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Simple Summary: Whether it is necessary to evaluate the radiation exposure of cardiac substructures
when making radiotherapy plans is one of the current research hotspots. In this cohort study of
355 patients with esophageal cancer, the radiation dose to key coronary substructures such as the
left anterior descending artery V30Gy and mean left main coronary artery was closely associated
with major coronary events and overall patient survival, and showed better predictive value than the
mean heart dose or heart V30Gy recommended by current guidelines. Our findings suggest that, in
addition to the whole heart, key coronary substructures should be contoured as organs at risk during
radiotherapy plan optimization.

Abstract: Background: There is a paucity of data regarding the association between radiation
exposure of heart substructures and the incidence of major coronary events (MCEs) in patients with
esophageal cancer (ESOC) undergoing chemoradiation therapy. We studied radiation dosimetric
determinants of MCE risk and measured their impact on patient prognosis using a cohort of ESOC
patients treated at a single institution. Methods: Between March 2005 and October 2015, 355 ESOC
patients treated with concurrent chemoradiotherapy were identified from a prospectively maintained
and institutional-regulatory-board-approved clinical database. Dose-distribution parameters of the
whole heart, the atria, the ventricles, the left main coronary artery, and three main coronary arteries
were extracted for analysis. Results: Within a median follow-up time of 67 months, 14 patients
experienced MCEs at a median of 16 months. The incidence of MCEs was significantly associated
with the left anterior descending coronary artery (LAD) receiving ≥30 Gy (V30Gy) (p = 0.048).
Patients receiving LAD V30Gy ≥ 10% of volume experienced a higher incidence of MCEs versus
the LAD V30Gy < 10% group (p = 0.044). The relative rate of death increased with the left main
coronary artery (LMA) mean dose (Gy) (p = 0.002). Furthermore, a mutual promotion effect of
hyperlipidemia and RT on MCEs was observed. Conclusion: Radiation dose to coronary substructures
is associated with MCEs and overall survival in patients with ESOC. In this study, the doses to these
substructures appeared to be better predictors of toxicity outcomes than mean heart dose (MHD) or
whole-heart V30Gy. These findings have implications for reducing coronary events through radiation
therapy planning.
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1. Introduction

Radiation-induced heart disease following thoracic radiotherapy (RT) has long been
reported in long-term survivors of breast cancer (BC) [1–4] and Hodgkin’s lymphoma
(HL) [5–7]. Recently, it was found to be relatively common, with early onset, in patients
with non-small cell lung cancer (NSCLC) [8–10] and esophageal cancer (ESOC), despite the
high competing risk of death [11]. Radiation can induce a variety of pathological changes,
including endothelial dysfunction, inflammation, thrombosis, and cardiac fibrosis, resulting
in a variety of cardiotoxicities [12]. Coronary events are one of the important causes of
cardiac mortality and morbidity among patients after RT [4,9–11,13].

Typically, the heart as a whole is considered as an organ at risk during thoracic RT,
and the mean heart dose (MHD) has generally been used to assess the risk of coronary
events in previous studies [4,14]. However, radiobiological responses in various heart
substructures may be heterogeneous, and patients may have different cardiotoxicities
depending on the radiation dose delivered to each individual cardiac substructure. In a
group of patients with HL, Hahn et al. [15] found that the model engaging coronary artery
variables was superior to the whole-heart model when analyzing ischemic cardiac events.
Since the cardiac radiation exposure in ESOC patients is generally much higher than that
in HL, an improved understanding of the dose–cardiotoxicity relationship while taking
cardiac substructure volume exposure into consideration is particularly necessary to guide
RT delivery.

Currently, the data are limited in terms of the association between radiation dose
to heart substructures and major coronary events (MCEs). Our study aims to provide
a detailed analysis within a modern cohort of ESOC patients treated with concurrent
chemoradiotherapy at conventional radiation doses.

2. Materials and Methods

This cohort study comprised 355 patients with biopsy-confirmed esophageal adeno-
carcinoma or squamous cell carcinoma (SCC) that was treated with RT in prospective,
single-institution biomarker or therapeutic trials in which detailed dosimetric data were
maintained. Patients in this prospectively maintained database between March 2005
and October 2015 were analyzed (Supplementary Figure S1). All patients in our study
underwent esophagogastroduodenoscopy (EGD) with endoscopic ultrasound, computed
tomography (CT) of the chest and upper abdomen with contrast, brain imaging (CT or
magnetic resonance imaging), and/or positron emission tomography (PET)/CT scans
for staging, and were restaged according to the seventh edition of the American Joint
Committee on Cancer TNM classification system [16]. Patients with distant metastatic
disease, prior or concomitant malignancy, Eastern Cooperative Oncology Group perfor-
mance status scale (ECOG) scores above 2, or those with incomplete clinical records were
excluded. This study was approved by the Institutional Review Board of MD Anderson
Cancer Center (protocol code: RCR02-542; date of initial approval: 13 September 2002;
updated: 26 March 2021) and the Institutional Review Board waived the requirement for
informed consent.

All patients were treated with concurrent chemoradiotherapy strategies, either as a
pre-operative treatment or as a curative treatment. About one-third of patients (35.8%)
received induction chemotherapy as part of a clinical trial or due to high-risk disease
burden. Chemotherapy regimens typically consisted of fluoropyrimidine and platinum-
or taxane-based compounds. Ivor Lewis esophagectomy was the most commonly em-
ployed surgical approach (79%). Radiotherapy was delivered with intensity-modulated
radiation therapy (IMRT) or proton beam therapy (PBT), and the standard radiation
dose was 50.4 Gy (relative biological effectiveness, RBE) in 28 fractions. When the
patients were treated in free-breathing mode, four-dimensional computed tomogra-
phy (CT) simulation was used to track tumor motion throughout the respiratory cycle.
All normal structures were contoured on time-averaged CT scans. The IMRT plans
were generated by the Pinnacle treatment planning system (version 9.0, Philips, An-
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dover, MA); the PBT plans were generated by the Eclipse planning system (Varian
Medical Systems, Liverpool, NY), 92% of which were completed using passive scattering
proton therapy.

The whole heart, the atria, the ventricles, the left main (LMA), and the three main
coronary arteries, namely the left anterior descending artery (LAD), the left circumflex
artery (LCX), and the right coronary artery (RCA) were included in our analysis. An
in-house multi-atlas contouring service (MACS) software program, the auto-contouring
accuracy of which was previously verified [17], was used to automatically delineate the
cardiac structures on the CT images for treatment planning. The accuracy and consistency
of the heart substructures were reviewed for each patient by an experienced radiation
oncologist, and necessary modifications were made according to the detailed guideline
published by Feng et al. [18]. Dose-volume histograms of the heart were obtained from
the delivered RT plan. Based on RTOG 0617 [19], we extracted the mean dose, volume
receiving ≥ 5 Gy (V5Gy), volume receiving ≥ 30 Gy (V30Gy), and volume receiving
≥ 50 Gy (V50Gy) for the whole heart and for each cardiac substructure of interest for
dosimetric analyses. Planning target volume (PTV) was a geometrical concept used
for treatment planning, and defined as enlarged clinical target volume (CTV), which
was created from the gross tumor volume (GTV) through volume expansion using
individual margins.

The primary endpoint of this study was the occurrence of MCEs after RT [4], which was
defined as a diagnosis of myocardial infarction (International Classification of Diseases, 10th
Revision, codes 121 to 124), coronary revascularization, or death resulting from ischemic
heart disease (codes 120 to 125). These events were verified by physicians who did not
know the radiation dose distribution of the whole heart and its substructures and were
independently reviewed by cardiologists based on the available source documentation.
The time-to-failure endpoint was calculated as the duration from the RT start date to the
first occurrence of MCE. Patients without MCEs were right-censored at the last point of
contact. The secondary endpoint was overall survival (OS), which was defined as the time
from diagnosis to death.

Descriptive statistics were used to characterize the baseline clinic-pathological charac-
teristics of the patients. Overall survival was estimated using the Kaplan–Meier method
with Greenwood’s formula for interval estimation. Cox proportional hazards regression
was used to test for associations between patient clinicopathological characteristics and
the study’s endpoints (MCE and OS). The competing risk regression method of Fine and
Gray [20] was used to adjust the cumulative incidence of MCE for the competing risk of
non-cardiac death. Statistical significance was conferred with a p-value < 0.05. Multiple
regression analyses included factors identified with a p-value < 0.1 from univariate analysis.
Maximally selected rank statistics further explored the utility of applying thresholds to
variables identified as statistically significant in regression analysis to classify patients into
low-risk versus high-risk groups. Thresholds were selected for individual variables to
maximize the log-rank statistic. All analyses were conducted by R (version 3.6.2) and SPSS
(version 25.0.0).

3. Results
3.1. Patient Characteristics and MCEs

In total, 355 ESOC patients fulfilling the predefined criteria were included, with a
median age of 62 years (interquartile range, 54 to 68 years). Among them, 89.6% were male
and 88.2% were white. Baseline characteristics are summarized in Table 1. Within a median
follow-up time of 67 months, 14 patients experienced MCEs at a median of 16 months
(interquartile range, 12 to 42), which included myocardial infarction (n = 8), coronary
artery bypass graft (n = 4), and atherosclerosis requiring coronary stent placement (n = 2).
Details about these patients are provided in Supplementary Table S1. After accounting
for non-cardiac death as a competing risk, the cumulative incidence of MCEs is shown in
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Figure 1. Additionally, detailed radiation dose distributions for the cardiac substructures
are shown in Supplementary Figure S2.

Table 1. Patients characteristics at baseline.

Characteristic
Total Non-MCEs MCEs

p-Value
N % N % N %

Sex 0.647
Male 318 89.6 306 89.7 12 85.7

Female 37 10.4 35 10.3 2 14.3
Age 0.780
<65 222 62.5 214 62.8 8 57.1
≥65 133 37.5 127 37.2 6 42.9

ECOG 0.586
0 148 41.7 141 41.3 7 50.0

1–2 207 58.3 200 58.7 7 50.0
History of Smoking 0.564

Yes 236 66.5 228 66.9 8 57.1
No 119 33.5 113 33.1 6 42.9

BMI, kg/m2 0.587
<30 206 58.0 199 58.4 7 50.0
≥30 149 42.0 142 41.6 7 50.0

History of CAD 0.708
Yes 57 16.1 54 15.8 3 21.4
No 298 83.9 287 84.2 11 78.6

History of Hyperlipidemia 0.005
Yes 200 56.3 187 54.8 13 92.9
No 155 43.7 154 45.2 1 7.1

History of Hypertension 0.090
Yes 218 61.4 206 60.4 12 85.7
No 137 38.6 135 39.6 2 14.3

History of Diabetes 0.775
Yes 89 25.1 86 25.2 3 21.4
No 266 74.9 255 74.8 11 78.6

Tumor Location 0.180
Upper/Middle 38 10.7 35 10.3 3 21.4

Distal/GEJ 317 89.3 306 89.7 11 78.6
Pathology 0.065

Adenocarcinoma 314 88.5 304 89.1 10 71.4
SCC 41 11.5 37 10.9 4 28.6

Clinical T Stage (7th) 0.377
T1–2 37 10.4 37 10.9 0 0.0
T3–4 318 89.6 304 89.1 14 100.0

Clinical N Stage (7th) 0.773
N0 113 31.8 108 31.7 5 35.7
N+ 242 68.2 233 68.3 9 64.3

Clinical Stage (7th) 1.000
Stage I/II 122 34.4 117 34.3 5 35.7
Stage III 233 65.6 224 65.7 9 64.3

Induction Chemotherapy 0.592
Yes 127 35.8 123 36.1 4 28.6
No 228 64.2 218 63.9 10 71.4

Surgery 0.578
Yes 215 60.6 208 61.0 7 50.0
No 140 39.4 133 39.0 7 50.0

Radiotherapy Modality 0.397
IMRT 234 65.9 223 65.4 11 78.6
PBT 121 34.1 118 34.6 3 21.4
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Table 1. Cont.

Characteristic
Total Non-MCEs MCEs

p-Value
N % N % N %

PTV 1.000
<600 cc 173 48.7 166 48.7 7 50.0
≥600 cc 182 51.3 175 51.3 7 50.0

Platin-based
Chemotherapy 0.581

Yes 144 59.4 137 40.2 7 50.0
No 211 40.6 204 59.8 7 50.0

Abbreviations: ECOG, Eastern Cooperative Oncology Group; BMI, body mass index; CAD, coronary artery
disease; GEJ, gastroesophageal junction; SCC, squamous cell carcinoma; IMRT, intensity-modulated radiation
therapy; PBT, proton beam therapy; PTV, Planning Target Volume.
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3.2. Risk Factors for MCEs

On dosimetric analysis, LAD V30Gy (%) (hazard ratio (HR) = 1.025; 95%CI, 1.001–1.050;
p = 0.048) was significantly associated with MCEs (Supplementary Table S2). We identified
the optimal curve cutoff value of LAD V30Gy for predicting MCE at 10% (C-index, 0.57).

All clinicopathological factors were included in univariate analysis, and those associ-
ated with a p value < 0.1 were included in multivariate analysis. Significant correlations
between MCE incidence and history of hyperlipidemia (Yes vs. No, HR = 10.522, 95%CI,
1.373–80.621; p = 0.023) as well as LAD V30Gy (≥10% vs. <10%, HR = 3.589, 95%CI,
1.124–11.462; p = 0.031) were identified (Table 2). In patients undergoing RT, a history of
hyperlipidemia was associated with an increased risk of developing an MCE (2-y rates,
3.5% vs. 0.7%; 5-y rates, 6.3% vs. 0.7%; p = 0.007) (Figure 2A). Compared with patients
receiving LAD V30Gy < 10%, the cumulative incidence of MCEs in patients with LAD
V30Gy ≥ 10% increased significantly (2-y rates, 4.8% vs. 2.0%; 5-y rates, 9.5% vs. 2.9%;
p = 0.044) (Figure 2B).
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Table 2. Univariable and multivariable analysis for time to earliest major coronary events.

Variable
Univariable Cox Regression Analysis Cox Multivariable Regression

HR 95% CI p-Value HR 95% CI p-Value

Sex, Male vs. Female 0.778 0.174–3.476 0.742
Age, ≥65 vs. <65 1.394 0.483–4.023 0.539
ECOG, 1–2 vs. 0 0.754 0.264–2.151 0.597

Smoking History, Yes vs. No 0.693 0.240–1.997 0.497
BMI, kg/m2, ≥30 vs. <30 1.290 0.452–3.681 0.634

History of CAD, Yes vs. No 1.735 0.483–6.232 0.398
History of Hyperlipidemia, Yes vs. No 9.748 1.275–74.532 0.028 10.522 1.373–80.621 0.023

History of Hypertension, Yes vs. No 4.247 0.950–18.991 0.058
History of Diabetes, Yes vs. No 0.853 0.238–3.060 0.808

Tumor Location, Upper/Middle vs.
Distal/GEJ 2.767 0.768–9.956 0.119

Pathology, SCC vs. Adenocarcinoma 3.889 1.216–12.436 0.022
Clinical Stage, III vs. I/II 1.190 0.397–3.564 0.756

Induction Chemotherapy, Yes vs. No 0.705 0.221–2.247 0.554
Surgery, Yes vs. No 0.477 0.166–1.368 0.168

Radiotherapy Technology, IMRT vs. PBT 1.817 0.507–6.516 0.360
PTV, ≥600 cc vs. <600 cc 1.051 0.368–2.998 0.926

Platin-based Chemotherapy, Yes vs. No 1.349 0.473–3.849 0.576
LAD, V30Gy ≥ 10% vs. <10% 3.101 0.972–9.895 0.056 3.589 1.124–11.462 0.031

Abbreviations: CI, confidence interval; HR, hazard ratio; ECOG, Eastern Cooperative Oncology Group; BMI,
body mass index; CAD, coronary artery disease; GEJ, gastroesophageal junction; SCC, squamous cell carcinoma;
IMRT, intensity-modulated radiation therapy; PBT, proton beam therapy; PTV, Planning Target Volume; LAD, left
anterior descending coronary artery.
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Figure 2. Cumulative incidence of major coronary events (with non-cardiac death as a competing
risk) (A) for patients with or without a history of hyperlipidemia (B) for patients delivered to left
anterior descending coronary artery (LAD) V30Gy < 10% and ≥10%.

3.3. Overall Survival

The median OS was 48 months for the entire group. As indicated by dosimetric analy-
sis, the relative rate of death significantly increased with the mean LMA dose (HR = 1.014;
95%CI, 1.005–1.023; p = 0.002) and exhibited better predictive efficacy versus heart V30Gy
and MHD (Supplementary Table S3). The optimal cutoff value of the mean LMA dose was
determined to be 20 Gy (C-index, 0.56).
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Clinical stage (III vs. I/II; HR = 1.850; 95%CI, 1.332–2.571; p < 0.001), surgery (Yes vs.
No; HR = 0.542; 95%CI, 0.407–0.723; p < 0.001), and mean LMA dose (≥20 Gy vs. <20 Gy;
HR = 1.488; 95%CI, 1.108–1.998; p = 0.008) were identified as independent prognostic factors
for OS (Table 3). Patients with an early clinical stage (I/II vs. III; 2-y rates, 78.5% vs. 64.3%;
5-y rates, 62.4% vs. 39.7%; p < 0.001), surgical treatment (Yes vs. No; 2-y rates, 79.1% vs.
54.2%; 5-y rates, 55.9% vs. 35.1%; p < 0.001), and a mean LMA dose < 20 Gy (mean LMA
dose < 20 Gy vs. ≥20 Gy; 2-y rates, 74.3% vs. 58.6%; 5-y rates, 52.3% vs. 37.8%; p = 0.001)
demonstrated prolonged OS (Figure 3A–C).

Table 3. Univariable and multivariable analysis for overall survival.

Variable
Univariable Cox Regression Analysis Cox Multivariable Regression

HR 95% CI p-Value HR 95% CI p-Value

Sex, Male vs. Female 1.584 0.935–2.683 0.087
Age, ≥65 vs. <65 1.061 0.793–1.420 0.688
ECOG, 1–2 vs. 0 0.980 0.739–1.299 0.887

Smoking History, Yes vs. No 1.168 0.864–1.578 0.314
BMI, kg/m2, ≥30 vs. <30 0..925 0.697–1.229 0.593

History of CAD, Yes vs. No 1.585 1.115–2.252 0.010
History of Hyperlipidemia, Yes vs. No 0.872 0.659–1.155 0.340

History of Hypertension, Yes vs. No 1.364 1.015–1.832 0.039
History of Diabetes, Yes vs. No 1.296 0.950–1.766 0.102

Tumor Location, Upper/Middle vs.
Distal/GEJ 1.220 0.783–1.902 0.379

Pathology, SCC vs. Adenocarcinoma 1.364 0.896–2.076 0.148
Clinical Stage, III vs. I/II 1.863 1.353–2.564 0.000 1.850 1.332–2.571 <0.001

Induction Chemotherapy, Yes vs. No 0.879 0.655–1.180 0.390
Surgery, Yes vs. No 0.557 0.420–0.738 0.000 0.542 0.407–0.723 <0.001

Radiotherapy Technology, IMRT vs. PBT 1.047 0.776–1.411 0.764
PTV, ≥600 cc vs. <600 cc 1.319 0.995–1.748 0.054

Platin-based Chemotherapy, Yes vs. No 0.955 0.719–1.269 0.751
Mean LMA Dose, ≥20 Gy vs. <20 Gy 1.594 1.196 0.001 1.488 1.108–1.998 0.008

Abbreviations: CI, confidence interval; HR, hazard ratio; ECOG, Eastern Cooperative Oncology Group; BMI, body
mass index; CAD, coronary artery disease; GEJ, gastroesophageal junction; SCC, squamous cell carcinoma; IMRT,
intensity-modulated radiation therapy; PBT, proton beam therapy; PTV, Planning Target Volume; LMA, left main
coronary artery.
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4. Discussion

To our knowledge, this is the first study to demonstrate the relationship between
MCEs and the radiation exposure of the cardiac substructures in a large cohort of ESOC
patients. Our previous study in ESOC, in which the heart was analyzed as an entire organ,
showed the correlation between cardiac toxicity and RT. [11]. In this study, we showed that
the radiation doses to coronary substructures such as the LAD and LMA are important
predictors of subsequent MCEs and OS, and are superior in this prediction compared with
the dose to the whole heart as the method of prediction. Our results are consistent with
a recent report in a large cohort of non-small cell lung cancer (NSCLC) patients treated
with chemoradiation [21]. In that study, the authors found that the LAD V15Gy ≥10% was
strongly predictive of major adverse cardiac events (MACE), including coronary and heart
failure events, cardiac death (adjusted HR 13.9; 95% CI, 1.23–157.21), and all-cause mortality.
The dose cutoff for ESOC being higher than that for NSCLC (V30Gy for ESOC vs. V15Gy
for NSCLC) may be related to the underlying comorbidities of patients with NSCLC vs.
those with ESOC. These studies stress the importance of evaluating and avoiding radiation
dosing to the key coronary substructures during RT planning for thoracic cancers such as
ESOC and NSCLC.

At present, the NCCN Clinical Practice Guidelines in Oncology for Esophageal and
Esophagogastric Junction recommended MHD and heart V30Gy to be the primary indices
for the risk assessment of cardiac toxicity. However, highly inhomogeneous doses to the
small volumes of the heart may result in diverse heart injuries. Nilsson et al. [22] demon-
strated through coronary angiography that the location and severity of coronary artery
stenoses were associated with the anticipated hotspot areas for radiation in women with
breast cancer. Van et al. [14] found that the MHD-based normal tissue complication proba-
bility (NTCP) model for acute coronary events could be improved in terms of calibration
and discrimination by replacing MHD with LV-V5Gy,. A recent publication from Canada
evaluating ischemic-only late cardiotoxicity in a group of HL patients indicated that the
best predictive model included age, LAD V5Gy, and LCX V20Gy as variables [15]. In our
study, LAD V30Gy exhibited better prediction of MCEs than either MHD or heart V30Gy,
and patients with LAD V30Gy ≥10% had a significantly increased risk of MCEs, which
occurred notably earlier, at a median of 16 months after RT. Accordingly, we recommend
that key coronary substructures such as the LAD should be contoured as organs at risk,
along with the whole heart, for RT plan optimization.

The other major finding of interest in our study was that among several cardiac
risk factors and pre-existing coronary disease, hyperlipidemia was the only independent
predictor of MCEs. Hyperlipidemia is a known risk factor for atherosclerosis and increases
the incidence of coronary events [23]. Radiation exposure tends to accelerate this process.
Mancuso et al. [24] showed that both chronic low dose rate and acute exposure of the
coronary arteries to irradiation accelerate atherosclerosis in apolipoprotein E-deficient
(ApoE−/−) mice. In the same model of spontaneous atherogenesis, Hoving et al. [25]
also observed such an expedited process in the carotid arteries. Notably, in contrast to
ApoE−/− mice, none of the irradiated or control wild-type C57BL/6J mice developed
atherosclerotic plaques within the 30-week follow-up period. These studies and others [26]
that showed a mutual promotion effect between hyperlipidemia and RT on coronary events
support the findings of our study. In addition to reducing radiation exposure to the critical
coronary substructures, we suggest that patients with a history of hyperlipidemia may
benefit significantly from optimized lipid management during and after RT.

Accumulating evidence shows that an excessive cardiac dose potentially contributes
to cardiotoxicity, which is indicative of poor OS [9–11,27,28]. In the Radiation Therapy
Oncology Group (RTOG) 0617 study [19], 74 Gy delivered in 2 Gy daily fractions for
patients with stage III NSCLC was no better than 60 Gy, and even potentially harmful,
with corresponding increases in heart V5Gy and heart V30Gy that were both significantly
associated with a greater risk of death. A close relationship between radiation exposure of
the heart and OS was also found in our study. We further demonstrated that the radiation
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dose to the key cardiac substructures, such as LMA, performed as a better predictor of OS
than MHD or heart V30Gy. Sparing these key substructures, in particular when making RT
plans, could potentially improve patient outcomes.

This study should be interpreted in the context of some limitations. First, we were
limited by the nature of a retrospective study. Although the events were reviewed from the
patients’ medical records and adjudicated by cardiologists, we may have undercounted
the incidence of MCEs if some of them occurred elsewhere and were not documented in
the electronic medical records at MD Anderson Cancer Center (MDACC), or if the patients
did not return for follow-up at MDACC. Second, attributed to potential inter-observer
variation [29] and the impact of the motion of the heart and its substructures [30], the
reconstruction of small structures such as coronary arteries might be less reliable. In
order to minimize such uncertainties, we used a validated in-house software program
for delineation, and the delineation was checked by a single radiation oncologist with
a common contouring guideline. Lastly, given the smaller number of events, further
subgroup analysis was not possible. We look forward to validating our findings in larger,
prospective, cooperative group clinical trials in the future.

5. Conclusions

In conclusion, the radiation dose to the key coronary substructures was closely associ-
ated with MCEs and overall patient survival. Therefore, this parameter may be used as a
better predictor of coronary events than MHD or heart V30Gy for ESOC patients. RT plan
optimization and dedicated dose constraints for these crucial substructures of the heart
may be the best option to reduce cardiac injury and prolong patient survival. Moreover,
hyperlipidemia was an aggravating factor for MCEs in the presence of RT in our study,
which suggests that optimization of lipid management may be particularly important
during and after RT, especially in patients with thoracic cancers such as ESOC.
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