interleukin-8 (IL-8), accompa-
nied by increased neutrophils and eosinophils, may also lead
to abnormal immune function in COVID-19 patients, fur-
ther causing more immune cells to be activated and
recruited into the lungs, causing “cytokine release syn-
drome” (CRS) [13–15]. The ratio of macrophages and
CD14+ monocytes in PBMC increased, especially in patients
with severe COVID-19 in the disease progression stage [16].
At the same time, the number of B cells in the peripheral
blood of patients with severe COVID-19 increased signifi-
cantly but the number of T cells and DC decreased [17].
With a lower baseline levels and functionally exhausted in
CD8+ T cells and NK cells, the imbalance of patients in
the intensive care unit (ICU) is more prominent [18].
Inflammation is further aggravated by the activation of
humoral immunity and the complement system, and the
weakening of some classical immune negative signals exacer-
bates inflammation [9, 19, 20].

Furthermore, several analyses of the transcriptome with
high throughput have been conducted to identify the molec-
ular signature of COVID-19 patients [21–25]. However, dif-
ferent studies may have distinct results due to the cohort size
and sample heterogeneity. In our study, we aimed to inte-
grate different high-throughput studies to unveil the tran-
scriptomic alterations and differences of immune cell
infiltration in the peripheral blood of COVID-19 patients.
We uncovered the differentially expressed genes between
the healthy people and patients, as well as the DEGs between
non-ICU and ICU patients, which underwent comprehen-
sive functional annotation and PPI network construction.
We applied ssGSEA and CIBERSORT to evaluate the
immune cell infiltration, and the DGIdb database was uti-
lized to predict the drug-gene interaction. By profiling the
characteristics of COVID-19 patients with different courses,
we hoped to provide new insights into molecular pathogen-
esis and potential therapeutic targets of COVID-19.

2. Materials and Methods

The workflow of the study was shown in Figure 1.

2.1. Data Processing. Two gene expression series, GSE152641
and GSE161777 [26, 27], which contained blood samples
from healthy controls and patients, were downloaded from
the Gene Expression Omnibus (GEO) (https://www.ncbi
.nlm.nih.gov/geo/) database on January 3rd and February
23 publicly. GSE152641 contained RNA sequencing data
from 62 COVID-19 patients and 24 healthy controls in the
form of count. 27 samples of GSE161777 were selected in

the form of count, including 13 patients (the first blood sam-
ple collection after diagnosis) and 14 healthy controls. Fur-
thermore, GSE157103 [28], another RNA-seq profile in the
form of TPM (trans per million), containing peripheral
blood leukocyte samples as well as various clinical informa-
tion from 50 ICU and 50 non-ICU COVID-19 patients was
also downloaded from the GEO database publicly for further
exploration on January 26.

2.2. Identification of Differentially Expressed Genes (DEGs).
The limma [29], limma_voom [30], and edgeR [31] package
of R were employed to perform the identification of DEGs;
the first one was for data in the TPM format and the latter
two were for data in the count format. We consider genes
with ∣log2 fold change ðFCÞ ∣ >1 and an adjusted p value<
0.05 is differentially expressed between two groups. These
genes were counted and included in the Venn diagram by
the Venndiagram [32] package of R to distinguish the
repeated ones.

2.3. Pathway and Functional Enrichment Analyses. The clus-
terProfiler [33] package of R was applied to perform the
pathway and functional enrichment analyses, based on the
Gene Ontology (GO) database [34] (http://geneontology
.org/) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [35] (https://www.genome.jp/kegg/). GO
is a platform constructed from the cellular component
(CC), molecular function (MF), and biological process
(BP). KEGG is a database widely used to carry out the bio-
logical pathway enrichment. Reactome [36] enrichment
and UniProt [37] database annotation are directly available
on Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING, http://string.embl.de/) online database for
further functional and pathway enrichment analyses.

2.4. Protein-Protein Interaction (PPI) Network Generation
and MCODE Analysis. The Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) was also exploited to
generate a protein-protein interaction (PPI) network, for
the online biological database is based on known and poten-
tial protein-protein interaction [38]. Only those genes with
interaction scores higher than 0.7 would be picked up and
put into Cytoscape software [39] for further visualization anal-
ysis. The plug-in Molecular Complex Detection (MCODE)
[40] was designed to seek subnets of PPI networks from the
STRING online database, and we set all the parameters to
default to identify significant subnets.

2.5. Evaluation of Immune Cell Abundance. Single-sample
gene set enrichment analysis (ssGSEA) was applied to quan-
tify the abundance of infiltration of different types of
immune cells through the GVSA [41] package of R. For
every single sample, we conducted standardization in order
of the gene expression amount and calculated the enrich-
ment scores (ES) by empirical cumulative distribution func-
tion, which can finally be transformed into the abundance of
infiltration of 28 types of immune cell, and the immune cells
gene sets were obtained from a recent study [42]. CIBER-
SORT [43] (https://cibersort.stanford.edu/), an analytical
tool (R script version was utilized) which can estimate the
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abundances of certain cell types in a mixed cell population,
was employed to reveal the proportion of 22 types of
immune cells.

2.6.Weighted Gene Coexpression Network Analysis (WGCNA).
Weighted gene coexpression network analysis (WGCNA)
was aimed at seeking for coexpressed gene modules and
exploring the connection between gene networks and the
traits being studied. First, according to the expression of
genes in different samples, the correlation between any two
genes, calculated by Pearson correlation analysis [44], was
collected to form a similarity matrix. At the same time, the
topological overlap matrix (TOM) method was employed to
take both direct and indirect relationships into account.
Then, the hierarchical cluster tree would generate whose
division of gene modules was based on the TOM value
between genes [45]. The module with the highest correlation
with sample characteristics was selected for further analysis.

2.7. Clustering and Subclass Mapping. Nonnegative matrix
factorization (NMF) clustering was conducted by the NMF
package in R [46]. Briefly, the best number of clusters was
chosen according to the cophenetic value. Then, NMF was
conducted with the best rank and the method set to “bru-
net.” Submap [47] in the GenePattern online tool (https://
cloud.genepattern.org/gp) was applied to evaluate the simi-
larities between the clusters identified by NMF and the
clinical traits. Patients were classified into 4 groups (divided
by the median and the upper and lower quantiles) accord-
ing to the hospital-free days, which were named B1, B2, B3,
and B4. The p value in the result was corrected by the
Bonferroni method.

2.8. Drug-Gene Interaction Prediction. The open-source
database named the Drug Gene Interaction Database
(DGIdb, https://dgidb.genome.wustl.edu) [48] was utilized
to show the known or potential interaction between drugs
and genes by entering a list of genes. DGIdb covers over
100000 drug-gene interactions and 42 potentially druggable

gene categories involving more than 40000 kinds of genes
and 10000 types of drugs, based on PharmGKB, DrugBank,
Chembl, TTD, Drug Target Commons, and others. Here, we
only included the drug which had been approved and had a
certain interaction (activator or inhibitor) with the gene.
Then, the interaction network downloaded was visualized
by Cytoscape.

2.9. Statistical Analysis. The Wilcoxon test was applied to
judge whether a statistically significant difference exists
among groups. Pearson correlation analysis was employed
to conduct the correlation analysis in WGCNA and Spear-
man correlation coefficient to evaluate the correlation
between genes, immune cells, and hospital-free days. All of
these statistical analysis were performed in R 4.0.3 version.

3. Result

3.1. Transcriptomic Alternations and Functional Enrichment
in COVID-19 Patients. Firstly, GSE152641, containing blood
samples from 62 COVID-19 patients and 24 healthy con-
trols, were obtained from the GEO database in the form of
count. Then, the result of featureCounts of GSE161777 pro-
vided by the authors was merged, in which blood samples of
14 healthy people and 13 patients (first blood collection in
the trial) were selected for subsequent analysis. We applied
limma_voom and edgeR for each of the two datasets to
increase the reliability of differentially expressed analysis.
Totally, 253 genes were found to be upregulated after inter-
section of 4 DEG results, and 61 genes were downregulated
(Figure 2(a)). GO analysis revealed that the 253 upregulated
genes were enriched in the different process associated with
neutrophil activation and miosis in the BP module, which
was validated in the CC and MF module (Figure 2(b)). Sim-
ilar results were gained in KEGG enrichment (Figure S1a).
However, not significant pathways were enriched in GO
and KEGG for the 61 downregulated genes (Figure S1b-c).
In all, peripheral blood of COVID-19 patients might be
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Figure 1: Workflow in the present study.
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characterized by neutrophil activation and cells were in a
state of hyperproliferation.

3.2. Protein-Protein Interaction (PPI) Network for the DEGs.
To explore the important genetic interaction of the occur-

rence of COVID-19, we utilized the STRING database to
construct the PPI network of the 314 DEGs and only the genes
with interaction scores larger than 0.7 were extracted, which
was then put into Cytoscape. The PPI network was visualized
containing 153 nodes and 1253 edges (Figure S2). The size and

limma_voom_up2

68

0

19 9

947

363

117

253

6

407

27
0

1334 223

18

255

79

726

61

113

6
8

1 17

13

132

0

0

32

1

limma_voom_up1 limma_down1

limma_down2edgeR_up2 edgeR_down2

edgeR_down1edgeR_up1

(a)

BP
CC

M
F

Metaphase/anaphase transition of mitotic cell cycle

Regulation of mitotic metaphase/anaphase transition

Regulation of mitotic nuclear division

Cell cycle checkpoint

Chromosome segregation

Mitotic nuclear division

Organelle fission

Nuclear division

Neutrophil activation involved in immune response

Neutrophil degranulation

Specific granule lumen

Condensed chromosome, centromeric region

Azurophil granule

Primary lysosome

Condensed chromosome

Tertiary granule

Specific granule

Vesicle lumen

Cytoplasmic vesicle lumen

Secretory granule lumen

Nitric-oxide synthase binding

Immunoglobulin binding

Histone kinase activity

Rage receptor binding

Serine/threonine/tyrosine kinase activity

Serine hydrolase activity protein

Serine-type endopeptidase activity

Serine-type peptidase activity

Microtubule binding

Endopeptidase activity

GeneRatio
0.04 0.08 0.12 0.16

Count
10
20
30

0.03

0.02

0.01

p.adjust

(b)

Figure 2: Transcriptomic alternations and functional enrichment in COVID-19 patients. (a) Differentially expressed genes (DEGs)
upregulated (n = 278) and downregulated (n = 59) in COVID-19 patients compared with healthy cohort. (b) Gene Ontology analysis for
the 278 upregulated genes.
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color of the nodes as well as edges had been mapped according
to the statistic results by NetworkAnalyzer. Furthermore,
MCODE was used to identify the key subnets, with all the
parameters set to default. We then presented the first two
significant clusters, which were again put into STRING for
the functional enrichment. Genes in cluster1 (score: 34.3,
37 nodes, and 618 edges) mostly involved in the cell cycle
according to Reactome Pathway enrichment; protein-
annotated keyword by UniProt showed the similar results
(Figures 3(a)–3(b)). Genes in cluster2 (score: 13.5, 14
nodes, and 88 edges) involved in Neutrophil degranulation,
which are mostly secretory protein and signaling protein
(Figures 3(c)–3(d)). Totally, there is more evidence to
support that neutrophil degranulation and the strong cell
proliferation status were the significant characteristics of
the infection of SARS-CoV-2 (early stage).

3.3. Difference of Immune Cell Abundance between COVID-
19 Patients and Healthy People. In order to clarify the alter-
ation of infiltration of different types of immune cells in the
peripheral blood, we applied ssGSEA and CIBERSORT to
evaluate the immune cell abundance. For both of the two
datasets, ssGSEA identified the increase of activated CD4 T
cell, gamma delta T cell, type 2 T helper cell, activated den-
dritic cell, macrophage, and neutrophil (Wilcox test, p
value< 0.05) in COVID-19 patients compared to healthy
people. ssGSEA also identified the decrease of activated B
cell, activated CD8 T cell, immature B cell, and natural killer
cell (Figures 4(a) and 4(c)). As for CIBERSORT, for both of
the two datasets, plasma cells, macrophages M0, and neutro-
phils were identified to be upregulated in COVID-19
patients significantly (Wilcox test, p value< 0.05) but naïve
B cells; T cells CD8 were detected to be downregulated
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Figure 3: Protein-protein interaction (PPI) network for the DEGs. (a) Cluster 1 (score = 34:3, node = 37, and edge = 618) detected by
molecular complex detection (MCODE) of Cytoscape. (b) Reactome pathway enrichment and UniProt database annotation for the genes
in cluster1; line represented strength value. (c) Cluster2 (score = 13:5, node = 14, edge = 88) identified by MCODE. (c) Reactome pathway
enrichment and UniProt database annotation for the genes in cluster2.
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(Figures 4(b) and 4(d)). Overall, we supposed that the occur-
rence of COVID-19 was accompanied by activation of neu-
trophil and macrophage, especially neutrophil. However,
there was a dramatic alteration of lymphocytes, CD 8 cells,
and naïve B cells that were considered to be downregulated
in the COVID-19 patients.

3.4. Relationship between Transcriptomic Alternations and
Severity of Patients. The transcriptomic and immune cell
infiltration alternations during the occurrence of the disease
have been revealed in the above study, but we wondered the
immunological factors in disease progression. GSE157103,
containing RNA-Seq data of peripheral blood leukocyte
samples and various clinical data from 50 ICU and 50
non-ICU COVID-19 patients, was downloaded from the
GEO database in the form of TPM. Limma package for
DEG analysis identified 376 DEGs, including 67 upregulated
genes and 309 downregulated genes, which were enriched in
neutrophil degranulation and T cell activation in BP of GO,
respectively (Figures 5(a) and 5(b)). To verify the DEGs, next,
WGCNA was conducted on the top 5000 genes with the max
median absolute deviation. 7 modules were clustered under
the power value set to 30 (Figure 5(c), 1, Figure S3a). The
grey module presented the highest correlation with the
clinical traits (correlation efficient = 0:65) (Figure 5(c), 2).
Thus, genes in the grey module were extracted for GO
and KEGG analysis, which still showed that neutrophil
degranulation and neutrophil activation involved in immune
response played a crucial role (Figure 5(d), Figure S3).

3.5. Drug-Gene Interaction Analysis for Genes Related with
Hospital-Free Days. In order to establish a gene signature
representing the occurrence and development of COVID-
19, we designed a pipeline for constructing the signature
(Figure 6(a)). Firstly, we intersected the 314 and 376 DEGs
gained from the above analysis. The 42 genes represented
the molecule made sense both in the occurrence and prog-
ress of the disease. Then, the correlation coefficients between
the 42 genes and the hospital-free days during 45 days of
follow-up were calculated. And 31 genes with the coefficient
larger than 0.4 or smaller than −0.4 were selected, which
were considered as the factors that had influence on the clin-
ical outcome. We regarded the 31 genes as a “signature”
always active in COVID-19 (Table 1).

Next, the DGIdb database was used to predict the drug-
gene interaction. All of the 31 genes were input and only
drugs that had been approved and had a clear pharmacolog-
ical effect (inhibitor or activator) were included. Drugs tar-
geting 5 of the 31 genes, including CA4, S100A12, MMP8,
MMP9, and FCER1A were identified (Figure 6(b)). We
had gotten that CA4, S100A12, MMP8, and MMP9 were
related to a longer hospital day (inhibitor needed) while
FCER1A was related to a longer hospital-free days (activator
needed). For CA4, 16 kinds of inhibitors were found. Tri-
chlormethiazide and bendroflumethiazide were the top two
with the highest query score and interaction score. For
S100A12, olopatadine and amlexanox tended to be the
inhibitors. Doxycycline and doxycycline calcium were found
to target MMP8, while glucosamine, minocycline, and cap-

topril targeted MMP9, and benzylpenicilloyl polylysine can
act as an agonist for FCER1A.

3.6. Difference of Immune Cell Abundance between ICU
Patients and Non-ICU Patients and Immune Subtypes. To
explore the immunological changes during the progress of
the disease, we again utilized the ssGSEA and CIBERSORT
for the evaluation of immune cell infiltration on GSE157103.
Interestingly, we observed a significant decline of different
types of immune cells in the ICU patients based on ssGSEA.
CIBERSORT also implicated the decrease of different types
of immune cells, including T cell CD8 and T cell CD4
memory-activated and NK cells resting, but showed an
increase of neutrophils (Wilcox test, p value<0.05). Therefore,
the COVID-19 patients in the ICU might show less activation
of the immune system (Figures 7(a)–7(b)).

Next, to preliminarily demonstrate the impact of
immune cells on clinical prognosis, we utilized the ssGSEA
result to conduct the NMF clustering. 4 clusters were identi-
fied as shown in the heat map (Figure 7(c), 1). We noticed
that only plasmacytoid dendritic cell, neutrophil, activated
dendritic cell, MDSC, monocyte, activated CD8 T cell, acti-
vated B cell, and immature B cell were included in the clus-
tering. Cluster3 was the subtype abundant of the first 3 cells
and poor of the latter 5 cells, and cluster4 was opposite
(Figure 7(c), 2). Then, patients were divided into 4 groups
according to the hospital-free days during the 45 days of fol-
low-up: 0 days (always in hospital), 0–26 days, 26–38 days,
and 38–45days. Submap was applied to evaluate the similar-
ity of gene expression characteristics between cluster1–4
and B1–4. Interestingly, the Bonferroni-corrected p value
hinted that cluster3 (subtype of abundant plasmacytoid
dendritic cell, neutrophil, and activated dendritic cell but
poor of others) could be mapped to the patients with short
hospital-free days (Bonferroni corrected p = 0:02), while
cluster4 could be mapped to the patients with a relatively
good prognosis (Figure 7(d)).

3.7. Immune Cell Abundance Was Closely Related with
Hospital-Free Days and Gene Signature. The correlation
coefficient between different types of immune cell infiltra-
tion and the hospital-free days during 45-day follow-up
was calculated; ssGSEA identified 10 types of immune
cells which could ameliorate the patient’s hospitalization
(Figure 8(a)). Unfortunately, most of them degraded in the
ICU patients compared to non-ICU patients. Furthermore,
CIBERSORT identified a negative impact of neutrophils on
the hospital days (Figure 8(b)). Integrated with the previous
analysis, it was credible that lymphocytes, especially CD8 T
cells, were a protective factor of COVID-19 and the neutro-
phil could be a risk factor. Additionally, to understand the
mechanism of the effect of the immune cells, we listed the
correlation between the immune cells and the 31-gene sig-
nature as well as the correlation between the cells and the
5 genes with targeted drugs (Figure S4a-b). Whether in
ssGSEA or CIBERSORT, it was implicated that CA4,
S100A12, MMP8, and MMP9 were related with the
regression of lymphocytes, especially CD8 T cells, while
related with the activation of neutrophil. Conversely,
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FCER1A was related to the activation of various kinds of
immune cells but was negatively correlated with neutrophil
infiltration (Figure 8(c)). In short, studies at the level of
transcriptome and immune cells can be integrated, which
also provided an explanation for the predicted drugs.

4. Discussion

Although the pandemic of COVID-19 has threatened the
health of the world, the host immune response to SARS-
CoV-2 infection still lacks full demonstration. Up to now,

evidence showed that an imbalanced immune response to
inflammation is a major trigger of COVID-19 and the dys-
function of local and systemic immune responses had been
implicated in the disease outcome and prognosis. Thus,
identifying transcriptomic and immunological alternations
may not only be significant for a better comprehensive
understanding of the mechanisms of the disease but also
help to effective therapy excavation and individualized
management.

In the present study, we paid close attention to both the
occurrence (comparison1: healthy vs. patients) and the
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Figure 6: Drug-gene interaction analysis for genes related with hospital-free days. (a) Pipeline for the selection of the gene signature. (b)
Drug-gene interaction predicted by DGIdb.
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progress (comparison2: non-ICUers vs. ICUers) of COVID-
19. 253 upregulated genes and 61 downregulated genes were
identified to be differentially expressed during the occur-
rence of the disease. GO, KEGG, Reactome, and UniProt
were used to annotate the function of DEGs, and the PPI
network was constructed, with 2 crucial subnets identified.
WGCNA was used to find the significant gene modules.
ssGSEA and CIBERSORT revealed that neutrophil activation
and CD8+ T cell downregulations were two reliable changes
in both of the comparisons. Novelly, several drugs were pre-
dicted and the pharmacological effects were understood.

Combined with the enrichment result and the evaluation
of immune cells, it was clear that peripheral blood of the
COVID-19 patients was in a state of hyperproliferation
and immune cells show overall activation. Such changes
had been considered to be strongly related to oxidative
stress, which strengthened the immune system but could
also cause excessive inflammatory and respiratory failure
[49, 50]. Inferred from two comparisons, the beneficial

immune defense gradually transformed into an excessive
inflammatory response, while the immune system would
be in a state of exhaustion. On the other hand, neutrophils,
which was believed to play a key role during the disease
course in the present study, could also lead to damage
through oxygen species (ROS) [51].

Here, we will review the genes that had potential drugs,
which owned a close relationship with oxidative stress and
inflammation. CAs, which catalyze the interconversion of
water and carbon dioxide into dissociated ions of carbonic
acid, are a kind of zinc metalloenzymes broadly engaged in
various biological processes [52–54]. There are 14 isozymes
of CAs altered genetically in the pathological status in
human [55], and CA4 is the most widely distributed one
[56]. CA4 plays an important role in the bicarbonate reab-
sorption of the kidney [57]. During acidosis, its competence
is enhanced to generate more H+ to relay the acidosis [58].
We assume that CA4 on blood cells can act likely in the aci-
dotic status resulting from hypoxia created by COVID-19.
And CA4 may affect the function of neutrophils by modulat-
ing altering pH [59].

Next, MMPs are an enzyme family majorly correlated
with the remodeling of extracellular matrix (ECM) compo-
nents [60]. MMP9 (or gelatinase B) is one of the main types
of MMPs and can be found in diverse cells like monocytes,
macrophages, and neutrophils. MMP9 are highly expressed
in pathological processes including inflammation [61], as is
also discovered in this study. MMP9 is an inflammatory
cytokine, acting as a regulator to promote the secretion of
other cytokines by leukocytes. Besides, MMP9 itself is also
regulated by the degranulation from neutrophils, which is
induced by other various types of chemotactic factors. More-
over, MMP9 can truncate IL-8, the major human neutrophil
chemoattractant, into a tenfold more potent form, creating a
positive feedback loop for neutrophil activation and chemo-
taxis [62]. MMP8 is majorly synthesized and archived in
neutrophils [63]. Circulating MMP8 has been found to
closely related with lung fibrosis in COVID-19 patients
[64] and serves as member of a 5-protein classifier to predict
the prognosis of idiopathic pulmonary fibrosis (IPF) [65].

Besides, S100A12 is a member of the S100 protein family
of calcium-binding ability and is predominantly secreted by
neutrophils [66, 67]. As an emerging biomarker for inflamma-
tory diseases, the level of S100A12 in serum can reflect the
systemic inflammatory status in acute otitis media, cystic
fibrosis, respiratory distress syndrome, and dermatomyositis-
associated interstitial lung disease [67, 68]. Besides, S100A12
is also found to herald worse cardiac output and mortality in
pulmonary hypertension [69], which is also common in
COVID-19 [70]. Moreover, SA100A12, together with
S100A8 and S100A9, which are also both released by neutro-
phils, can activate airway epithelial cells to produceMUC5AC,
a major mucin protein in the respiratory tract [71], partly
interoperating the excessive mucus discovered in the necropsy
of COVID-19 patients [72]. And compared with S100A8 and
S100A9, SA100A12 is more considered as a marker for respi-
ratory diseases with neutrophilic inflammation [73].

Furthermore, FCER1A encodes a subunit of FcεR that
can bind with IgE [74] and can be found on the surface of

Table 1: 31 Genes in the signature of COVID-19.

Gene Correlation coefficient p value

PID1 0.693520919 1.27E−15
P2RY10 0.679852476 7.38E−15
CD40LG 0.668959371 2.81E−14
FCER1A 0.654672468 1.49E−13
CD5 0.645849101 4.00E−13
TCF7 0.636922512 1.05E−12
FAM102A 0.624610777 3.80E−12
TRABD2A 0.623338096 4.32E−12
NELL2 0.618426883 7.08E−12
CPA3 0.593173164 7.88E−11
TPPP3 0.584820798 1.67E−10
HDC 0.57412751 4.24E−10
MAL 0.536815499 8.54E−09
PRSS33 0.521039587 2.73E−08
ALOX15 0.516734511 3.72E−08
VSIG4 −0.429548434 8.21E−06
MMP8 −0.472200179 7.05E−07
ANXA3 −0.517766599 3.46E−08
CHIT1 −0.529930553 1.43E−08
ADAMTS2 −0.53487937 9.89E−09
PCOLCE2 −0.544461309 4.76E−09
TPST1 −0.551635666 2.71E−09
WFDC1 −0.555936581 1.92E−09
IL18R1 −0.561055133 1.27E−09
CA4 −0.581762072 2.19E−10
MMP9 −0.583963653 1.80E−10
CD177 −0.594606481 6.91E−11
ARG1 −0.60433151 2.79E−11
OLAH −0.619818119 6.16E−12
S100A12 −0.646161289 3.87E−13
MCEMP1 −0.683772837 4.50E−15
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Figure 7: Difference of immune cell abundance between ICU patients and non-ICU patients and immune subtypes. (a) ssGSEA for
evaluation of 28 immune cell infiltration in GSE157103. (b) CIBERSORT for evaluation of 22 immune cell infiltration in GSE157103. (c)
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Figure 8: Immune cell abundance was closely related with hospital-free days and gene signature. (a) Immune cells were significantly related
with hospital-free days ð∣Spearman correlation coefficient∣>0:4Þ in ssGSEA. (b) Immune cells were significantly related with hospital-free
days ð∣correlation coefficient∣>0:4Þ in CIBERSORT. (c) Correlation between the expression level of CA4, S100A12, MMP8, MMP9, and
FCER1A and immune cell infiltration evaluated by ssGSEA. (d) Correlation between the expression levels of CA4, S100A12, MMP8,
MMP9, and FCER1A and immune cell infiltration evaluated by CIBERSORT.
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various kind of cells like basophils, mast cells, monocytes,
dendritic cells, and neutrophils [75]. Studies looking into
FCER1A in the respiratory system mainly focus on mast cell
and basophils, two major cells involved in allergy [76]. But
the decreased level of FCER1A in COVID-19 patients
seemed to not explain the potential role of the activation of
mast cell or that basophil plays in hyperinflammation with
patients [77, 78], which deserves to be further studied.

With regard to the immune cell infiltration of the blood,
the elevation of the abundance of neutrophils is universally
observed in various studies [79]. This study also suggested
the important role of neutrophils in the pathological process
of COVID-19. Infected lung cells are found to express
neutrophil-attracting chemokines, and attracted neutrophils
can attract even more neutrophils that might finally result in
the excessive activation and degranulation of neutrophils,
contributing to neutrophil-related lung damage [80, 81].
Several possible mechanisms concerning neutrophils are
proposed. Neutrophil extracellular traps (NETs), which refer
to web-like chromatin structures derived from dead neutro-
phils [82], might be one of the most prevalent ones [83].
MMP8, MMP9, and S100A12, three genes that we found sig-
nificantly upregulated in COVID-19 patient, are also common
components in NETs [84–86], which further demonstrates the
vital roles of NETs in COVID-19 development.

On the other hand, the abundance of CD8+ T cells was
reported to decrease in COVID-19 patients and exhibit
functional exhaustion molecules, such as NKG2A, PD-1,
and TIM-3 [87]. And neutrophil-to-lymphocyte can also
increase as a result of systemic inflammation serving as a
prognostic marker [88]. Single-cell RNA sequencing of
bronchoalveolar cells depicted a more complicated land-
scape of CD8+ T cells in COVID-19 patients, further point-
ing out the heterogeneity of cell numbers and clonal
expansion of different CD8+ T cell clusters [89].

Herein, we can understand the mechanisms of the drugs
which were predicted in the present study based on the
above discussion. Trichlormethiazide and bendroflumethia-
zide are both inhibitors for CAs [90, 91]. Application of
CA inhibitors in COVID-19 individuals can block the dis-
charge of H+ in the kidney and worsen the acidotic status
in patients [92]. Besides, application of the CA inhibitor
can rescue the decrease of IL-8, the most important chemo-
tactic for neutrophils in hypercarbia, which might deterio-
rate the overactivation of neutrophils [59]. Olopatadine is
an antiallergic drug antagonizing the histamine H(1) recep-
tor [93]. Amlexanox is a small-molecule targeted therapy
used to treat atopic diseases [94]. Both olopatadine and
amlexanox were found to have the ability to suppress the
migration of monocytes induced by proinflammatory
S100A12 [95]. Doxycycline has antimicrobial effect as well
as potent anti-inflammatory activity [96]. And doxycycline
can downregulate MMP8 both in mRNA and protein levels
[97]. Minocycline is another kind of common antibiotic
used in bedside and it was found to reduce the level of
MMP9 [98, 99]. Captopril is one of angiotensin-converting
enzyme inhibitors (ACEIs) usually used to relieve hyperten-
sion [100] and can also downregulate the expression of
MMP9 and reactive oxygen species (ROS) [101].

5. Conclusion

Based on 3 dependent RNA-seq of COVID-19 patients, we
learned that the neutrophil degranulation was significant in
the occurrence of the disease, during which the peripheral
blood was in a hyperproliferative state. Neutrophil activation
and the inactivation of CD8+ T cells played a key role during
the progress of the disease and 4 immune subtypes were
identified. A 31-gene composed signature was established
which was crucial during the course of the disease. Several
drugs were predicted for the therapies of COVID-19 based
on the prognostic value of the genes in the signature. In
short, we believe that our study shed light on the under-
standing and treatment of COVID-19.
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