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Abstract
Aim: Peroxisomes play a key role in lipid metabolism, and peroxisome defects have 
been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and 
Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid 
alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. 
Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic 
(sFTLD-TDP) or linked to mutations in various genes including expansions of the non-
coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) 
as the most common TDP43 proteinopathies, were analysed.
Methods: We used transcriptomics and lipidomics methods to define the steady-state 
levels of gene expression and lipid profiles.
Results: Our results show alterations in gene expression of some components of per-
oxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and 
c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-
TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids 
and acylcarnitine among other lipid species, as well as alterations in the lipidome of each 
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INTRODUC TION

Peroxisomes are single membrane-bound cytoplasmic organ-
elles in eukaryotic cells which harbour a variety of biochemical 
reactions and metabolic pathways involved in oxidative stress 
homeostasis, and carbohydrate, amino acid and lipid metabo-
lism. In the lipid field, peroxisomes play a key role in α-oxidation 
of branched-chain fatty acids and β-oxidation of very long fatty 
acids (>C20), as well as biosynthesis of ether lipids, bile acids and 
docosahexaenoic acid [1–9]. Peroxisomes are found ubiquitously, 
but their number, shape and enzymatic content respond rapidly to 
cellular and environmental factors [6, 8, 10, 11]. Peroxisomes have 
close functional relationships with the endoplasmic reticulum, 
mitochondria and lipid droplets [12–17]. The biogenesis of per-
oxisomes requires a group of proteins named peroxins, encoded 
by PEX genes, which participate in the formation of peroxisomal 
membranes incorporating peroxisomal membrane proteins, per-
oxisome proliferator-activated receptors (encoded by PPARS) that 
modulate peroxisomal biogenesis and regulate lipid metabolism, 
and dynamin-related proteins [6, 7, 18–21].

Primary peroxisomal defects of lipid metabolism are genetically 
determined disorders linked to mutations of specific peroxisomal 
genes that lead to distinct diseases with neurologic and systemic 
manifestations and invariably poor outcomes. These may affect 
fatty acid β-oxidation, ether lipid biosynthesis and fatty acid α-ox-
idation [11, 22–31]. In addition, peroxisomes contribute to cellular 
ageing and redox balance, under the control of peroxisome/mito-
chondria function, which are altered in age-related diseases such 
as diabetes, hypertension, cancer and neurodegenerative diseases 
[32–35]. Impaired peroxisomal function occurs in Alzheimer's dis-
ease (AD) and related transgenic mouse models [36–38]. More pre-
cisely, accumulation of C22:0 and very long-chain fatty acids, and 
decreased levels of plasmalogens, together with increased volume 
density and loss of peroxisomes in neurons with neurofibrillary tan-
gles, are all observed with AD progression [39]. These alterations 
have prompted the study of several specific therapeutic tools di-
rected to curbing altered peroxisomal function in AD [40–45].

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar de-
generation (FTLD) are two fatal neurodegenerative disorders with 

considerable clinical, pathological and genetic overlap. ALS is a fatal 
neurodegenerative disorder characterised by the progressive de-
generation of both upper and lower motor neurons, resulting in a 
multitude of motor symptoms, including muscle weakness, fascicula-
tions, spasticity, dysphagia and, eventually, respiratory dysfunction 
[46]. FTLD is a pathological diagnosis that manifests clinically in the 
form of frontotemporal dementia (FTD), characterised by cognitive, 
behavioural and linguistic dysfunction. The link between these dis-
orders is made clear by the fact that almost 50% of ALS patients 
show cognitive impairment of the type observed in FTD, and also 
that 15% of ALS cases meet the diagnostic criteria for FTD at the 
time ALS is diagnosed [47]. In addition, 15% of FTLD cases have clin-
ically detectable motor symptoms [48]. Both disorders are charac-
terised by the accumulation of pathological protein aggregates that 
contain a number of proteins, most notably TAR DNA-binding pro-
tein 43 kDa (TDP-43).

This study is aimed at elucidating the contribution of peroxiso-
mal alterations to lipid metabolism in frontal cortex area 8 within 
the spectrum of TDP-43 proteinopathies. FTLD-TDP, manifested as 
sporadic (sFTLD-TDP) or linked to mutations in various genes includ-
ing expansions of the non-coding region of C9ORF72 (c9FTLD), as 
well as sporadic ALS (sALS), are the most common TDP-43 prote-
inopathies. To this end, we used transcriptomic and lipidomic meth-
ods to define the steady-state levels of gene expression and lipid 
profiles. Our results show alterations in gene expression of some 
components of peroxisomes and related lipid pathways in frontal 
cortex (FC) area 8 in sALS, sFTLD-TDP and c9FTLD.

MATERIAL S AND METHODS

Human cases

Post-mortem samples of fresh-frozen FC area 8 were obtained 
from the Institute of Neuropathology HUB-ICO-IDIBELL Biobank 
and the Hospital Clinic-IDIBAPS Biobank following the guidelines 
of Spanish legislation on this matter and approval of the local eth-
ics committees and in accordance with criteria of sample quality 
[49–51]. The post-mortem delay varied from 2 h 15 min to 18 h. 
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phenotype of TDP43 proteinopathy, which reveals commonalities and disease-depend-
ent differences in lipid composition.
Conclusion: Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-
TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, 
vulnerability against cellular stress and possible glucose metabolism, are partly related to 
peroxisome impairment.
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This post-mortem delay does not compromise the quality of the 
sample [49–51]. One hemisphere was immediately cut in coronal 
sections, 1 cm thick, and selected areas of the encephalon were 
rapidly dissected, frozen on metal plates over dry ice, placed in 
individual air-tight plastic bags and stored at −80°C until the use 
for biochemical studies. The other hemisphere was fixed by im-
mersion in 4% buffered formalin for 3 weeks for morphological 
studies.

The neuropathological study was carried out on 20 selected 
4-μm-thick de-waxed paraffin sections of representative regions 
of the brain. Sections were stained with haematoxylin and eosin, 
Klüver-Barrera, or processed for immunohistochemistry with an-
ti-β-amyloid, phospho-tau (clone AT8), α-synuclein, αB-crystallin, 
TDP-43, ubiquitin, p62, glial fibrillary acidic protein, CD68 and 
Iba1 antibodies [52]. Sporadic FTLD-TDP (sFTLD-TDP) cases were 
diagnosed following well-established criteria: frontotemporal atro-
phy, loss of neurons and variable spongiosis in the upper cortical 
layers, astrocytic gliosis and presence of TDP-43-immunoreactive 
inclusions in the cytoplasm or in the nucleus of neurons, and in den-
drites (NCIs, NIIs and DNs respectively), and were then categorised 
as type A, B or C.[53, 54] Cases with familial frontotemporal lobar 
degeneration linked to C9ORF72 expansion (henceforth referred to 
as c9FTLD for practical purposes), all of them carrying more than 
30 intronic hexanucleotide repeats, were classified as type A or B. 
All these cases showed a sequential pattern II or III [55]. The fron-
tal cortex of sporadic ALS (sALS) cases showed variable alterations; 
TDP-43-immunoreactive small dystrophic neurites and/or TDP-43-
positive granules and/or small cytoplasmic globules in neurons were 
observed in 11 of 18 cases, but they were abundant in only three 
cases (cases 56, 57 and 58) (Table 1); spongiosis in the upper cor-
tical layers was found in only one case (case 55). The whole series 
included 16 sFTLD-TDP (71.6 ± 9.6 years; 11 men and 3 women), 
19 c9FTLD (mean age 70 years; 10 men and 9 women), 15 sALS 
(mean age 54 years; 11 men and 4 women) and 17 control cases 
(64.7 ± 8.9 years; 11 men and 6 women), as summarised in Table 1. 
Although there are significant differences in the average age of the 
groups analysed, the age range of the study subjects is between 60 
and 70 years. Previous studies on brain (and particularly in frontal 
cortex) lipid composition showed that lipids remain stable in adult-
hood; minimal changes appear in older ages than those analysed 
here [56, 57].

Patients with additional associated pathologies of the nervous 
system, excepting early stages of neurofibrillary tangle pathology in 
the entorhinal cortex and hippocampus, and those with the pres-
ence of mild small blood vessel disease, were excluded, as were 
those cases with infectious, inflammatory or autoimmune diseases. 
Clinically, patients with FTLD had suffered from variable cognitive 
deficits, reporting parkinsonism and progressive aphasia in some 
cases. sALS cases had no cognitive alterations. Age-matched control 
cases had not suffered from neurologic or psychiatric disorders, or 
systemic diseases, and had no neuropathological lesions other than 
those permitted in included disease cases.

RNA extraction and RT-qPCR validation

RNA from frozen FC area 8 was extracted following the instructions 
of the supplier (RNeasy Mini Kit, Qiagen® GmbH, Hilden, Germany). 
RNA integrity and 28S/18S ratios were determined with the Agilent 
Bioanalyzer (Agilent Technologies Inc, Santa Clara, CA, USA) to as-
sess RNA quality, and the RNA concentration was evaluated using 
a NanoDrop™ Spectrophotometer (Thermo Fisher Scientific). 
Complementary DNA (cDNA) preparation used a High-Capacity 
cDNA Reverse Transcription kit (Applied Biosystems, Foster City, 
CA, USA) following the protocol provided by the supplier. TaqMan 
RT-qPCR assays were performed in duplicate for each gene on cDNA 
samples in 384-well optical plates using an ABI Prism 7900 Sequence 
Detection system (Applied Biosystems, Life Technologies, Waltham, 
MA, USA). For each 10 μl TaqMan reaction, 2.25 μl cDNA was mixed 
with 0.25 μl 20× TaqMan Gene Expression Assays and 2.50 μl of 2× 
TaqMan Universal PCR Master Mix (Applied Biosystems). The iden-
tification numbers and names of TaqMan probes are shown in Table 
S1. The values for β-glucuronidase (GUS-β) were used as internal 
controls for normalisation purposes [58]. The parameters of the re-
actions were 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C 
for 15 s and 60°C for 1 min. Finally, Sequence Detection Software 
(SDS version 2.2.2, Applied Biosystems) was used to capture 
TaqMan PCR data. The double-delta cycle threshold (ΔΔCT) method 
was utilised to analyse the data. The statistical study was performed 
using the T-student test or ANOVA-one way when necessary. The 
significance level was set at *p < 0.05, **p < 0.01 and ***p < 0.001 
versus control group; #p < 0.05, ##p < 0.01 and ###p < 0.001 versus 
sALS; and $p < 0.05, $$p < 0.01 and $$$p < 0.001 versus sFTLD-TDP.

Fatty acid profiling

Briefly, samples were incubated for lipid extraction and FAs trans-
esterification in 2 ml of 5% methanolic HCL at 75 °C for 90 min. FAs 
methyl esters were extracted by adding 2 ml of n-pentane and 1 ml 
of saturated NaCl solution. Samples were separated and evapo-
rated under N2 gas n-pentane phase and finally dissolved in 80 µl 
of carbon disulphide. Gas chromatography (GC) analysis was then 
performed.

The GC method was used for separation with a DBWAX capil-
lary column (30 m × 0.25 mm ×0.20 μm) in a GC System 7890 A with 
a Series Injector 7683B and an FID detector (Agilent Technologies, 
Barcelona, Spain). The temperature of the injector was 220 °C using 
the splitless mode. A constant rate (1.8 ml/min) of helium (99.99%) 
was maintained. The column temperature was held at 145°C for 
5 min; subsequently, the column temperature was increased by 2°C/
min to 245°C for 50 min, and held at 245°C for 10 min, with a post-
run of 250°C for 10 min as previously described [59–61]. Based on 
FA composition, different indexes were calculated, and elongase and 
desaturase activity was estimated from specific product/substrate 
ratios [61, 62].
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TA B L E  1  Summary of cases

Case Sex Age Diagnosis PMD RIN TDP-43

1 M 66 Control 18 h 00 min 6.4 –

2 M 61 Control 03 h 40 min 7.0 –

3 M 62 Control 05 h 45 min 5.0 –

4 M 74 Control 06 h 40 min 7.2 –

5 M 65 Control 05 h 15 min 6.8 –

6 F 64 Control 02 h 15 min 5.0 –

7 M 63 Control 08 h 05 min 7.1 –

8 F 79 Control 03 h 35 min 6.8 –

9 F 67 Control 05 h 20 min 6.2 –

10 M 70 Control 03 h 45 min 7.2 –

11 M 52 Control 04 h 40 min 7.2 –

12 F 52 Control 05 h 45 min 5.1 –

13 F 82 Control 07 h 35 min 5.2 –

14 F 74 Control 02 h 45 min 5.7 –

15 M 55 Control 05 h 40 min 7.7 –

16 M 59 Control 07 h 05 min 7.8 –

17 M 56 Control 03 h 50 min 7.6 –

18 M 76 sFTLD-TDP 05 h 00 min 6.2 A

19 F 82 sFTLD-TDP 03 h 40 min 6.4 A

20 M 71 sFTLD-TDP 04 h 00 min 6.1 A

21 F 77 sFTLD-TDP 16 h 00 min 6.9 C

22 M 73 sFTLD-TDP 05 h 00 min 6.7 C

23 M 63 sFTLD-TDP 09 h 30 min 5.0 A

24 F 77 sFTLD-TDP 07 h 39 min 7.0 A

25 M 65 sFTLD-TDP 13 h 00 min 7.4 A

26 F 88 sFTLD-TDP 06 h 30 min 5.4 A

27 M 59 sFTLD-TDP 08 h 00 min 7.4 A

28 M 58 sFTLD-TDP 04 h 00 min 7.3 A

29 M 56 sFTLD-TDP 08 h 00 min 5.0 A

30 F 84 sFTLD-TDP 06 h 00 min 5.9 B

31 M 78 sFTLD-TDP 07 h 15 min 6.7 C

32 M 66 sFTLD-TDP 05 h 15 min 7.2 A

33 M 74 sFTLD-TDP 15 h 00 min 6.4 C

34 M 69 c9FTLD 11 h 30 min 6.5 A-B

35 F 69 c9FTLD 13 h 15 min 5.4 A-B

36 M 68 c9FTLD 02 h 30 min 6.8 A-B

37 M 61 c9FTLD 07 h 45 min 6.9 A-B

38 M 66 c9FTLD 15 h 15 min 7.9 A-B

39 F 55 c9FTLD 03 h 15 min 8.7 A-B

40 M 69 c9FTLD 05 h 00 min 6.1 A-B

41 F 75 c9FTLD 17 h 30 min 7.5 A-B

42 F 92 c9FTLD 09 h 15 min 7.1 A-B

43 F 58 c9FTLD 11 h 00 min 8.4 A-B

44 F 66 c9FTLD 11 h 30 min 8.1 A-B

45 M 73 c9FTLD 15 h 30 min 6.2 A-B

(Continues)
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Non-targeted lipidomic analysis

A previously validated method was used for lipid extraction [63]. 
Briefly, 5 μl of miliQ water and 20 μl of methanol were added to 
10 μl of homogenised tissue. Samples were then shaken vigorously 
for 2 min. Following this, methyl tert-butyl ether (MTBE) contain-
ing isotopically labelled lipid standards was added. Samples were 
then immersed in a water bath (ATU Ultrasonidos, Valencia, Spain) 
with an ultrasound frequency of 40 kHz and power of 100 W, at 
10°C for 30 min. After this, 25  μl of miliQ water was added to the 
mixture, which was centrifuged at 300 rpm at 4°C for 10 min to 
separate the organic phase. Finally, the upper phase was collected 
and stored for mass-spectrometry analysis. A pool (20 µl of each 
sample) of all lipid extracts was prepared and used as quality con-
trol [64].

Lipid extracts were analysed by LC-MS according to the method 
described [59]. An Agilent UPLC 1290 system coupled to an ESI-
Q-TOF MS/MS 6545 (Agilent Technologies, Barcelona, Spain) was 
used. Two runs were performed to collect positive and negative 
electrospray ionised lipid species. Data pre-processing was done 
as published before [65–67]. Finally, identities were confirmed by 
searching experimental MS/MS spectra against in silico libraries, 
using HMDB and LipidMatch, an R-based tool for lipid identification 

[68, 69]. Multivariate and univariate statistics were calculated using 
Metaboanalyst [70].

RESULTS

Peroxisome-related genes

Peroxisome biogenesis

When compared with controls, only PPARG expression was sig-
nificantly increased in sALS (p < 0.01) and significantly decreased 
in c9FTLD cases (p = 0.018), whereas PPARGC1A was significantly 
increased in c9FTLD (p = 0.033). However, differences were also 
identified when comparing expression levels among the three dis-
ease groups. Thus, PEX14 was significantly increased in c9FTLD 
when compared with sALS (p < 0.001) and sFTLD-TDP (p < 0.001); 
PPARD was decreased in sFTLD-TDP when compared with sALS 
(p < 0.001); PPARG was decreased in sFTLD-TDP and c9FTLD 
when compared with sALS (p = 0.006 and p < 0.001 respectively); 
PPARGC1A was down-regulated in sFLTD-TDP when compared with 
sALS (p < 0.005) and up-regulated in c9FTLD when compared with 
sFTLD-TDP (p < 0.001); and finally, DNM1L mRNA expression was 

Case Sex Age Diagnosis PMD RIN TDP-43

46 F 69 c9FTLD 12 h 30 min 5.9 A-B

47 F 57 c9FTLD 03 h 40 min 7.2 A-B

48 M 80 c9FTLD 12 h 00 min 8.0 A-B

49 F 57 c9FTLD 08 h 00 min 6.9 A-B

50 M 88 c9FTLD 05 h 00 min 7.3 A-B

51 M 69 c9FTLD 05 h 45 min 7.1 A-B

52 M 80 c9FTLD 08 h 30 min 6.5 A-B

53 M 70 sALS 03 h 00 min 7.0 –

54 F 56 sALS 03 h 45 min 7.7 –

55 M 59 sALS 03 h 15 min 7.7 –

56 F 63 sALS 13 h 50 min 8.2 –

57 F 59 sALS 14 h 15 min 6.7 –

58 M 54 sALS 04 h 50 min 7.8 –

59 M 76 sALS 12 h 40 min 7.4 –

60 M 64 sALS 16 h 30 min 7.3 –

61 F 57 sALS 04 h 00 min 8.6 –

62 F 75 sALS 04 h 05 min 6.8 –

63 F 57 sALS 10 h 00 min 7.1 –

64 M 50 sALS 10 h 10 min 5.9 –

65 F 59 sALS 02 h 30 min 7.5 –

66 M 46 sALS 07 h 00 min 8.0 –

67 F 69 sALS 17 h 00 min 6.3 –

Sixty-seven cases corresponding to 17 controls, 16 sFTLD-TDP cases, 19 c9FTLD and 15 sALS were used for this study.
A, B, C, Classification of FTLD according to [53]; F, female; M, male; PMD, post-mortem delay (hours, minutes); RIN, RNA integrity number; TDP-43, 
TDP-43 abnormal inclusions in neurons and dendrites in frontal cortex.

TA B L E  1  (Continued)
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significantly increased in c9FTLD when compared with sFTLD-TDP 
(p < 0.001). No differences were detected for PPARA. See Figure 1A.

Peroxisome redox mechanisms

GPX1 mRNA levels were increased in c9FTLD when compared with 
sALS (p < 0.001), whereas CAT transcript levels were down-regulated 
in sALS when compared with controls (p = 0.011), and up-regulated 
in c9FTLD when compared with sALS and sFTLD-TDP (p < 0.001 
and p < 0.001 respectively) (Figure 1B).

Primary bile acid metabolism

CYP27A1 mRNA levels were down-regulated in sALS and sFTLD-
TDP when compared with controls (p = 0.002 and p = 0.006 re-
spectively). In contrast, CYP27A1 gene expression was up-regulated 
in c9FTLD when compared with controls, sALS and FTLD-TDP 
(p < 0.001). Reduced HSD17B4 expression was limited to sFTLD-TDP 
when compared with sALS and c9FTLD (p = 0.001, and p = 0.006 
respectively). No differences in the expression of CH25H, HSD3B7, 
CYP39A1 or SCP2 were found between controls and disease cases, 
nor among the three pathological groups (Figure 1C).

F I G U R E  1  mRNA expression levels of peroxisome-related genes in frontal cortex area 8 in controls, sALS, sFTLD-TDP and c9FTLD 
cases assessed with TaqMan RT-qPCR assays. (A) Genes implicated in peroxisome biogenesis. (B) Genes coding for redox mechanisms. (C) 
Genes involved in peroxisomal primary bile acid biosynthesis. (D) Genes related with peroxisome substrate transport. (E) Genes involved 
in peroxisomal β-oxidation. Genes linked to plasmalogens biosynthesis (F) and acylcarnitine biosynthesis (G). Data are expressed as the 
mean values±SEM. The significance level was set at *p < 0.05, **p < 0.01 and ***p < 0.001 versus control group; #p < 0.05, ##p < 0.01 and 
###p < 0.001 versus sALS; and $p < 0.05, $$p < 0.01 and $$$p < 0.001 versus sFTLD-TDP
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Transport

No modifications in the expression of genes coding for β-oxidation 
ATP-binding cassette (ABC) transporters ABCD1, ABCD2 and ABCD3 
were observed in sALS, sFTLD-TDP or c9FTLD when compared with 
controls. Nor were significant differences observed among the three 
disease groups (Figure 1D).

β-oxidation components

ACAA1 gene expression was decreased in sALS and sFTLD-TDP when 
compared with controls (p < 0.001 and p < 0.001 respectively), but 
it was increased in c9FTLD, not only when compared with controls 
(p < 0.001), but also with respect to sALS (p < 0.001) and sFTLD-TDP 
cases (p < 0.001). Following a similar trend, levels of ACOX3 were in-
creased in c9FTLD when compared with controls (p < 0.001), sALS 
(p < 0.001) and sFTLD-TDP (p < 0.001). EHHADH transcript levels were 
down-regulated in sFTLD-TDP when compared with controls and sALS 
(p = 0.004 and p = 0.049 respectively), and up-regulated in c9FTLD 
when compared with sFTLD-TDP (p < 0.001). No differences in the 
expression of ACOX1 and ACOX2 were found between controls and 
disease cases, nor among the three pathological groups (Figure 1E).

Plasmalogen biosynthesis

Expression levels of genes coding for components of the plas-
malogen biosynthesis pathway, AGPS, DHAP-AT and FAR1, were 

evaluated, but no differences in the expression of these genes were 
found between controls and disease cases, or among the three path-
ological groups (Figure 1F).

Acylcarnitine biosynthesis

Acylcarnitine biosynthesis components revealed few differences 
in the expression of ACOT, CRAT and CROT transcripts. ACOT gene 
expression was increased in c9FTLD when compared with sALS 
(p = 0.003), whereas CRAT and CROT were significantly increased in 
c9FTLD when compared with sFTLD cases (p = 0.034 and p = 0.029 
respectively). Regarding control cases, only CROT mRNA expression 
levels were significantly decreased in sFTLD cases when compared 
to controls (p = 0.021) (Figure 1G).

Gene expression linked to fatty acid metabolism

The expression of fifteen genes was assessed. No modifications in 
the mRNA expression levels of FASN, ELOVL2, ELOVL5, SCD1, SCD5, 
ACSL1 or ACSL5 were identified in the three diseases when com-
pared with controls, nor among the pathological groups. In sALS, 
only ACACA and ACSL6 were significantly increased, and ELOVL7 
significantly decreased when compared with controls (p = 0.026, 
p = 0.04 and p = 0.05 respectively). Regarding sFTLD-TDP, ELOVL6, 
ELOVL7, ACSL3 and ACSL4 were significantly decreased when com-
pared with controls (p = 0.04, p = 0.028, p = 0.031 and p = 0.028 
respectively). In addition, ACACA, ELOVL4, ELOVL6 and ACSL6 were 

F I G U R E  2  mRNA expression levels of genes linked to fatty acid metabolism in frontal cortex area 8 in controls, sALS, sFTLD-TDP and 
c9FTLD cases assessed with TaqMan RT-qPCR assays. Data are expressed as the mean values±SEM. The significance level was set at 
*p < 0.05, **p < 0.01 and ***p < 0.001 versus control group; #p < 0.05, ##p < 0.01 and ###p < 0.001 versus sALS; and $p < 0.05, $$p < 0.01 and 
$$$p < 0.001 versus sFTLD-TDP
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significantly decreased in sFTLD-TDP when compared with sALS 
(p < 0.001, p = 0.009, p = 0.032 and p = 0.003 respectively). Finally, 
expression levels of ELOVL1 and ELOVL7 mRNA were significantly 
decreased in c9FTLD when compared with controls (p = 0.01, and 
p = 0.041 respectively), but ACACA, ELOVL4, ELOVL6, ACSL3, ACSL4 
and ACSL6 significantly increased in c9FTLD when compared with 
sFTLD-TDP (p = 0.001 p = 0.002, p = 0.018, p = 0.002, p = 0.018 and 
p = 0.038 respectively) (Figure 2).

Fatty acid profiling

Since the biosynthesis of highly unsaturated fatty acids is depend-
ent on peroxisomal beta-oxidation activity, fatty acid composition 
of total lipids from frontal cortex area 8 was analysed (Table 2). This 
analysis showed no significant changes in fatty acid profiles among 
the FTLD-TDP/ALS spectrum pathologies. Notably, the content of 
22:5n6 and 22:6n3, highly PUFAs resulting from peroxisomal beta-
oxidation, was sustained among the FTLD-TDP/ALS spectrum at 
equivalent levels as observed in the control group. As a result of 
this, the total number of double bonds and the global susceptibil-
ity to peroxidation, estimated as the global fatty acid indexes DBI 
and PI, as well as other indexes such as average chain length, SFA 
and UFA content, were not modified by the pathological condition, 
nor were desaturase and elongase activities calculated from fatty 
acid profiles. Only minor changes were observed for total PUFAn6 
content (p = 0.039) and Elovl 2 (n3) estimated activity. Specifically, 
statistically significant differences were found in total PUFAn-6 in 
sFTLD-TDP when compared with control and c9FTLD groups, and in 
Elovl2(n-3) between the control and pathogenic groups.

Lipidomic profiling

In order to gain an overview of whole lipidome, an untargeted li-
pidomic approach was applied. Baseline correction, peak picking 
and peak alignment were performed on acquired data, resulting in 
a total of 7951 molecules from both ionisation modes (negative and 
positive). After quality control assessment, filtering and signal cor-
rection, 1119 features remained, which were log-transformed and 
auto-scaled (mean centering/standard deviation) and used for multi-
variate and univariate statistical analysis.

A lipidomic pattern is associated with ALS-FTLD-
TDP43 proteinopathy spectrum

To investigate whether there was a common pattern for TDP-43 
proteinopathies, an untargeted lipidomic analysis was performed 
in tissue samples from frontal cortex region 8 with the three neu-
rological disorders grouped together. Unsupervised methods such 
as Principal Component Analysis (PCA) and Hierarchical Clustering 
visualised as a heatmap were used to find patterns in the samples. 

A PCA analysis was performed using the whole detected lipidome; 
no differences were found between the diseased (DIS) group and 
healthy controls (CTL) (Figure 3A). However, when the 25 lipid spe-
cies with the lowest p -values were represented using hierarchical 
clustering analyses, as shown in a heatmap (Figure 3B), a clear sep-
aration between groups was observed revealing a specific shared 
trend in patients with neurodegenerative diseases within the ALS-
FTLD-TDP43 proteinopathy spectrum. Finally, the Wilcoxon test on 
all acquired data was performed to determine whether there were 
any significant lipid feature differences between healthy and dis-
eased groups (p < 0.05). Dunn's test was used to correct for multiple 
comparisons. The statistical test resulted in 63 differential mol-
ecules with p < 0.05 (Table 3), of which 30 were identified based on 
exact mass, retention time and/or MSMS spectrum.

Most of the identified lipids were glycerophospholipids, but a 
number of glycerolipids and sphingolipids were also found. Also, an 
acylcarnitine and two fatty acid esters of hydroxyl fatty acids were 
identified. Noteworthy were the phosphocholines (PC) because 
many of them, seven to be specific, were significantly different, 
with four identified at the compound level. Two of them contained 
20:4 n6 (arachidonic acid, AA), one contained 22:6 n3 (docosahex-
aenoic acid, DHA), and one contained 18:2n6 (linoleic acid, LA). AA 
and DHA were also found in two of the three significantly changed 
phosphoethanolamines (PE). Notably, we found five ether lipids 
down-regulated in the diseased samples, two of them plasmenyl 
phosphocholines and three plasmenyl phosphoethanolamines, again 
containing AA and DHA. Two sphingomyelins, one ceramide and 
sphinganine were identified as ALS-FTLD-TDP43 proteinopathy 
spectrum-associated molecular features. Among the identified com-
pounds, no bile acid was detected as different.

Differences between neurological diseases within the 
ALS-FTLD-TDP43 proteinopathy spectrum

To determine whether there was a real difference between the 
distinct TDP43 proteinopathy phenotypes characterised as sALS, 
sFTLD-TDP and c9FTLD, the three diseases were compared with 
each other. Frontal cortex region 8 samples were used to uncover 
characteristic lipidomic trends and features for each disorder. The 
heatmap representing the hierarchical clustering of the individual 
samples (Figure 3D) showed perfectly arranged samples in disease 
groups when the top differential metabolites obtained with the 
Kruskal–Wallis test were used. Interestingly, FTLD-TDP patients 
(both sporadic and c9) clustered together, indicating that these 
groups are more similar to each other than they are to the ALS group.

The Kruskal–Wallis test revealed changes in glycerolipids, glyc-
erophospholipids, sphingolipids and sterol lipids listed in Table 4. 
Most of the compounds identified in this analysis (Figure 3E) of fron-
tal cortex region 8 were TGs and most contained 18:1 oleic acid; 
these TGs were higher in the ALS group and lower in the sFTLD-TDP 
group. Interestingly, CE (20:1) was increased in c9FTLD compared 
with the other groups.
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TA B L E  2  Fatty acid compositional profiles of total lipids from frontal cortex area 8 in controls, sALS, sFTLD-TDP and c9FTLD cases 
assessed with gas chromatography

Control sALS sFTLD-TDP c9FTLD p

Fatty acids

14:0 1.44 ± 0.09 1.47 ± 0.17 1.51 ± 0.08 1.54 ± 0.12 0.716

16:0 24.73 ± 1.13 24.34 ± 2.06 24.91 ± 1.55 24.04 ± 1.51 0.946

16:1n7 1.61 ± 0.15 1.87 ± 0.39 1.92 ± 0.22 2.02 ± 0.23 0.643

18:0 24.8 ± 0.53 28.28 ± 2.62 24.3 ± 0.54 23.52 ± 0.55 0.05

18:1n9 21.77 ± 1.41 19.8 ± 3.05 23.07 ± 1.84 23.89 ± 2 0.586

18:1n7 4.58 ± 0.21 3.63 ± 0.63 4.94 ± 0.19 4.72 ± 0.19 0.105

18:2n6 0.77 ± 0.12 0.7 ± 0.13 0.61 ± 0.05 0.59 ± 0.02 0.475

18:3n3 0.07 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.962

18:4n3 0.94 ± 0.06 1.18 ± 0.25 1.06 ± 0.09 0.88 ± 0.08 0.512

20:0 0.24 ± 0.00 0.3 ± 0.03 0.25 ± 0 0.24 ± 0.01 0.073

20:1n9 1.32 ± 0.17 1.93 ± 0.66 1.41 ± 0.25 1.35 ± 0.23 0.993

20:2n6 0.45 ± 0.04 0.54 ± 0.19 0.46 ± 0.08 0.42 ± 0.06 0.954

20:3n3 0.69 ± 0.03 0.67 ± 0.04 0.61 ± 0.02 0.63 ± 0.08 0.282

20:4n6 4.89 ± 0.21 5.02 ± 0.51 4.71 ± 0.32 4.49 ± 0.33 0.764

20:3n6 0.27 ± 0.05 0.17 ± 0.02 0.16 ± 0.03 0.16 ± 0.04 0.161

22:0 0.03 ± 0.001 0.03 ± 0.01 0.03 ± 0.001 0.03 ± 0.001 0.113

20:5n3 0.61 ± 0.13 0.59 ± 0.1 0.51 ± 0.04 0.42 ± 0.03 0.278

22:1 0.06 ± 0.01 0.08 ± 0.03 0.07 ± 0.01 0.07 ± 0.01 0.964

22:4n6 2.83 ± 0.19 2.58 ± 0.21 2.53 ± 0.16 2.32 ± 0.06 0.225

22:5n6 0.52 ± 0.06 0.39 ± 0.06 0.49 ± 0.09 0.40 ± 0.08 0.578

22:5n3 0.11 ± 0.01 0.14 ± 0.03 0.11 ± 0.02 0.12 ± 0.02 0.99

24:0 0.48 ± 0.07 0.51 ± 0.1 0.42 ± 0.04 0.48 ± 0.08 0.985

22:6n3 4.17 ± 0.47 3.22 ± 0.64 3.6 ± 0.46 3.33 ± 0.52 0.704

24:1n7 1.1 ± 0.22 1.41 ± 0.5 1.18 ± 0.25 1.29 ± 0.3 0.992

24:5n3 1.3 ± 0.22 0.82 ± 0.16 0.81 ± 0.13 2.74 ± 1.4 0.329

24:6n3 0.21 ± 0.05 0.26 ± 0.08 0.25 ± 0.06 0.24 ± 0.05 0.978

Fatty acid indexes

SFA 51.71 ± 1.48 54.92 ± 2.96 51.44 ± 1.95 49.85 ± 1.89 0.533

UFA 48.29 ± 1.48 45.08 ± 2.96 48.56 ± 1.95 50.15 ± 1.89 0.513

PUFA 17.83 ± 0.65 16.36 ± 1.25 15.97 ± 0.79 16.81 ± 1.66 0.892

MUFA 30.46 ± 2.03 28.72 ± 3.71 32.59 ± 2.72 33.34 ± 2.88 0.441

PUFAn3 8.1 ± 0.54 6.97 ± 0.94 7.01 ± 0.64 8.43 ± 1.55 0.092

PUFAn6 9.73 ± 0.33 9.39 ± 0.51 8.96 ± 0.26 8.38 ± 0.35 0.039b,d 

ACL 18.13 ± 0.02 18.06 ± 0.03 18.02 ± 0.01 18.12 ± 0.1 0.964

DBI 109.63 ± 1.72 99.69 ± 4.97 103.11 ± 1.66 108.54 ± 6.55 0.691

PI 89.01 ± 4.24 78.44 ± 7.69 79.03 ± 5.25 84.98 ± 10.49 0.809

Estimated desaturase and elongase activities

Δ9(n−7) 0.07 ± 0.01 0.09 ± 0.03 0.08 ± 0.01 0.09 ± 0.02 0.506

Δ9(n−9) 0.89 ± 0.08 0.77 ± 0.15 0.96 ± 0.1 1.03 ± 0.11 0.433

Δ5(n−6) 22.08 ± 4.98 30.13 ± 2.64 32.52 ± 3.9 42.36 ± 12.89 0.768

Δ6(n−3) 15.14 ± 2.36 18.94 ± 5.96 16.19 ± 2.51 12.78 ± 2.01 0.302

Δ6(n−3) 0.21 ± 0.07 0.52 ± 0.24 0.42 ± 0.14 0.25 ± 0.09 0.444

Elovl3(n−9) 0.06 ± 0.01 0.14 ± 0.09 0.06 ± 0.01 0.05 ± 0.01 0.928

(Continues)
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Important features associated with 
different phenotypes

To identify the differential lipid molecules in each disorder, we 
performed a Kruskal–Wallis test with a post hoc comparison using 
Dunn's test on frontal cortex region 8 samples from sALS, sFTLD-
TDP, c9FTLD and controls. The differential molecules are listed in 
Table 5. Globally, phospholipid species (mainly PC) presented the 
greatest differences between ALS (lower) and CTL (higher) groups. 
Interestingly, FAHFA (42:3) was decreased in c9FTLD and ALS com-
pared with the control group. Furthermore, we found MG(20:1), 
CE(20:1) and DG(16:0/22:6) to be elevated in sFTLD-TDP and 
c9FTLD compared to the control group. PC(36:3) was down-regu-
lated in ALS and sFTLD-TDP compared to controls. PC(18:1/20:4) 
was down-regulated in sFTLD-TDP compared to CTL and c9FTLD. 
Sphinganine was down-regulated in ALS and sFTLD-TDP compared 
to control samples (Figure 3E).

DISCUSSION

ALS and FTLD are two neurodegenerative disorders that share a 
number of genetic, pathological and clinical features. One shared 
molecular trait is the accumulation of pathological protein aggre-
gates including, among others, the protein TAR DNA-binding protein 
43 kDa (TDP-43).

Previous reports on altered levels of lipids in the central ner-
vous system and peripheral systems in ageing [59, 71] and neuro-
degenerative disorders [59, 61, 72–76] led us to hypothesise that 
impaired peroxisomal function contributes to the progression of 

neurodegeneration in TDP-43 proteinopathies. Peroxisomes har-
bour a variety of enzymes, which either serve to catalyse a single 
chemical reaction or cooperate with other peroxisomal enzymes in a 
series of coupled reactions constituting a complete metabolic path-
way [11]. A prominent example of these metabolic pathways that 
links lipid metabolism and peroxisome functioning is the metabolism 
of diverse fatty acids by α/β-oxidation, bile acids, docosahexaenoic 
acid and ether lipid biosynthesis [77]. The present observations 
show altered gene expression profiles of different components in-
volved in peroxisomal machinery and lipid metabolism that require 
peroxisomal activity in frontal cortex area 8 of post-mortem samples 
of different TDP-43 proteinopathies.

Our transcriptomic data revealed slight changes in the expres-
sion profiles of the studied peroxisomal genes. Gene expression 
alterations were mainly in genes in peroxisome biogenesis and β-ox-
idation, fatty acid metabolism and acylcarnitine biosynthesis mainly 
found in FTLD cases. Changes in two of six genes linked to primary 
bile acid biosynthesis do not match with any pattern associated with 
ALS-FTLD-TDP43 proteinopathy. This suggests that the disparate 
alteration in the biosynthesis of primary bile acids does not have a 
definite role in FTLD-TDP43.

In agreement with the slight transcriptomic alterations, no 
changes in metabolites of bile acid metabolism or alpha/beta fatty 
acid oxidation were detected with our lipidomic approach, suggest-
ing that the changes in gene expression are insufficient to induce 
changes at the level of metabolite concentrations, which are main-
tained within a physiological range. Reinforcing this idea, transcrip-
tomic changes in fatty acid metabolism do not affect the fatty acid 
profiles of any of the TDP-43 proteinopathies, suggesting that the 
activity of the operating machinery, despite being hampered, is 

Control sALS sFTLD-TDP c9FTLD p

Elovl6 1.01 ± 0.03 1.23 ± 0.2 0.99 ± 0.04 1 ± 0.05 0.997

Elovl1-3-7a 0.01 ± 0 0.01 ± 0 0.01 ± 0 0.01 ± 0 0.346

Elovl1-3-7b 0.1 ± 0.01 0.1 ± 0.02 0.14 ± 0.01 0.11 ± 0.01 0.164

Elovl1-3-7c 19.55 ± 3.24 29.26 ± 11.07 13.45 ± 2.66 21.54 ± 5.25 0.105

Elovl5(n−6) 0.66 ± 0.12 1.12 ± 0.5 0.79 ± 0.16 0.73 ± 0.11 0.672

Elovl2-5 (n−6) 0.59 ± 0.05 0.56 ± 0.09 0.56 ± 0.07 0.54 ± 0.05 0.42

Elovl 2–5(n−3) 0.2 ± 0.03 0.23 ± 0.04 0.21 ± 0.03 0.29 ± 0.06 1

Elovl 2(n−3) 12.17 ± 2.04 6.38 ± 0.5 8.24 ± 1.93 36.21 ± 20.44 0.028a,b,c 

Peroxisome 
β-oxidation

1.54 ± 0.22 1.36 ± 0.29 1.52 ± 0.27 1.47 ± 0.24 0.691

Values are reported as mean±SEM from 6 to 8 cases and are expressed as mol%. Inter-group differences were measured by pairwise Kruskal–Wallis 
test applying a Bonferroni correction. Minimum significance level is set at p < 0.05. Estimated desaturase and elongase activities from specific 
product/substrate ratios: Δ9(n−7), ratio 16:1n−9/16:0; Δ9(n−9), ratio 18:1n−9/18:0; Δ5(n−6), ratio 20:4n−6/20:3n−6; Δ6(n−3), ratio 18:4n−3/18:3n−3; 
Δ6(n−3), ratio 24:6n−3/24:5n−3; Elovl3(n−9), ratio 20:1n−9/18:1n−9; Elovl6, ratio 18:0/16:0; Elovl1-3-7a, ratio 20:0/18:0; Elovl1-3-7b, ratio 
22:0/20:0; Elovl1-3-7c, ratio 24:0/22:0; Elovl5(n−6), ratio 20:2n−6/18:2n−6; Elovl2-5 (n−6), ratio 22:4n−6/20:4n−6; Elovl 2–5(n−3), 22:5n−3/20:5n−3; 
Elovl 2(n−3), 24:5n−3/22:5n−3; Peroxisome β-oxidation, ratio 22:6n−3/24:6n−3.
aControl versus sALS. 
bControl versus sFTLD-TDP. 
cControl versus c9FTLD. 
dsFTLD-TDP versus c9FTLD. 

TA B L E  2  (Continued)
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FI G U R E 3 Multivariate statistics and learning methods reveal a specific lipidome shared by TDP-43 proteinopathies. (A) Principal component 
analysis (PCA) 2D plot of samples lipidome. (B–C) Heatmap representation of hierarchical clustering of individual samples according to the top 25 
statistically significantly different lipid species between (B) neurological disorders versus controls and (C) among groups of TDP-43 proteinopathies. 
(D–E) Heatmap representation of hierarchical clustering of groups according to the identified significantly different lipid species (D) among groups 
of TDP-43 proteinopathies and (E) between neurological disorders and controls
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TA B L E  3  Lipidomic features associated with ALS-FTLD-TDP43 proteinopathy spectrum

Lipid category Lipidomic feature Ionisation mz value
Retention 
time p value Regulation

Fatty acyls AcCar(8:1DC)a  Positive 315.118 0.9 0.031093 Down

FAHFA(42:3)b  Negative 643.5684 9.1 0.012598 Down

FAHFA(5:0/22:3)a  Negative 433.3377 5.4 0.033121 Down

Glycerolipids DG(20:4/24:0)a  Positive 746.711 7.2 0.019979 Down

DG(36:1)c  Positive 640.5837 7.5 0.018745 Up

DG(36:4)c  Positive 627.5308 7.3 0.031093 Down

DG(40:6)c  Positive 651.5308 6.4 0.046311 Down

Glycerophospholipids PC(16:0/22:6)a  Positive 806.5692 6.8 0.033121 Down

PC(16:1/18:2)a  Positive 756.5511 6.7 0.021125 Down

PC(18:0/20:4)a  Positive 810.5987 7.3 0.012477 Down

PC(20:0/20:4)a  Positive 838.6325 7.9 0.014856 Down

PC(37:6)b  Positive 784.5814 7.2 0.0097892 Down

PC(42:7)b  Positive 860.6127 7.3 0.046713 Down

PC(44:5)b  Positive 874.6672 8 0.021786 Down

PC(P-18:1/22:5)a  Positive 818.6436 7.8 0.020481 Down

PC(P-24:2/14:1)a  Positive 796.5834 7.7 0.0052875 Down

LysoPE(14:0/0:0)a  Negative 425.2602 0.9 0.010806 Down

PE(18:0/20:4)a  Positive 768.5532 7.3 0.020132 Down

PE(18:0/22:4)a  Positive 796.577 7.2 0.04434 Down

PE(18:0/22:6)a  Positive 792.5538 7.2 0.044758 Down

PE(O-37:1)b  Positive 746.5681 7.7 0.0080321 Down

PE(P-16:0/22:6)a  Positive 748.5247 7 0.024038 Down

PE(P-18:0/22:4)a  Positive 780.5886 7.9 0.017083 Down

PG(14:1/14:1)a  Positive 663.4529 7.8 0.033121 Down

Sphingolipids Cer(d18:1/17:0)a  Positive 548.4996 8.3 0.019979 Down

SM(d20:5/16:1)a  Positive 721.5057 7.8 0.01427 Down

SM(d38:1)b  Positive 759.6368 7.9 0.0077921 Down

Sphinganinec  Positive 284.2891 4.4 0.017319 Down

Unknown 112.0521_0.8908437 Positive 113.0521 0.9 0.029833 Down

1145.327_7.909675 Positive 1146.327 7.9 0.024038 Down

1168.27_8.160657 Positive 1169.27 8.2 0.020311 Down

1387.036_0.9344499 Positive 1388.036 0.9 0.033121 Down

1445.068_0.9473143 Positive 1446.068 0.9 0.035663 Down

224.19_1.288949 Positive 225.19 1.3 0.00089717 Down

266.152_0.9234737 Negative 265.152 0.9 0.035739 Down

268.1307_0.840175 Positive 269.1307 0.8 0.024038 Down

273.029_1.499844 Positive 274.029 1.5 0.0073599 Down

278.1875_0.9220529 Negative 277.1875 0.9 0.046734 Down

311.3201_5.293459 Positive 312.3201 5.3 0.035663 Down

322.1781_0.9135807 Positive 323.1781 0.9 0.045145 Down

348.375_3.32256 Positive 349.375 3.3 0.0020598 Down

377.316_1.459708 Positive 378.316 1.5 0.041782 Down

421.4281_2.996461 Positive 422.4281 3 0.01427 Down

488.4371_6.214781 Positive 489.4371 6.2 0.020311 Down

(Continues)
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sufficient to sustain the optimal fatty acid profile needed to support 
neuronal survival and function. Thus, fatty acid profile maintains an 
ACL of about 18 carbon atoms, and a relative distribution between 
saturated (SFA) and unsaturated (UFA, being UFA = PUFA series 
n-3+PUFA series n-6) fatty acids of around 45:55, with MUFAs being 
the predominant UFAs, and AA and DHA the main PUFAs, as pre-
viously described in healthy adult frontal cortex [59]. Interestingly, 
the lack of changes in very long chain saturated fatty acids (VLCFA) 
22:0 and 24:0 reinforces the idea that the light peroxisomal dys-
function in gene expression associated with TDP-43 proteinopa-
thies is not sufficient to affect VLCFA content, in contrast to other 
neuropathological conditions primary of peroxisomal origin such as 
X-adrenoleukodystrophy, or even Alzheimer's disease [39,78].

A sustained fatty acid profile does not exclude, however, poten-
tial changes in the content of lipid species that can be uncovered 
with a lipidomics approach. An adult human brain contains the larg-
est amount and diversity of lipids (in terms of classes and molecular 
species) including glycerolipids, glycerophospholipids, sphingolipids 
and cholesterol. Glycerophospholipids are the major phospholipid 
components ubiquitously found in neural cell membranes [59,79,80]. 
In the human brain, phospholipids constitute 4.2% of the wet 

weight of the grey matter [79,81,82]. Phosphatidic acid occurs in 
low concentrations in brain (about 2% of total phospholipids). The 
predominant form of choline phosphoglycerides is PC (32.8%), with 
PC (16:0/18:1) being the major molecular species; the choline plas-
malogen (PC(P-)) and the alkyl analogue (PC(O-)) account for only 
about 2% of total choline phosphoglycerides. Ethanolamine phos-
phoglycerides are quantitatively the major phospholipid in human 
brain (35.6%), and the predominant form is the ethanolamine plas-
malogen (PE(P-)), accounting for 50–60% of the ethanolamine phos-
phoglyceride lipid class in the whole human brain [83]. The alkylacyl 
analogue content is relatively low (3–7% of the ethanolamine phos-
phoglyceride class), whereas PE makes up the remaining amount of 
ethanolamine phosphoglycerides. Their total fatty acid composition 
indicates a large content of PUFAs, mainly 20:4n6 and 22:6n3 at po-
sition-2 of sn-glycerol, with position-1 occupied primarily by 16:0, 
18:0 and 18:1 groups in grey matter [83]. The concentration of serine 
phosphoglycerides is about 16.6%, which is particularly rich in 22:6; 
and inositol phosphoglycerides account for about 2.6% of the total 
phospholipids in the human brain [84, 85]. The brain contains the 
highest concentrations of phosphoinositides among animal tissues. 
Finally, 0.2% of phospholipids are present as diphosphatidylglycerol 

Lipid category Lipidomic feature Ionisation mz value
Retention 
time p value Regulation

598.5024_8.868424 Positive 599.5024 8.9 0.019663 Down

602.531_8.221487 Positive 603.531 8.2 0.0032711 Down

604.5456_7.708292 Positive 605.5456 7.7 0.033121 Down

608.4662_2.848297 Positive 609.4662 2.8 0.020311 Down

610.5369_7.541813 Positive 611.5369 7.5 0.034782 Down

648.6568_6.103854 Positive 649.6568 6.1 0.01427 Down

650.5316_7.211145 Positive 651.5316 7.2 0.033121 Down

666.6668_6.717138 Positive 667.6668 6.7 0.014815 Down

683.1998_8.170667 Positive 684.1998 8.2 0.044758 Down

703.5196_6.254575 Positive 704.5196 6.3 0.033121 Down

761.5996_8.059616 Positive 762.5996 8.1 0.020311 Down

780.1863_5.702648 Positive 781.1863 5.7 0.0091894 Down

849.2486_6.27925 Positive 850.2486 6.3 0.011865 Down

856.5926_2.848731 Positive 857.5926 2.8 0.020311 Down

875.6869_8.276659 Positive 876.6869 8.3 0.010806 Down

891.6605_8.298165 Positive 892.6605 8.3 0.046253 Down

903.7173_8.633369 Positive 904.7173 8.6 0.018183 Down

910.2362_7.831027 Positive 911.2362 7.8 0.0052875 Down

981.2558_8.147829 Positive 982.2558 8.1 0.01427 Down

Significant molecular features after Wilcoxon rank-sum test with p value <0.05 are shown as LC-ESI Ionisation mode (P for positive and N for 
negative) followed by neutral mass and retention time. Potential identities based on MS1 and MS2 data for each feature are found lipidomic feature. 
Unidentified compounds are labelled as neutral mass and retention time. Ether phospholipids are highlighted in bold.
Abbreviations: AcCar, acylcarnitine; DG, diacylglycerol; FAHFA, fatty acid ester of hydroxyl fatty acid; FDR, false discovery rate; mz value, mass-to-
charge ratio; PC, phosphocholine; PE, phophoethanolamine; SM, sphingomyelin.
aRepresents confirmation by data-dependent MS2. 
bRepresents confirmation by data-dependent MS2 by class. 
cRepresents confirmation by MS1 exact mass and retention time. 

TA B L E  3  (Continued)
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in the human brain. Sphingolipids are a complex lipid group, derived 
from N-acylsphingosine (ceramide), which occurs in large concen-
trations in the human brain. This group of lipids consists of sphin-
gomyelin, cerebrosides, sulfatides and gangliosides. Sphingomyelin 
(N-acylsphingosine-1-phosphocholine) accounts for about 14.8% of 
the phospholipid content of the human brain.

Our lipidomics approach shows that the ALS-FTLD-TDP43 
proteinopathy spectrum is associated with minor but significant 
changes in lipidomic profile, based on the fact that only 63 of 1119 
molecular species (5.6%) were significantly different. Interestingly, 
this lipidomic pattern defines the ALS-FTLD-TDP43 proteinop-
athy spectrum; and with the exception of one molecular species 
(DG(36:1)), all lipid species (62 out of 63) were decreased. Notably, 
among the molecules recorded based on exact mass, retention time, 
and/or MSMS spectrum, no molecular species belong to the phos-
phatidic acid, phosphatidylserine or phosphatidylinositol class. The 
differentially identified lipid species belong mainly to glycerophos-
pholipids (PC and PE, and their plasmalogen forms) and sphingolipid 
lipid families.

Glycerophospholipids are important building blocks of cell mem-
branes that provide an optimal environment for protein interactions, 
trafficking and function. In the ageing process and in the patholog-
ical context of neurodegeneration, decreased brain phospholipid 
levels and alterations in brain phospholipid metabolism appear, as 
observed in brain post-mortem tissue, CSF and blood [86]. This 
study demonstrates a down-regulation in PC and PE levels in the 
ALS-FTLD spectrum, suggesting alterations in the architecture of 
the neural cells [87, 88]. In addition, PC is an important source for 
the formation of second messengers and lipid mediators [89, 90]. 
Disturbance of its production interferes with cell proliferation and 
differentiation, and membrane movement throughout the cell [91]. 
Furthermore, PE plays essential roles in autophagy, cell division and 
protein folding, representing a precursor for the synthesis of sev-
eral protein modifications [88]. In addition, both PC and PE are in-
termediates in the synthesis of other glycerophospholipid classes 
[92, 93]. In line with our results, a recent study in cells [94] revealed 
that TDP-43-mediated toxicity induced lower levels of glycerophos-
pholipids (especially glycerophosphocholines) and sphingolipids. 
Decrease levels of glycerophospholipids were also described in ALS 
animal models [95]. Globally, our results suggest a minor but cru-
cial disturbance of phospholipid metabolism in TDP-43 proteinopa-
thies. Decreased levels of glycerophospholipids are consistent with 
altered cell membranes and altered signal transduction via reduced 
second messengers at the cell membrane. Since the main cellular al-
teration in the FC of FTLD (and in sALs) affects neurons, it can be in-
ferred that phospholipid alterations here observed reflect abnormal 
neuronal membrane lipid composition. Whether this is accompanied 
by altered protein content, indicating cell membranes as putative 
subcellular targets in TDP-43 proteinopathies, will be a subject of 
future studies.

Ether lipids are a subclass of glycerophospholipids that have two 
chemical forms: as ‘plasmanyl’ (also termed alkyl ethers and repre-
sented by the ‘O-‘ prefix), and as ‘plasmenyl’ (also termed alkenyl 

ethers or plasmalogens, and represented by the ‘P-‘ prefix) [96, 
97]. Ether lipids are mostly present as PC and PE species [96]. At 
the cellular level, ether lipid biosynthesis begins in the peroxisome 
and is completed in the endoplasmic reticulum [96–98]. The physi-
ological role of ether lipids is linked to their function as membrane 
components (fluidity, formation of lipid rafts and a source of second 
messengers). Other functions in which ether lipids are involved are 
cholesterol transport, G-protein-mediated signal transduction, mem-
brane fusion events, transmembrane protein function and vesicular 
function [96–98]. Interestingly, an antioxidant effect has also been 
assigned to plasmalogens [99]. Available evidence reveals that ether 
lipids are inversely associated with genetic peroxisomal disorders, 
and also suggests that they are negatively associated with prevalent 
disease states such as cancer, cardiovascular diseases and Alzheimer 
disease, among others [100]. Notably, these pathological conditions 
share as a common trait, increased oxidative stress, and a potential 
mechanistic role for plasmalogens. Our study clearly demonstrates 
down-regulation of the ether lipid content in frontal cortex area 8 of 
TDP-43 proteinopathies. Thus, a reduction in its levels may confer 
vulnerability against oxidative stress insults potentially contribut-
ing to neurodegeneration in these disorders, in addition to acting 
as a marker of impaired peroxisomal function. Reinforcing this idea, 
the lack of support at the transcriptional level (no changes were ob-
served in the present work) suggests the existence of alterations 
at the translational level or, more probably, functional defects me-
diated by potential oxidative stress conditions. Further studies are 
needed to obtain a more detailed mechanistic view.

A major category of lipids is the sphingolipids [101] that play 
a key role in the formation of lipid rafts in cell membranes [102]. 
The metabolism of sphingolipids is a complex network with cera-
mide at the core [103]. The result is a wide diversity of lipid species 
with structural (e.g. sphingomyelins) and bioactive/messenger (e.g. 
sphingosines, dihydroceramides and ceramides) functions [101]. 
Sphingolipids regulate membrane physiology (fluidity, geometry, 
membrane trafficking and clustering of plasma membrane recep-
tors and ion channels, among others) and cell biology (e.g. oxidative 
stress, apoptosis and cell survival), and they have been seen to be 
involved in several pathological conditions such as cardiovascular 
diseases and neurodegeneration [103–106]. Our lipidomic study 
showed a down-regulation of structural sphingolipids such as sphin-
gomyelin, as well as bioactive compounds such as sphinganine and 
ceramides in TDP-43 proteinopathies, reinforcing the view that 
there are alterations in lipid metabolism in these neurodegenerative 
disorders. Therefore, studies focused on lipid rafts, as analysed in 
detail in Alzheimer's disease, Parkinson's disease and Dementia with 
Lewy bodies [107–110] would be extremely useful to refine possible 
alterations in these cellular domains in which the main cell to cell 
interactions take place.

Another observation that argues for a peroxisomal dysfunc-
tion in TDP-43 proteinopathies is the down-regulation of acylcar-
nitine. Acylcarnitine is a metabolite that plays a relevant role in 
enabling long-chain fatty acid exchanges between peroxisomes 
and mitochondria for beta-oxidation [111]. Surprisingly, the 



    | 559
LIPID ALTERATIONS IN HUMAN FRONTAL CORTEX IN ALS-FTLD-TDP43 PROTEINOPATHY 
SPECTRUM ARE PARTLY RELATED TO PEROXISOME IMPAIRMENT

TA
B

LE
 5

 
Li

pi
do

m
ic

 fe
at

ur
es

 a
ss

oc
ia

te
d 

w
ith

 n
eu

ro
lo

gi
ca

l d
is

ea
se

 o
f t

he
 T

D
P-

43
 s

pe
ct

ru
m

Li
pi

d 
ca

te
go

ry
Li

pi
do

m
ic

 fe
at

ur
e

Io
ni

sa
tio

n
m

z 
va

lu
e

Re
te

nt
io

n 
tim

e
ch

i s
qu

ar
ed

p 
va

lu
e

po
st

 h
oc

Fa
tt

y 
ac

yl
s

FA
H

FA
(4

2:
3)

b  
N

eg
at

iv
e

64
3.

56
84

9.
1

10
.9

55
0.

01
19

7
sA

LS
 - 

C
TL

, C
TL

 - 
c9

FT
LD

, s
FT

LD
-T

D
P 

- c
9F

TL
D

G
ly

ce
ro

lip
id

s
D

G
(1

6:
0/

22
:6

)a  
Po

si
tiv

e
64

0.
58

37
7.

5
11

.3
08

0.
01

01
73

C
TL

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

c9
FT

LD
, s

FT
LD

-T
D

P 
- c

9F
TL

D

M
G

(2
0:

1)
c  

Po
si

tiv
e

40
2.

35
29

3.
1

8.
96

68
0.

02
97

36
C

TL
 - 

sF
TL

D
-T

D
P,

 C
TL

 - 
c9

FT
LD

TG
(1

8:
0/

18
:1

/1
8:

1)
a  

Po
si

tiv
e

90
4.

82
96

10
.3

9.
39

31
0.

02
44

96
sA

LS
 - 

sF
TL

D
-T

D
P,

 s
FT

LD
-T

D
P 

- c
9F

TL
D

TG
(1

8:
1/

18
:1

/1
8:

2)
a  

Po
si

tiv
e

90
0.

80
05

10
8.

11
53

0.
04

36
88

sA
LS

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

sF
TL

D
-T

D
P

G
ly

ce
ro

ph
os

ph
ol

ip
id

s
PC

(1
6:

0/
20

:4
)a  

Po
si

tiv
e

78
2.

56
91

6.
9

8.
34

59
0.

03
93

79
sA

LS
 - 

C
TL

, C
TL

 - 
sF

TL
D

-T
D

P

PC
(1

6:
0/

22
:6

)a  
Po

si
tiv

e
80

6.
56

92
6.

8
9.

17
74

0.
02

70
23

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

, C
TL

 - 
sF

TL
D

-T
D

P

PC
(1

8:
1/

20
:4

)a  
Po

si
tiv

e
80

8.
58

45
7

9.
76

19
0.

02
07

03
sA

LS
 - 

C
TL

, s
A

LS
 - 

c9
FT

LD
, C

TL
 - 

sF
TL

D
-T

D
P,

 s
FT

LD
-T

D
P 

- c
9F

TL
D

PC
(3

6:
3)

b  
Po

si
tiv

e
78

4.
58

14
7.

2
8.

27
8

0.
04

06
03

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

PC
(4

4:
5)

b  
Po

si
tiv

e
84

6.
62

85
7.

7
8.

86
61

0.
03

11
25

sA
LS

 - 
C

TL
, s

A
LS

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

sF
TL

D
-T

D
P

PE
(O

-3
7:

1)
b  

Po
si

tiv
e

74
6.

56
81

7.
7

8.
13

37
0.

04
33

28
sA

LS
 - 

C
TL

, s
A

LS
 - 

c9
FT

LD

PE
(P

−1
6:

0/
22

:6
)a  

Po
si

tiv
e

74
8.

52
47

7
8.

75
02

0.
03

28
04

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

, C
TL

 - 
sF

TL
D

-T
D

P

PE
-N

M
e(

44
:1

2)
c  

N
eg

at
iv

e
83

0.
52

76
7.

2
8.

06
31

0.
04

47
26

C
TL

 - 
c9

FT
LD

, s
FT

LD
-T

D
P 

- c
9F

TL
D

Sp
hi

ng
ol

ip
id

s
SM

(d
20

:5
/1

6:
1)

a  
Po

si
tiv

e
72

1.
50

57
7.

8
9.

46
98

0.
02

36
55

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

, C
TL

 - 
sF

TL
D

-T
D

P

SM
(d

33
:0

)b  
Po

si
tiv

e
68

9.
55

5
7.

2
9.

10
91

0.
02

78
75

C
TL

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

c9
FT

LD

Sp
hi

ng
an

in
ec  

Po
si

tiv
e

28
4.

28
91

4.
4

7.
85

87
0.

04
90

24
sA

LS
 - 

C
TL

, C
TL

 - 
c9

FT
LD

St
er

ol
 li

pi
ds

C
E(

20
:1

)a  
Po

si
tiv

e
69

6.
64

63
8.

5
11

.7
53

0.
00

82
79

6
C

TL
 - 

sF
TL

D
-T

D
P,

 C
TL

 - 
c9

FT
LD

, s
FT

LD
-T

D
P 

- c
9F

TL
D

U
nk

no
w

n
11

45
.3

27
_7

.9
09

67
5

Po
si

tiv
e

11
46

.3
27

7.
9

13
.6

9
0.

00
33

58
4

sA
LS

 - 
C

TL
, s

A
LS

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

c9
FT

LD
, s

FT
LD

-T
D

P 
- c

9F
TL

D

14
23

.3
92

_1
0.

11
58

1
Po

si
tiv

e
14

24
.3

92
10

.1
11

.0
61

0.
01

14
02

sA
LS

 - 
C

TL
, s

A
LS

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

sF
TL

D
-T

D
P

22
4.

03
27

_0
.9

23
03

45
N

eg
at

iv
e

22
3.

03
27

0.
9

11
.8

41
0.

00
79

47
8

sA
LS

 - 
sF

TL
D

-T
D

P,
 s

A
LS

 - 
c9

FT
LD

, s
FT

LD
-T

D
P 

- c
9F

TL
D

22
4.

19
_1

.2
88

94
9

Po
si

tiv
e

22
5.

19
1.

3
9.

48
67

0.
02

34
73

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

, C
TL

 - 
c9

FT
LD

27
3.

02
9_

1.
49

98
44

Po
si

tiv
e

27
4.

02
9

1.
5

15
.8

53
0.

00
12

15
4

sA
LS

 - 
C

TL
, s

A
LS

 - 
sF

TL
D

-T
D

P,
 s

A
LS

 - 
c9

FT
LD

, s
FT

LD
-T

D
P 

- c
9F

TL
D

32
0.

34
33

_3
.3

20
78

1
Po

si
tiv

e
32

1.
34

33
3.

3
8.

68
29

0.
03

38
19

sA
LS

 - 
C

TL
, s

A
LS

 - 
sF

TL
D

-T
D

P,
 C

TL
 - 

sF
TL

D
-T

D
P

34
8.

37
5_

3.
32

25
6

Po
si

tiv
e

34
9.

37
5

3.
3

8.
86

0.
03

12
12

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

, C
TL

 - 
c9

FT
LD

42
2.

40
66

_7
.5

69
82

8
N

eg
at

iv
e

42
1.

40
66

7.
6

8.
96

19
0.

02
98

01
sA

LS
 - 

C
TL

, s
A

LS
 - 

c9
FT

LD
, C

TL
 - 

sF
TL

D
-T

D
P,

 s
FT

LD
-T

D
P 

- c
9F

TL
D

59
8.

50
24

_8
.8

68
42

4
Po

si
tiv

e
59

9.
50

24
8.

9
7.

90
38

0.
04

80
42

sA
LS

 - 
C

TL
, s

A
LS

 - 
c9

FT
LD

60
2.

53
1_

8.
22

14
87

Po
si

tiv
e

60
3.

53
1

8.
2

9.
61

05
0.

02
21

85
sA

LS
 - 

C
TL

, s
A

LS
 - 

c9
FT

LD
, C

TL
 - 

c9
FT

LD

64
8.

65
68

_6
.1

03
85

4
Po

si
tiv

e
64

9.
65

68
6.

1
9.

56
3

0.
02

26
71

sA
LS

 - 
C

TL
, C

TL
 - 

c9
FT

LD
, s

FT
LD

-T
D

P 
- c

9F
TL

D

66
6.

66
68

_6
.7

17
13

8
Po

si
tiv

e
66

7.
66

68
6.

7
11

.8
72

0.
00

78
36

1
sA

LS
 - 

C
TL

, s
A

LS
 - 

c9
FT

LD
, C

TL
 - 

sF
TL

D
-T

D
P

(C
on

tin
ue

s)



560  |    ANDRÉS-BENITO ET Al.

down-regulation of acylcarnitines does not seem to be mediated 
by defects at the transcriptional level. In fact, the contrary is ob-
served, with an increase in mRNA content of the main components 
of the biosynthesis pathway. Therefore, it is plausible to hypothe-
sise that this apparent contradiction between phenotype and gen-
otype is caused by translational alterations or, analogously to the 
postulated for plasmalogens biosynthesis, by functional defects at 
the protein level leading to a reduced peroxisomal biosynthestic 
capacity. Further studies are, however, also needed to consolidate 
these new ideas.

Finally, a special mention should be made of the detection of two 
branched fatty acid esters of hydroxy fatty acids (FAHFAs) for the 
first time, to our knowledge, in human brain. Although to date their 
biosynthesis and metabolism are not well elucidated, FAHFAs are a 
novel class of endogenous lipids that present beneficial effects on 
glucose homeostasis and anti-inflammatory activities. Interestingly, 
there is a possible link between endogenous FAHFA levels and nu-
clear factor erythroid 2-related factor 2 (Nrf2), which is involved in 
cell antioxidant defences, although the mechanisms of this are un-
known [112]. Considering the down-regulation of these compounds 
in TDP-43 proteinopathies, it may be suggested that there is impair-
ment of glucose homeostasis, inflammation and oxidative stress in 
frontal cortex area 8 in ALS-FTLD-TDP cases.

Globally, we have demonstrated minor changes in peroxisome-re-
lated gene expression that is mostly involved in lipid metabolism with 
phenotypic changes affecting ether lipids and acylcarnitine, whereas 
fatty acid metabolism seems to be preserved in the human frontal 
cortex in the ALS-FTLD-TDP43 proteinopathy spectrum. Additional 
changes in glycerophospholipids, sphingolipids and specific fatty 
acid species like FAHFA suggest a more profound impact of these 
proteinopathies in lipid metabolism with possible consequences on 
abnormal neuronal membrane composition and impaired cell signal-
ling at the membranes.

At present, little is known about the role of specific lipid species 
in TDP-43 proteinopathies and associated neurodegeneration. The 
development of cell lines and animal models with defective lipid me-
tabolism may help to clarify the role of these lipid species in TDP-43 
proteinopathies thus facilitate better understanding of the mecha-
nisms responsible for neurodegeneration and allowing better diag-
nosis and treatment.
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