
viruses

Review

Disease Tolerance during Viral-Bacterial Co-Infections

Tarani Kanta Barman and Dennis W. Metzger *

����������
�������

Citation: Barman, T.K.;

Metzger, D.W. Disease Tolerance

during Viral-Bacterial Co-Infections.

Viruses 2021, 13, 2362. https://

doi.org/10.3390/v13122362

Academic Editor: Shan-Lu Liu

Received: 27 September 2021

Accepted: 23 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA;
barmant@amc.edu
* Correspondence: metzged@amc.edu

Abstract: Disease tolerance has emerged as an alternative way, in addition to host resistance, to
survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing
pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common
co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results
in superinfection and lethality. Several host cytokines and cells have shown promise in promoting
tissue protection and damage control while others induce severe immunopathology leading to high
levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate
immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately,
survival during viral-bacterial co-infection.
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1. Introduction

Disease tolerance and host resistance are two important arms of innate immunity
yet still remain poorly understood. These two complementary defense mechanisms were
first recognized by plant scientists [1,2], who classified disease tolerance as a form of
resistance [3]. With increased scientific understanding, resistance and tolerance became in-
dependent components of the innate immune system. Many elements have been implicated
in plant disease tolerance such as the rate of photosynthesis, allocation of nutrients, and
genetic traits intrinsic to growth [4,5]. Subsequently, it was also demonstrated that disease
tolerance is an evolutionarily conserved immune strategy in all life forms against many
types of infection and not directly related to control of pathogen burden [6–8]. For example,
it has been shown that tolerance defense strategies are present in both Drosophila [9,10]
and mammals, including humans [11,12], and allow protection from the deleterious effects
of host immunity. Bats are a notable reservoir for numerous viruses such as rabies, Ebola
virus, Nipah, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle
East respiratory syndrome coronavirus (MERS-CoV), which are extremely pathogenic
in man, SARS-CoV-2 being the most obvious example of this. These viruses are highly
virulent in humans, yet bats fail to become sick due to potent disease tolerance mecha-
nisms [13]. The immune system in bats appears to be highly effective at maintaining host
homeostasis, a trait developed over 64 million years of evolution [14,15]. In particular,
high levels of constitutively expressed type-I interferon (IFN) [16], interferon stimulating
genes (ISGs) [17], ABCB1 efflux pump [18], and autophagy [19], as well as increased pro-
duction of heat shock proteins (HSP) [20], coupled with reduced STING signaling [21] and
inflammasome [22] pathways, induces a unique disease tolerance state in bats, allowing
the coexistence of many zoonotic viruses, while maintaining tissue integrity following
host-pathogen pro-inflammatory interactions. Genetic traits play a vital role in control of
disease tolerance [23] and host resistance [24–27], and both innate and adaptive immune
systems contribute to establishing protection from morbidity and mortality through disease
tolerance mechanisms [28]. The disease tolerance process and how it impacts the host
during co-infection is summarized in Figure 1 (created with BioRender.com (accessed on
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Co-infection involves illness in a host resulting from multiple pathogens. The major 
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piratory syncytial virus (RSV), and the bacterial pathogens are Streptococcus pneumoniae, 
Staphylococcus aureus, group B Streptococcus and Haemophilus influenzae [29–32].  

Inflammation is a protective mechanism against harmful insults from bacteria, vi-
ruses or other stimuli, and includes the five cardinal signs of rubor (redness), calor (heat), 
dolor (pain), tumor (swelling) and functio laesa (loss of function). The main goal of inflam-
mation is to eliminate harmful stimuli, clear damaged cells, and heal the tissue [33,34]. 
However, the immune cells and chemical mediators involved in inflammation can also 
lead to tissue damage and heightened susceptibility to other infections. The immune cells 
involved in the inflammatory process are leucocytes, particularly neutrophils [35]. Neu-
trophils usually reside in the blood and migrate to infected tissues to initiate an inflam-
matory process. While neutrophils ingest invading bacteria, viruses and cell debris by 
phagocytosis [36,37], they can also release molecules that damage the epithelial cell bar-
rier. Other cells involved in the inflammatory process are monocytes and lymphocytes. 
At homeostasis, uninfected lungs contain resting epithelial and resident immune cells at 
physiological levels, including alveolar macrophages (AM), dendritic cells, natural killer 
(NK) cells, innate lymphoid cells (ILCs), and B and T cells [38]. Upon infection with IAV, 
these cells become activated and produce chemokines, which results in recruitment of 
greater numbers of innate and adaptive immune cells. There are also several cell-derived 
inflammatory mediators elaborated during the process, such as reactive oxygen species, 

Figure 1. The disease tolerance process and how it impacts the host during co-infection.

2. Inflammation in Co-Infection

Co-infection involves illness in a host resulting from multiple pathogens. The major
respiratory viral pathogens seen during co-infection are influenza A virus (IAV) and
respiratory syncytial virus (RSV), and the bacterial pathogens are Streptococcus pneumoniae,
Staphylococcus aureus, group B Streptococcus and Haemophilus influenzae [29–32].

Inflammation is a protective mechanism against harmful insults from bacteria, viruses
or other stimuli, and includes the five cardinal signs of rubor (redness), calor (heat), dolor
(pain), tumor (swelling) and functio laesa (loss of function). The main goal of inflammation
is to eliminate harmful stimuli, clear damaged cells, and heal the tissue [33,34]. However,
the immune cells and chemical mediators involved in inflammation can also lead to tissue
damage and heightened susceptibility to other infections. The immune cells involved in
the inflammatory process are leucocytes, particularly neutrophils [35]. Neutrophils usually
reside in the blood and migrate to infected tissues to initiate an inflammatory process.
While neutrophils ingest invading bacteria, viruses and cell debris by phagocytosis [36,37],
they can also release molecules that damage the epithelial cell barrier. Other cells involved
in the inflammatory process are monocytes and lymphocytes. At homeostasis, uninfected
lungs contain resting epithelial and resident immune cells at physiological levels, including
alveolar macrophages (AM), dendritic cells, natural killer (NK) cells, innate lymphoid cells
(ILCs), and B and T cells [38]. Upon infection with IAV, these cells become activated and
produce chemokines, which results in recruitment of greater numbers of innate and adap-
tive immune cells. There are also several cell-derived inflammatory mediators elaborated
during the process, such as reactive oxygen species, IL-1, TNF-α, IL-6, and GM-CSF. The
pro-inflammatory cytokine, type-II IFN, plays a particularly important role in predisposing
the IAV-infected host to secondary bacterial infection by altering macrophage-mediated
bacterial clearance [39,40]. In BALB/c mice, increased bacterial burdens correlate with
diminished numbers of AM, whereas AM levels are maintained in C57BL/6 mice but the
cells have altered phagocytic functions and decreased trafficking between alveoli [39,41].
These effects have been shown to be directly attributable to type-II IFN [39]. IL-10 pro-
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duced during this process also can regulate lung inflammation and suppress the influx
of inflammatory neutrophils [42]. While the entry of inflammatory innate immune cells
is likely necessary to resist infection, these infiltrating cells also cause damage to the ep-
ithelial barrier integrity and cause alterations in protective innate immunity, leading to
pneumonia [38].

Understanding the scientific basis for enhanced susceptibility to bacterial co-infections
following influenza remains a significant clinical issue. Influenza-induced inhibition of
anti-bacterial innate immunity, especially suppression of AM-mediated bacterial clearance,
has been repeatedly implicated by multiple investigators. However, the precise mech-
anisms responsible for this inhibition are controversial; with some groups reporting an
important role for virus-induced type-I IFN [43–46], possibly associated with decreased
CCL2-induced macrophage recruitment [43]. Others have instead defined a critical role
of type II IFN [39,40,47–49] and direct inhibition of AM-mediated bacterial clearance. In
our recent study we observed that influenza co-infection caused IFN-dependent inflam-
mation that facilitated spreading of the colonizing bacteria into the lungs, followed by
tissue damage and death [50]. Understanding the pathways responsible for co-infection
during influenza has been complicated by several confounding factors. First, the win-
dow of susceptibility to bacterial co-infection in humans is typically seen approximately
7–10 days after influenza virus infection, when the viral infection has been nearly totally
cleared by the pulmonary immune system. However, some investigators have studied
co-infection in animal models at various other times, including bacterial co-infection as
early as three days after viral infection [45,51,52], when viral titers and lung inflammation
are peaking. Others have examined susceptibility to co-infection several months after
influenza [53]. Second, mice have been challenged with various amounts of bacteria and
in some cases, very large levels of bacteria that are typically not seen in natural human
infection, and which overwhelm the protective AM barrier, leading to active recruitment of
highly inflammatory neutrophils in a short period of time [51,54,55]. Third, it is generally
believed that humans become co-infected through aspiration of colonizing bacteria [56],
yet for technical convenience, many experiments in animal models have involved direct
inoculation of bacteria into lungs following influenza [40,44]. Finally, as stated above, AMs
show different functional activity that is dependent upon the mouse strain, with depletion
of AM during influenza in BALB/c mice versus retention of AMs in viral-infected C57BL/6
mice, but with altered function.

3. Cytokines and Disease Tolerance

Many cytokines have already shown promise in tissue protection and damage control
although in some cases, they may also induce severe immunopathology that leads to
high rates of morbidity and mortality [57,58]. In the following sections, we discuss some
important correlates of disease tolerance. We have summarized the tissue protective
functions of cytokines in Table 1.

Table 1. Summary of cytokines that are involved in disease tolerance.

Model Host/Infection Cytokine Function Reference

Dextran sodium sulfate-induced intestinal
inflammation in mice AREG Reduced inflammation [59]

IAV infection in mice AREG Epithelial integrity and tissue
homeostasis [60]

IAV-legionella co-infection in mice AREG Upregulation of genes involved in
tissue healing [61]

Dectin-deficient mice infected with Candida
and Mycobacterium AREG Tissue repair [62]
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Table 1. Cont.

Model Host/Infection Cytokine Function Reference

Parasitic helminth infection/Trichuris muris
in mice AREG Clearance of parasites and tissue

healing, suppression of inflammation [63–66]

Enteric infection with Shigella, E. coli,
Helicobacter, Neisseria in human tissue AREG Healing by transcriptional upregulation [67–70]

IAV infection in mice IL-5 Tissue integrity and host resistance [71,72]

IAV-bacterial co-infection in mice IL-22 Reduction in inflammation, tissue
integrity, induce tolerance [73,74]

IAV infection in mice IL-22 Regeneration and repair of tissue [75,76]

Ulcerative colitis in mice IL-22 Regeneration and repair of tissue [77]

IAV infection in mice TGF-β Attenuation of lung inflammation [78,79]

Hyperoxic lung injury in mouse and rats TGF-β Epithelial repair [80,81]

IAV infection in acute asthmatic mice TGF-β Suppression of tissue injury [82]

Tuberculosis infection in mice Lactoferrin Reduce immunopathology [83–85]

Pseudomonas aeruginosa lung infection Lactoferrin Tissue integrity [86–88]

LPS-induced lung injury Lactoferrin Tissue integrity [89]

Viral-bacterial co-infection in mice IFNs Tissue damage in the airways [40,43–46,50,90–92]

3.1. Amphiregulin (AREG)

Recent evidence suggests that AREG is vital for disease tolerance in man and animals.
AREG is an epidermal growth factor that is an important mediator of tissue repair at the
lung surface during IAV infection [60,93]. Innate cells such as ILC2s, monocytes, basophils,
eosinophils, mast cells, neutrophils, and dendritic cells can produce AREG [94,95]. AREG
is constitutively produced during homeostasis, but levels increase dramatically following
infection and inflammation. AREG binds to the epidermal growth factor receptor and facili-
tates tissue healing through differentiation and proliferation of epithelial cells [59,96–98]. In
IAV-infected Rag1−/− mice, AREG supports the regeneration of the pulmonary epithelium,
and enhances tissue integrity and survival of IAV-infected mice [60].

Mice previously infected with IAV quickly succumb to normally sublethal levels
of bacteria during the viral infection recovery stage [61]. This synergistic co-infection
is not due to increased viral levels but to increased immunopathology and impaired
tissue integrity. Co-infected mice display necrosis of the respiratory epithelial cell layer
and genes involved with tissue healing are notably suppressed compared to those in
mono-infected animals [61]. Interestingly, IAV-legionella co-infected mice were rescued by
administration of AREG into the lungs without reducing pathogen loads [61]. In response
to IAV, lung ILC2s can secrete AREG, which promotes epithelial cell proliferation and tissue
regeneration following virus-induced tissue damage [95]. Our laboratory demonstrated
that mice lacking type-II IFN exhibited elevated levels of AREG in the bronchoalveolar
lavage (BAL) following IAV infection along with the increased production of IL-5 which
was crucial for improved survival [71]. A similar observation was noted during fungal
infection of mice. Treatment with AREG enhanced epithelial repair and increased survival
of Dectin-1-deficient hosts compared to wild-type mice [62]. Many bacterial infections such
as those caused by Shigella flexneri, enterohemorrhagic Escherichia coli, Helicobacter pylori
and Neisseria gonorrhoeae also stimulate transcriptional upregulation of AREG in host
cells [67–70]. The severe pathology and tissue damage seen in many parasitic worm or
helminth infections can be similarly alleviated by specialized immune strategies [63,64].
Type 2 immunity, including AREG, in particular plays an important role in clearance of
these pathogens, healing of damaged tissues, and suppression of inflammation [65]. AREG-
deficient mice exhibit delayed clearance of the parasite Trichuris muris, which correlates
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with diminished proliferation of colonic epithelial cells compared to infected wild-type
mice [66]. Improved proliferation of epithelial cells in infected wild-type mice is dependent
on CD4+ T cells [66] indicating epithelial to immune cell communication.

3.2. Interleukin-5 (IL-5)

Interleukin-5 (IL-5) is a lineage-specific cytokine that increases eosinopoiesis and
plays an important role in diseases that are associated with greater levels of eosinophils,
such as asthma [71,72]. IL-3, IL-4 and GM-CSF genes are closely linked to the IL-5 gene
locus [99–101] and IL-5 expression is controlled by several transcription factors including
GATA3 [102]. IL-5 is expressed by an array of cells such as eosinophils, Th2 cells, mast
cells, non-hematopoietic cells, NK and natural killer T cells (NKT), Reed Sternberg cells,
EBV-transformed cells and ILC2s in the mouse [103–105].

Recent evidence has shown that in IAV infection, there can be ample production of
lung IL-5 especially in the absence of IFN-γ, which stimulates the progressive recruitment
of eosinophils, particularly in the later stage of infection, i.e., during the viral clearance and
host recovery phase [71,72]. This IL-5 is mainly produced by a small number of ILC2s in the
IAV-infected lung, beginning 5–7 days post-infection, which also corresponds to induction
of IAV-specific lung adaptive immunity. Both ILC2 numbers and their ability to produce
IL-5 peak following virus clearance and during the 8 to 10 days post-infection recovery
phase. This increase in IL-5 production by ILC2s is in part stimulated by IL-33 produced
by epithelial cells, AMs and NKT cells infiltrating the IAV-infected lung [106–108]. Type-II
IFN appears to play a major role in suppressing ILC2-mediated protection, namely in
restricting the production of IL-5. Inhibition of IL-5 with neutralizing antibodies in type-II
IFN-deficient mice resulted in reduced survival, indicating that enhanced protection in the
absence of type-II IFN was dependent on IL-5 and possibly increased eosinophilia [71,72].
These results established a role for ILC2s in promoting disease resistance and tissue integrity
against influenza.

3.3. Interleukin-22 (IL-22)

IL-22 is an alpha-helical cytokine expressed by immune cells at sites of inflammation. It
acts on nonhematopoietic cells at mucosal surfaces, such as epithelial and stromal cells [109].
IL-22 is produced by T cells, NKT cells, ILCs, neutrophils and macrophages [110]. IL-22
can have both healing and pathological roles during infection [109,111,112]. Reduction
of inflammation by IL-22 is similar to that mediated by IL-10 during IAV infection and
protects against secondary bacterial infection [73]. IL-22 alters several genes involved in
epithelial growth and proliferation during IAV infection and treatment of mice with IL-22
improves tissue integrity [74]. IL-22 is also involved in regeneration and repair of the
airways following influenza and of intestinal epithelium during ulcerative colitis [75–77].
An increased understanding of IL-22 involvement in disease tolerance pathways would
help in developing new therapies to enhance tissue repair mechanisms.

3.4. Transforming Growth Factor Beta (TGF-β)

TGF-β has three mammalian isoforms, TGF-β1, TGF-β2, and TGF-β3. Among these,
TGF-β1 is responsible for maintaining host homeostasis. Because of this, knocking out
TGF-β1 in mice results in fatal inflammatory disease and death [113–115]. Some of the
critical functions of TGF-β1 include inhibition of maturation and function of dendritic
cells and macrophages, down regulation of type-II IFN production, inhibition of NK cell
cytotoxic activity, increased differentiation and IgA production by B cells, and prevention
of proliferation and perforin/Fas ligand expression of CD8+ cytotoxic T cells [116].

Pulmonary viral infections can activate TGF-β, which then plays an important role
in attenuating lung inflammation and immunopathology and promoting survival of the
host [116,117]. Tregs produce TGF-β [118] and suppress effector functions of both innate
and adaptive immune cells during influenza [78,79]. In addition, TGF-β is implicated
in wound healing and tissue remodeling in the pulmonary tract through stimulation of
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matrix protein production and epithelial proliferation and differentiation [80,81]. Increased
expression of TGF-β1 during acute asthma in mice confers resistance to IAV through
suppression of tissue injury [82] but chronic overproduction of TGF-β can be detrimental
and lead to development of fibrosis and thickening of the airway wall in humans [119].
This suggests that TGF-β1 could have therapeutic potential in preventing morbidity and
mortality in acute infections such as early during an influenza pandemic before antigen-
matched vaccines are available [82].

3.5. Lactoferrin

Lactoferrin is a multifunctional protein of the transferrin family and plays a vital role
in disease tolerance in both plants and animals [120–122]. It is highly conserved with a
molecular mass of about 80 kDa. It is widely found in most mammalian exocrine secretions,
such as milk, saliva and tears, nasal and bronchial secretions, and intestinal secretions.
Lactoferrin is also present in secondary granules of neutrophils and is secreted by some
acinar cells [123]. The evidence suggests that lactoferrin acts as a first line of defense and
plays a key role in normalization of immune homeostasis [121,124,125]. Lactoferrin was
found to be a major component of innate immunity and to have an important role in
control of acute septic inflammation and tissue damage [126–128]. By interacting with
specific receptors on monocytes/macrophages and other cells, lactoferrin attenuates in-
flammation and contributes to tissue repair. Lactoferrin also protects against oxidative
stress-induced cellular damage, in particular, by limiting production of hydroxyl radicals
and lipid peroxidation [129]. In an animal model of tuberculosis, lactoferrin-treated mice
showed reduced immunopathology and were able to modulate granulomatous formation
without significant reduction in levels of cytokines (TNF-α, IL-1β, and IL-6) that are re-
quired to control infection [83,84]. Oral administration of lactoferrin to mice infected with
virulent mycobacteria did not reduce pathogen numbers, but the severity of granuloma
formation and lung pathology was ameliorated, leading to disease tolerance [85]. In acute
and chronic lung infections caused by Pseudomonas aeruginosa, aerosolized lactoferrin re-
sulted in non-significant reduction in bacterial loads but significant decreases in neutrophil
recruitment and tissue damage. In addition, lactoferrin-treated mice recovered body weight
more quickly and to a greater extent than untreated mice [86]. Lactoferrin can induce host
tolerance and reduce immunopathology in other infections as well [87,88]. Lactoferrin can
also protect against LPS-induced acute lung injury in mice [89].

3.6. Interferons (IFNs)

IFNs were the first cytokines described and include three well-characterized fami-
lies [130]: type-I IFN produced by almost all cells in the body, type-II IFN produced by
T cells, B cells, NK cells, and ILC1s, and type-III IFN produced mainly by stromal and
epithelial cells [130]. These cytokines are known to be important for host defense against
a variety of bacterial and viral pathogens [131,132], but can also cause pathological com-
plications, depending on the infecting agent, the host, and the context of infection [132].
IAV initially causes inflammation in the nasal cavity by inducing type-I IFN, which then
facilitates spread of colonizing or hospital-acquired bacteria to the lungs within the first
few days of infection. The rapid replication of IAV in the lung epithelium leads to cell
damage and exposure of the basement membrane, causing loss of barrier function that
subsequently facilitates bacterial spread. Type-II IFN elaborated later in the IAV infec-
tion process alters the function and phagocytosis capacity of AM, which then fuels the
growth of bacteria and uncontrolled tissue damage [43,50,90]. The continual replication of
bacteria results in recruitment of inflammatory cells to the lung and weakens the repair
process [50,90,91]. These results implicate host IFN responses during IAV infection in
enhancement of secondary bacterial infection. While several groups have shown that
virus-induced type-I IFN increases vulnerability to secondary bacterial infection [43–46,92]
others, including our own group, have described a critical role for type-II IFN in mediating
co-infection mortality during influenza [39,40,47–49]. Recently we showed that both type-I
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and type-II IFNs play complementary roles in mediating susceptibility to pneumococcal
infection after IAV infection [50]. Type-I IFN is most important during early bacterial
infection of the upper respiratory tract while type-II IFN inhibits bacterial clearance from
the lower respiratory tract at later stages of infection. Therapeutic neutralization of the
type-I IFN pathway early during co-infection combined with later neutralization of type-II
IFN induces disease tolerance and improved survival of mice. These findings resolve the
relative roles of type-1 versus type-II IFN during co-infection and suggest new therapeutic
approaches for prevention of lethal bacterial superinfections in humans.

4. Innate Immune Cells in Disease Tolerance

There are several innate cells that are involved during early viral infection such as
ILCs, AMs, neutrophils, and NK cells. ILCs are lymphocytes devoid of diversified antigen
receptors expressed on T and B cells; they are tissue-resident cells, enriched at the mucosal
surfaces of lungs, skin and intestine, and are activated by cytokines produced by tissue cells
in response to infection or injury [133,134]. Transcriptional profiling of purified lung ILCs
showed a correlation with genes involved of tissue healing, indicating an important role
of ILCs in maintaining lung tissue homeostasis and disease tolerance [60]. Experimental
evidence has indicated that ILC2s induce host disease tolerance during IAV infection
through secretion of IL-5, IL-22 and AREG [60,71,76].

AMs are the major resident cell population that provides the first line of defense
against lung pathogens. During IAV infection, AMs change their functions including
lower phagocytic activity [40] and decreased patrolling between alveoli [41]. This in turn,
leads to greater levels of inflammation and vascular leakage at barrier surfaces [135,136].
These effects can be mimicked by experimental ablation of AMs and reversed by exogenous
replacement of AMs from uninfected mice [136]. AMs can also protect against RSV-induced
lung damage [137]. It is thus not surprising that the loss of the protective efficacy of AMs
during viral mono-infection can exacerbate pathology during secondary bacterial infection.
Indeed, type-II IFN is a major mediator of these effects and neutralization of type-II IFN
significantly increases survival to lethal pneumococcal co-infection following recovery
from influenza [40]. However, AM function appears to have no effect on viral clearance
mediated by adaptive immunity [138].

Neutrophils are the most abundant cell in the circulating innate immune system. There
are reports of IAV-induced neutrophil dysfunction that is responsible for enhanced suscep-
tibility to subsequent pneumococcus infection [51]. Exhaustion of neutrophils or treatment
with anti-TRAIL (TNF-related apoptosis-inducing ligand) reduces bacterial outgrowth,
leading to enhanced survival, indicating that these factors are involved in overactivation
of neutrophils and diminished bacterial control during IAV—Streptococcus pneumoniae
co-infection [139]. Similarly, during IAV-Pseudomonas aeruginosa co-infection, neutrophil
dysfunction through decreased expression of G-CSF increases susceptibility to secondary
bacterial infection [140]. Further studies indicated that increased neutrophilic influx during
IAV infection mediates acute lung injury, which is attributable to alveolar capillary dam-
age by neutrophil extracellular traps (NETs) [141]. Macrophage inflammatory protein 2
(MIP-2/CCL8) is known to attenuate neutrophil recruitment during IAV infection without
reducing viral loads, eventually decreasing pathology [142]. Overall, while neutrophils
can have protective functions including clearance of dead cells and viruses, elaboration of
anti-microbial peptides, and interaction with protective macrophages, dendritic cells, and
T cells, they can also have significant damaging effects through enhanced production of
reactive oxygen, myeloperoxidase, matrix metalloproteinase, and NETs [36].

Another important innate cell is the NK cell that can kill virus-infected cells. NK
cells respond to signals transmitted by infected respiratory epithelial cells in the early
phases of virus replication. Lung resident NK cells play important roles in clearance of
virus; however, they are also associated with severe tissue damage. During influenza,
NK cells produce large amounts of type-II IFN that can cause acute lung damage and
lethality [143,144]. Studies have shown that depletion of NK cells or neutralization of
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type-II IFN reduces mortality and improves tissue healing during IAV infection [143,145].
A similar observation was reported in the case of tularemia, in which mice devoid of
NKT cells were better protected than mice with functional NKT cell populations [146].
An invariant NKT cell-macrophage immune axis causes chronic inflammation after viral
infection due to continual stimulation of the innate immune response [147]. These various
studies show that innate immune cells can have protective roles but also detrimental roles
in modulating disease tolerance.

5. Impact of Microbiome, Aging, Obesity and Diabetes on Pulmonary
Disease Tolerance

With the discovery of a community of bacteria, archaea, fungi, algae, and protists in
the normal airways, the concept of a sterile lung is now outdated [148]. The unique and
diverse lung microbiome is implicated in the maintenance of pulmonary health, a topic that
has been extensively reviewed elsewhere [149–152]. The specific role of the microbiome
in mediating disease tolerance, however, is not well understood and is a field poised for
further discoveries. It is clear that following viral infection, normally colonizing bacteria
can become pathogenic and cause secondary bacterial infections, leading to superinfec-
tion [50,153,154]. For instance, following influenza infection, the lung microbiome can
be altered and dominated by drug resistant Acinetobacter baumannii, leading to secondary
bacterial infections [155]. Influenza patients can also show increased growth of Leptotrichia,
Oribacterium, Streptococcus, Atopobium, Eubacterium, Solobacterium and Rothia species
in the respiratory tract. However, healthy individuals typically express only Haemophilus
and Bacteroides species [156]. It has been demonstrated that intranasal administration of
Lactobacillus rhamnosus can protect against respiratory syncytial virus (RSV) infection [157].
Further studies showed that the isolated peptidoglycan from Lactobacillus rhamnosus and
commensal bacteria Corynebacterium pseudodiphtheriticum mediated improved resistance
of infant mice to RSV and secondary pneumococcal infections [158–160]. Oral microbiota
are found in the bronchoalveolar lavage fluid (BALF) of COVID-19 patients, which could
pose a threat for co-infection [161]. In fact, Moraxella catarrhalis was found to be associated
with SARS-CoV-2 co-infection, further suggesting a risk of co-infection with oral microbes
following respiratory viral infection in these patients [162]. During influenza virus infec-
tion, the upregulation of type-I IFN causes inflammation in the upper respiratory tract and
helps in translocation of colonizing bacteria to the lungs; deficiency in functional IFN-I
pathways prevents co-infections [43,50]. Similar to bacteria, commensal fungi, protozoa,
helminths, and viruses may have critical roles in disease tolerance but little is currently
known about this.

Age is another important host factor that increases the risk of co-infection and de-
creases the rate of recovery from infection. Due to immunosenescence and decreased
microbial diversity during aging, pathogens such as S. pneumoniae can establish chronic
infections which become fatal following influenza infection [163]. In addition to aging,
diabetes and obesity are important co-morbidities that may increase the probability of
co-infection in SARS-CoV-2 patients [164]. Moreover, diabetes reduces the oral microbial
diversity, leading to an increased risk of co-infections [165]. Overall, SARS-CoV-2 infection
may allow commensal organisms in the oral cavity and pulmonary tract to enhance the
cytokine storm, especially in aged patients and those with obesity, and diabetes [161].

6. Future Perspectives

The emergence of drug resistant bacteria [166,167], the inefficacy of antibiotics against
post-influenza bacterial pneumonia [168] and the limited efficacy of bacterial vaccination in
preventing influenza-Streptococcus pneumoniae co-infection [169], has necessitated develop-
ment of alternative approaches that utilize disease tolerance for treatment of viral-bacterial
co-infections. There are several mechanisms that the host engages during resolution of
infection and inflammation as part of the healing process. Multiple cytokines and innate
immune cells play essential roles in modulating the severe inflammatory process to repair
and heal damaged tissues. This facilitates the return to a state of host homeostasis and there-
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fore represents a promising therapeutic avenue for treatment of microbial co-infections.
Additionally, for viruses such as SARS-CoV-2, elucidating disease tolerance mechanisms,
for example in bats, which can be infected with numerous human pathogenic viruses
but fail to develop clinical disease, may provide new therapeutic strategies for increasing
human health.
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