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Abstract

Colour is an important signal that flowering plants use to attract insect pollinators like bees.

Previous research in Germany has shown that nectar volume is higher for flower colours

that are innately preferred by European bees, suggesting an important link between colour

signals, bee preferences and floral rewards. In Australia, flower colour signals have evolved

in parallel to the Northern hemisphere to enable easy discrimination and detection by the

phylogenetically ancient trichromatic visual system of bees, and native Australian bees also

possess similar innate colour preferences to European bees. We measured 59 spectral sig-

natures from flowers present at two preserved native habitats in South Eastern Australia

and tested whether there were any significant differences in the frequency of flowers pre-

senting higher nectar rewards depending upon the colour category of the flower signals, as

perceived by bees. We also tested if there was a significant correlation between chromatic

contrast and the frequency of flowers presenting higher nectar rewards. For the entire sam-

ple, and for subsets excluding species in the Asteraceae and Orchidaceae, we found no sig-

nificant difference among colour categories in the frequency of high nectar reward. This

suggests that whilst such relationships between flower colour signals and nectar volume

rewards have been observed at a field site in Germany, the effect is likely to be specific at a

community level rather than a broad general principle that has resulted in the common sig-

nalling of bee flower colours around the world.

Introduction

Many floral traits play a role in the reproduction of animal-pollinated angiosperms [1–5]. Col-

our is one of the most important signals used by flowering plants to communicate to their pol-

linators [6–10]. Flowers typically present nutritional rewards like nectar to entice floral visitors

[6,11–15], and nectar is a reward that can promote learning and neural changes in a bee’s

visual system [16]. What relationship between floral colour and nectar should evolve in plants?

Whilst nectar has been well studied in flowering plants [15,17–20], the question of a potential

relationship has been rarely considered because many animals have very different colour
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vision to humans [21]. Thus, colour is not an unambiguous trait, and to test colour as a factor

in a biologically meaningful way it is necessary to map how relevant pollinators like bees per-

ceive and use colour information.

Both male and female fitness of plants should often benefit from pollinator visits, especially

given widespread pollen-limitation of seed set [22]. Such fitness benefits for plants will be espe-

cially strong with flower visitors like bees that tend to be ‘flower constant,’ that is, to use colour

signals to repeatedly visit flowers of the same plant species [23] which likely increases conspe-

cific pollen transfer. In turn, the ability of pollinators to assess which floral colour signals are

more reliable predictors of nutritional rewards will affect the foraging success of individuals

[24] and thus the subsequent success of bee colonies [14,25–27]. It has even been suggested

that innate color preferences of naïve bees and their learning speeds for different colors corre-

late with typical nectar reward levels in flowers of different colors [28]. Such innate colour

preferences would, however, be susceptible to exploitation by plant species that offer low

rewards but display preferred floral colors. Thus, it seems unlikely that an association between

floral color and nectar reward (an evolutionarily stable honest signal) could be the ecological

basis for innate color preferences by bees.

Colour vision requires multiple photoreceptors with different sensitivities [29]. The spectral

sensitivities of photoreceptors in many bee species have been empirically determined, showing

that the trichromatic colour vision of bees is highly conserved and predates the evolution of

flowers [30]. To yield colour information, photoreceptor signals have to be antagonistically

processed in a brain [21]. Such colour opponent mechanisms in bees have been empirically

recorded [31–33]. Knowing this information enables the construction of a colour space to rep-

resents colour information. A hexagonal colour model is an opponent colour space that accu-

rately represents the visual capabilities of trichromatic bees [33].

Interestingly, both honeybees and bumblebees show similar distinct preferences for short

wavelength ‘blue’ stimuli that frequently have loci in the UV-BLUE, BLUE and/or BLUE-

GREEN sectors of bee colour space [28,34–39]. (In the current manuscript we use capitals (e.g.

BLUE) to convey a region in bee colour space (e.g. see Fig 1A), and ‘blue’ to refer to how

humans typically describe colour stimuli, following the convention proposed by [40]). It has

also been recently shown that native bees in Australia show a significant colour preference for

stimuli in the BLUE and BLUE-GREEN regions of bee colour space [41,42]. These potentially

common bee colour preferences provide a plausible explanation for why bee-pollinated flow-

ers from several fields sites around the world frequently share similar distributions in colour

space [43]. For bee colour preferences to have evolved due to an association between floral col-

our and nectar reward [28], the association would have to be ancient and ubiquitous.

Floral colour distributions in natural plant communities have recently been documented

from a geographically wide array of sites [3,46–53] including several recent studies that use

sophisticated modeling of pollinator colour vision [43,53–55]. Where bees are present in both

the Northern [3,44,56] and Southern [45–58] Hemispheres, flowers tend to have evolved col-

our signals that are efficiently processed by bee trichromatic vision. In Australia it has been

observed at both a continental level [45,58] and a local community level [43,55] that flower col-

ours share a very similar distribution in colour space to flower colour distributions in the

Northern Hemisphere where bees with a blue preference are the dominant pollinator. Evolu-

tionary change in floral colour appears not to be strongly limited by phylogenetic constraints

[43,44,48,54,58].

In a study at a field site near Berlin, Germany, flowers were most frequently found to be in

the UV-BLUE region of colour space and 80% of these flowers were reported to have high nec-

tar rewards, while no other colour category contained more than 50% high-rewarding flowers

[28]. In the current study, we seek to understand if a herbaceous community in Australia also
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shows a significant association between bee-perceived floral colours and nectar rewards that is

consistent with the pattern found in Germany [28], and thus whether this association might be

an important driver behind the evolution of bee colour preferences.

Materials and methods

Ethics

The study involved no animals, and this did not require ethics. Plant samples were collected

with permit number 10005294, Parks Victoria and the Department of Sustainability and Envi-

ronment 2009–2013.

Sites and data collection

We collected data from two natural communities in central Victoria, Australia: Baluk Willam

Flora Reserve (37˚55032@S, 145˚20045@E), 40 km south east of Melbourne, and Boomers

Reserve (37˚37039@S, 145˚15021@E), approximately 35 km north east of Melbourne. Both sites

are Eucalyptus woodland with well-developed shrub and herb layers containing a high diver-

sity of orchid species. These communities have been protected to maintain native vegetation.

Flowers were sampled from March 2010 to May 2011. Species were identified with the aid of

several published identification keys to the local flora [59–66]. A list of species included in this

study is given in online S1 Appendix.

Nectar measurement

We used the floral nectar data of 59 bee pollinated flowering plant species in our analysis. Nec-

tar collection and measurement methods are detailed in [55]. Briefly, newly opened flowers

were placed in pollinator exclusion nets for 24 hours to allow nectar accumulation. Flowers

were then excised, and soluble sugars were extracted by immersing whole flowers in known

volume of distilled water followed by an acid treatment to reduce all sugars into hexoses. Sub-

sequently, we measured the concentration of soluble sugars using standard spectrophotomet-

ric methods and back calculated the total sugar content of each flower [67]. Quantity of

Fig 1. Flower colour and nectar in Australian native plant flowers. a). Distribution of 59 flowering plant species in hexagon colour space: non-orchids (•) and orchids

(�). b). Frequency of sampled species classified on each of the six hexagon categories along with the corresponding pattern (red line) of plant species taken from the

surveys of plant communities in Germany, Australia, and Nepal [40,43,44,45]. c). Plant flower soluble sugars by colour category; thick lines represent medians, boxes

represent the 25% and 75% interquartile ranges, and thin vertical bars represent 2.5 and 97.5% quantiles of the data distribution. Names of the different hexagon sectors

are abbreviated: BLUE (B), BLUE-GREEN (BG). GREEN (G), UV-GREEN (UG), UV (U), and UV-BLUE (UB) as described by [40].

https://doi.org/10.1371/journal.pone.0226469.g001
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sucrose-equivalent present in each flowering plant species is listed in online supplementary

[55] and S1 Appendix.

Colour measurement

Reflectance spectra from 300 to 700 nm wavelength were measured on a minimum of three

flowers for each species using an Ocean Optics spectrophotometer (Dunedin, Florida, USA)

with a PX-2 pulsed xenon light source. A UV-reflecting white standard was used to calibrate

the spectrophotometer. Spectra from multiple flowers were averaged within each species. For

flowers with multiple colours, such as areas with and without a UV component, we obtained

reflectance spectra of the two colours covering the largest surface area of the flower.

Colour space representation

Floral reflectance spectra were converted to positions in a hexagonal colour space, a two-

dimensional representation of the excitation levels of the three different classes of photorecep-

tors in a hymenopteran insect’s visual system [68]. This model is widely accepted as a represen-

tation of bee trichromatic vision in comparative studies of flower evolution

[3,28,38,40,41,43,51,54,56,45,69,70]. The exact photoreceptor sensitivities of native Australian

bees are currently unknown, but relying on the phylogenetic conservation of spectral sensitiv-

ity peaks of hymenopteran photoreceptors [30], we use a general hymenopteran visual model

based on a vitamin A1 template for photopigments [71] with sensitivity peaks at 350 nm

(ULTRAVIOLET: UV), 440 nm (BLUE: B) and 540 nm (GREEN: G) (cf. [45]). We calculated

the relative probability of photon capture (P) by each of the UV, B, and G photoreceptors by

numerically integrating the product of the spectral sensitivity function of each one of the

(i = 3) photoreceptors Si(λ), the diffuse spectral reflectance of each flower I(λ) and the spectral

distribution of the ambient illumination D(λ) expressed as photon flux [72]. All spectral func-

tions were expressed from 300 to 650 nm at 10 nm steps:

Pi ¼ Ri

R 650

300
SiðlÞIðlÞDðlÞdl: ð1Þ

The coefficient Ri in Eq 1 represents von Kries adaptation and is used to normalize each of

the photoreceptors to the illumination reflected from the background [68]:

Ri ¼ 1=
R 650

300
SiðlÞIBðlÞDðlÞdl; ð2Þ

where IB (λ) is the spectral reflectance of the background. We used the average reflectance

from 20 species of Eucalyptus (Average Green Leaf) as background reflectance (IB(λ)) for our

calculations. We used an open sky, daylight ambient illumination equivalent to CIE 6,500 K

[73], that represent typical daylight conditions for foraging insects [74]. The transduction of

photoreceptor captures (P) into receptor excitations (E) is given by

E ¼ P=P þ 1: ð3Þ

The receptor excitations (EUV, EB and EG) are plotted on orthogonal axes, each of unit

length, and the colour locus of a flower is the vector sum of the individual excitations. A colour

locus can be represented by Cartesian coordinates in a hexagonal space using Eqs 4A and 4B

PLOS ONE Flower colour, nectar and bee preference

PLOS ONE | https://doi.org/10.1371/journal.pone.0226469 June 11, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0226469


[68]:

x ¼ sinð60�ÞðEG � EUVÞ ð4AÞ

y ¼ EB � 0:5ðEG � EUVÞ: ð4BÞ

Colour contrast in hexagon space was calculated as the Euclidean distance from the centre

of the colour space, representing the adapting background, to the locus of a flower [75]. Hexa-

gon coordinates for all flower species are given in online S1 Appendix.

Data analysis

Colour categories

For each species, we calculated the polar coordinates (angle and magnitude) of the floral colour

locus in the hexagonal colour model (Fig 1A). The angle is a measurement of ‘hue’ in the hexa-

gon space [68]. Samples were subsequently classified into one of the six colour categories pro-

posed by [40] based on their respective hue value: BLUE (B), BLUE-GREEN (BG), GREEN

(G), UV-GREEN (UG), UV (U), and UV-BLUE (UB).

Does sugar content vary among colour categories?

To facilitate comparison with the results presented by [28], we classified flowers as having

either a ‘high’ or ‘low’ soluble sugar content relative to the median for the entire flower sample.

We used a set of contingency tables to test for significant differences in proportion of high and

low soluble sugar content per color category, against a null hypothesis of equality of proportion

per color group. Contingency tables excluded the single sample present in the UV color group

(see results section for details). To avoid problems associated with using the χ2 distribution

with small sample sizes in some colour categories, probability values from the chi-square test

were obtained using 100,000 Monte Carlo simulations.

A second contingency test was conducted after excluding three species from the family

Asteraceae because the soluble sugar content for these species was measured from a compound

‘head’ rather than individual flowers. Median soluble sugar amount was thus recalculated from

the remaining species and the response variable was reformulated using the updated soluble

sugar threshold value.

Finally, we constructed a third table excluding plant species in both Asteraceae and Orchi-

daceae, given the prevalence of potential food deception in many orchids [76–78]. As before,

the median soluble sugar content was updated, and the remaining flower species were subse-

quently reclassified as being high or low.

Correlation between sugar content and chromatic contrast

In addition to hue, chromatic contrast with a background (see Colour space representation
above) is an element of colour that may be relevant to pollinators. We tested for a potential

correlation between chromatic contrast of flower loci to the leaf green background in hexagon

colour space and soluble sugar content. The analysis was done first on the entire data set, and

subsequently for the two data subsets following the same rationale used for the contingency

tests. All correlation tests were performed using Kendall’s tau (τ) statistic as the test makes no

assumptions on the underlying distribution of the data [79]. All analyses were performed

using R base package version 3.6.1 (05-07-2019).

Phylogenetic signal. To estimate phylogenetic signal in the evolution of floral sugar con-

tent, we reconstructed the phylogeny of the species in our sample using the angiosperm
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family-level topology of Soltis et al. [80] as a scaffold and subfamilial topology from a variety of

sources, and dated major nodes of the phylogenetic tree using the maximum-likelihood node

ages from Wikström et al. [81] (Fig 2). We calculated phylogenetic signal in floral sugar con-

tent using Pagel’s λ [82] and tested its significance with a randomization technique imple-

mented in the R package phytools [83]. For the entire data set, λ = 0.87, a value significantly

greater than zero (P = 0.002) but similar to the value of unity expected under Brownian motion

evolution of trait values. The apparent phylogenetic signal was, however, entirely due to the

presence of species in the Asteraceae, for which sugar content of capitula rather than individ-

ual flowers was measured. Excluding the Asteraceae, there was no significant phylogenetic sig-

nal for floral sugar content (λ = 0.37, P> 0.05).

Results

The distribution of species among hexagon sectors appeared uneven (Fig 1A and 1B), as did

the distribution of soluble floral sugar per sector (Fig 1C). Only one sample was classified into

the UV hexagon sector: Hypericum pygmae (Clusiaceae) and this hexagon sector was thus

excluded from all subsequent analyses. The scarcity of flowers in UV sector is consistent with

previous studies [40].

Median soluble sugar content per flower ± median absolute deviation (MAD) for the sam-

ple excluding Hypericum pygmae was 392 ± 377 μg. Following categorization of species based

on this threshold value (Fig 3A), we found no significant difference among hexagon sectors in

the proportion of species with a high sugar content (χ2 = 3.97, P = 0.466).

Results from the second contingency table (median sugar soluble sugar = 383 ± 359 μg),

which excluded species from the family Asteraceae also failed to reject the null hypothesis of

equality in the proportion of species with a high amount of soluble sugar (χ2 = 2.15, P = 0.765,

Fig 3B).

Finally, the threshold soluble sugar value for non-orchid, non-aster species contingency

table was 367 ± 406 μg. For the third model we also found no evidence rejecting the null

hypothesis of equality in the proportion of high-reward species among the different colour cat-

egories (χ2 = 2.97, P = 0.693). This result thus suggests that the low amount of soluble sugars

present in orchid species at our field site was not a factor affecting a potentially the outcome of

the initial model.

Chromatic contrast revealed no significant relation to floral sugar content at our field site.

Tests using Kendall’s tau (τ) statistic failed to reject the null hypothesis of independence

between soluble nectar content and chromatic contrast for all the subsets considered (Table 1

and also see S1 Table).

Discussion

It was hypothesised by Darwin [84] that insects may evolve innate preferences to aid the effi-

cient location of profitable flowers, and bees do have both innate spatial [5,85] and colour

[28,34–39] preferences. In Germany, where important bee species like honeybees [28,34,36]

and bumblebees [35,38,39] have innate preferences for short wavelength blue flowers, 80% of

UV-BLUE flowers and just under 50% of BLUE flowers were found to be highly rewarding

[28]. In contrast, UV-BLUE flowers at our Australian site were less likely than flowers in other

colour categories to be highly rewarding (Fig 3A). Only 5% of UV-GREEN flowers in the Ger-

man sample were highly rewarding [28], but 70% at our site (Fig 3A). Comparison between

the sites is only approximate because the quantitative basis, if any, for distinguishing high- and

low-reward species in the German sample was not explicitly made [28], while our division is at
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the median reward level. Nonetheless, it seems clear that the patterns of association of reward

and floral colour are very dissimilar at the two sites.

Several studies suggest that nectar volume can influence the behaviour of foraging bees

[11,12,19,20,86]. Indeed, it has also been shown that introduced species with flowers that con-

tain higher volume rewards can out-compete resident flowers by attracting more bee

Burchardia umbellata
Wurmbea dioica

Tricoryne elatior

Dianella revoluta
Bulbine bulbosa

Arthropodium strictum

Thysanotus tuberosus
Arthropodium milleflorum

Leptoceras menziesii

Gastrodia sesamoides
Dipodium roseum

Cryptostylis leptochila
Diuris pardina
Diuris orientis
Calochilus paludosa
Calochilus gracillimus
Calochilus robertsonii
Thelymitra rubra

Thelymitra media
Thelymitra brevifolia

Thelymitra antennifera
Thelymitra ixioides
Lyperanthus suaveolens
Chiloglottis valida
Eriochilus cuculatus

Cyanicula caerulea
Glossodia major

Caladenia transitoria

Caladenia tentaculata

Caladenia parva

Caladenia oenochila

Caladenia gracilis

Caladenia congesta

Caladenia clavigera

Caladenia carnea
Caladenia catenata

Oxalis perennans
Tetratheca sp
Poranthera microphylla
Hypericum pygmae
Hypericum japonicum
Viola hederacea
Comesperma volubile
Gompholobium huegelii
Hardenbergia violacea
Kennedia prostrata
Drosera whittakeri
Drosera peltata
Lobelia rhombifolia
Lobelia gibbosa
Wahlenbergia gracillis
Wahlenbergia gloriosa
Stylidium graminifolium

Brunonia australis
Goodenia blackiana

Lagenifera montana
Microseris sp3
Chrysocephalum apiculatum
Asperula wimmeriana

50 MY

BM: Boomers
BW: Baluk Wiliam
Nectar Low
Nectar High
Aster

Fig 2. Phylogenetic tree showing the distribution of species at the BM (blue, solid circle) and BW (green, solid

square) sites. Open squares indicate floral sugar content below the median value in the sample whereas solid square

represents sugar content above the median value. These are the low and high categorizations used for comparison with

the results in [28]. Red solid triangle shows the Aster group with higher sugar content then rest of the sample species.

BM = Boomers Reserve, BW = Baluk Willam Flora reserve. S2 Appendix in supporting information S1 Table provides the

nexus tree.

https://doi.org/10.1371/journal.pone.0226469.g002

PLOS ONE Flower colour, nectar and bee preference

PLOS ONE | https://doi.org/10.1371/journal.pone.0226469 June 11, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0226469.g002
https://doi.org/10.1371/journal.pone.0226469


PLOS ONE Flower colour, nectar and bee preference

PLOS ONE | https://doi.org/10.1371/journal.pone.0226469 June 11, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0226469


pollinators [87], and in Mediterranean scrubland flowering community there was evidence

that nectar-offering flowers had more chromatic contrast in a bee colour space compared to

nectarless flower species [3]. Nonetheless, flower colours in different parts of the world have

very similar distributions in bee colour space [45], which is also consistent with evidence that

bees have phylogenetically conserved colour visual systems including innate preferences for

short wavelength stimuli [28,30,35–39,41–43]. Thus, understanding whether flowers in differ-

ent communities have colours that predict higher reward levels in a consistent fashion is of

value for understanding what traits promote bee choices, and the potential major drivers that

influence flower signal evolution in a particular environment.

In the current study we considered flower colour signaling from two communities in

south-eastern Australia that had similar flower colours in bee colour space, and were also simi-

lar to bee pollinated flower colours found elsewhere across Australia and around the world

[3,43,44,56,45]. We found no evidence that a particular hue predicted a higher reward level

within flowers. These results from native plant communities suggest that a simple, direct link

between flower rewards and the preferred bee hue of ‘blue’ is not an explanation of flower col-

our preferences in Australia. We also did not find a significant relationship between the chro-

matic contrast of a flower in hexagon colour space and the available nectar reward (Table 1).

This is different to the significant relationship reported for Mediterranean scrubland, suggest-

ing that different locations may yield different results depending upon environmental condi-

tions [3].

Given the evidence that bee colour preferences may influence how flowers evolve similar

spectral signals at several different locations around the world [40,43,44,45,57,88], it is interest-

ing to consider what traits other than nectar rewards might promote bee preferences. Plausible

alternative lines of investigation could include how the spectral overlap of photoreceptors

when combined with opponent processes at a neural level enhance both colour discrimination

[56,89–91] and colour detection [92] in a way that is most efficient for finding flowers [93].

This in turn could enhance neural mechanisms to promote innate colour preferences. By itself,

this mechanism of spectral tuning cannot be the sole explanation for a stronger blue prefer-

ence, since there is also spectral overlap and enhanced signal processing at longer wavelengths

[56,89]. However, many common background stimuli reflect at longer wavelengths [94], so

having innate brain preferences for shorter wavelength ‘blue’ stimuli might enable bees to effi-

ciently detect stimuli that have a very high probability of being a rewarding flower given that

Fig 3. Proportion of species with a ‘high’ amount of soluble sugar for each one of the five categories including (panel

a) and excluding species from the family Asteraceae (panel b).

https://doi.org/10.1371/journal.pone.0226469.g003

Table 1. Results of correlation analyses testing for a potential relation between soluble sugar content and chro-

matic contrast considering various sample subsets: Complete data set includes all flowers present at the two sam-

pled locations. Following subsets sequentially remove species from the original data set: subset 1 (SS 1) excludes data

from only species allocated to the UV hexagon sector Hypericum pygmae, subset two (SS 2) excludes species from the

family Asteraceae from SS 1 and subset three (SS 3) excludes members of the family Orchidaceae from SS 2. Orchids

were analysed separately in another subgroup (SS Orchids). A non-parametric (Kendall tau (τ)) correlation coefficient

was calculated in all cases.

Data set Sample size, N τ P

Complete data set 59 -0.016 0.86

Excluding flower in UV sector (SS 1) 58 -0.019 0.83

Excluding Asteraceae (SS 2) 55 -0.059 0.528

Excluding orchids (SS 3) 27 0.003 0.999

Only Orchidaceae (SS Orchids) 28 0.085 0.544

https://doi.org/10.1371/journal.pone.0226469.t001
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very few natural colours are blue. Interestingly, UV absorbing flowers that appear ‘white’ to

humans are very common within this short wavelength range of preferred colours in bee col-

our space, and additionally have the advantage of having strong modulation of the long wave-

length bee receptor that is implicated in enhancing signal detection at a distance [69,95–98].

To better understand the complexities of these multiple complex factors it is important to

collect more flower data at a plant community level around the world, as well as continue to

map the sensory capabilities of different pollinators [16,90].

Supporting information

S1 Appendix. Provides the data used in current analysis. The ‘.csv’ file includes hexagon x

and y unit, sucrose amount (microgram) and pollination categorization.
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