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P H Y S I C S

Toroidal optical transitions in hydrogen-like atoms
Ilya Kuprov1, David Wilkowski2,3,4*, Nikolay Zheludev2,5,6

It is commonly believed that electromagnetic spectra of atoms and molecules can be fully described by inter-
actions involving electric and magnetic multipoles. However, it has recently become clear that interactions between 
light and matter also involve toroidal multipoles—toroidal absorption lines have been observed in electromagnetic 
metamaterials. Here, we show that a previously unexplored type of spectroscopy of the hitherto largely neglected 
toroidal dipolar interaction becomes feasible if, apart from the classical r × r × p toroidal dipole density term responsi-
ble for the toroidal transitions in metamaterials, the spin-dependent r ×  term (which only occurs in relativistic 
quantum mechanics) is taken into account. Toroidal dipole operators are odd under parity and time-reversal symmetries; 
toroidal dipole transitions can therefore be distinguished from electric multipole and magnetic dipole transitions.

INTRODUCTION
The description of electromagnetic properties of matter traditionally 
involves multipole expansions (1, 2) that are widely used in the 
study of biological, chemical, atomic, and subatomic phenomena, 
where electromagnetic processes are described by electric and 
magnetic multipoles arising from moving charges and current loops. 
Toroidal multipoles (3), generated by currents flowing on toroidal 
surfaces, constitute the rarely acknowledged third independent 
family of vector potential sources; they provide distinct and essen-
tial contributions to electromagnetic properties of matter.

Static toroidal dipoles (Fig. 1, top right) were introduced in 1957 
by Zeldovich (4); they are found in magnetic materials (5), atomic 
nuclei (6, 7), single-molecule magnets (8), fullerenes (9), and in solid-
state physics (10). Dynamic toroidal dipoles with oscillating currents 
interact with oscillating electromagnetic fields and thus contribute 
to optical properties of matter. They were first observed in artificial 
metamaterials (11); in recent years, they made appearances in various 
forms of artificially structured matter across the electromagnetic 
spectrum: metamaterials (12), nanoparticles (13), discussions of noise-
resistant quantum devices (14), dynamic anapoles (15, 16), dark matter 
(17–19), communication using Aharonov-Bohm effect (20, 21), 
electromagnetic reciprocity (22), and as contributors to nonradiat-
ing charge-current configurations (15, 20). Recently observed 
electromagnetic pulses of toroidal topology, the propagating counter-
parts of localized toroidal dipole excitations in matter, exhibit unique 
electromagnetic wave properties (23, 24).

The work on dynamic toroidal multipoles has so far mainly 
involved Maxwell electromagnetic metamaterials, and the associated 
spin effects have therefore been overlooked (3). However, those are 
unavoidable in quantum mechanical systems, such as atoms and 
molecules—Dirac’s equation only conserves the sum of orbital 
angular momentum and spin (25). In this communication, we 
consider the possibility of using spin effects to open new toroidal 

excitation channels. We demonstrate that using the nonrelativistic 
toroidal dipole operator r × r × p is exceedingly difficult due to field 
frequency–curvature mismatch and selection rules that make the 
transition hard to distinguish from more regular electromagnetic 
transitions. However, the appearance of the spin part r ×  in the 
relativistic case eliminates the frequency-curvature problem and 
yields selection rules that involve spin; this makes the corresponding 
transitions easier to isolate from the background. We identify pairs 
of energy levels and experimental conditions for which toroidal 
transitions in hydrogen-like atoms are likely to be detectable.

RESULTS
Nonrelativistic case: Vector potential curvature problem
The length scale of electronic optical transitions of interest in atomic 
physics, chemistry, and molecular biology is typically two to four 
orders shorter than the wavelength of light. This creates a problem 
for a hypothetical spectroscopy based on the classical r × r × p toroidal 
dipole—we demonstrate here that significant electric field curvature 
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Fig. 1. Schematic illustrations of static electric, magnetic, and toroidal dipoles 
in classical electrodynamics. In relativistic quantum physics, apart from magnetic 
and toroidal moments induced by charge currents, spin must be considered because 
it can also contribute to the toroidal dipole moment.
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is required on the molecular length scale and that the optimal 
frequency-wavelength combination for r × r × p spectroscopy is 
three orders of magnitude away from the constraint imposed by the 
speed of light.

For an electron in a scalar potential φ(r) and a vector potential 
A(r), the Hamiltonian, in the Coulomb gauge, can be split into the 
background term ​​​   H ​​ 0​​​ and the coupling term  ​​​   H ​​ 1​​​ (1)

	​​​    H ​​ 0​​ = ​  ​p​​ 2​ ─ 2m ​ − eφ + ​ ​e​​ 2​ ─ 2m ​ A ⋅ A,  ​​   H ​​ 1​​ = ​  e ─ m ​ A ⋅ p​	 (1)

where m is the electron mass, and e is the elementary charge. The 
two electromagnetic operators appearing in ​​​   H ​​ 0​​​ are not interesting 
to us here—they are purely coordinate operators that cannot contain 
anything proportional to r × r × p.

In the coupling term ​​​   H ​​ 1​​​, consider an electromagnetic plane 
wave with a vector potential amplitude A0 and angular frequency , 
traveling in the direction of a unit vector n

	​ A(r, t ) = ​A​ 0​​ exp [ i( / c ) n ⋅ r − it]​	 (2)

The toroidal operator originates in the Taylor expansion of the 
spatial part

	​ exp [ i( / c ) n ⋅ r ] = 1 + i( / c ) n ⋅ r − ​( / c)​​ 2​ ​(n ⋅ r)​​ 2​ / 2 + …​	 (3)

for which straightforward vector calculus transformations yield

	​​ (n ⋅ r)​​ 2​ p  =  r(r ⋅ p ) − ((n × r ) ⋅ (n × r ) ) p − r × r × p​	 (4)

Although electronic transitions under r × r × p operator are 
possible—a direct calculation confirms that there are plenty of 
nonzero transition moments within the orbital structure of any rea-
sonable molecule—the conclusions regarding the sensitivity and 
selectivity of such transitions are pessimistic. First, there are electric 
and/or magnetic operators in every irreducible representation of 
the rotation group, meaning that any allowed r × r × p transition 
will overlap with an electric or a magnetic transition of exactly the 
same frequency. Second, r × r × p term in the plane wave expansion 
in Eq. 3 is a factor of (r/c)2 = (2r/)2—here, r is the characteristic 
size of the molecular orbitals in question— weaker than the zero-
order term responsible for the electric dipolar interaction, meaning 
that the transition rate in the Fermi golden rule is a factor of (2r/)4 
smaller. For common atom sizes (~10−10 m) and a wavelength in 
ultraviolet, we expect a typical r × r × p transition rate to be a factor 
of 1011 weaker than a typical electric dipolar transition rate.

These are likely the reasons why toroidal transitions have never 
been observed in chemical spectroscopies. So far, dynamic toroidal 
excitations have only been seen in metamaterials, where resonant 
structures with the feature size comparable to the wavelength can be 
engineered in such a way that 2r/ ≈ 1, and the lower order electric 
and magnetic multipoles suppressed by design (3, 11).

Relativistic case: Spin part of the toroidal operator
We now consider an important difference between Maxwell electro-
magnetic metamaterials and molecules: The orbital angular mo-
mentum r × p that occurs in the r × r × p is only a constant of motion 
in the rotation subgroup of the Galilean group. The corresponding 

invariant in Lorentz and Poincare groups also includes relativistic 
boosts, leading to the conservation of the sum of orbital angular 
momentum and spin. The corresponding ħ(r × ) correction to the 
toroidal operator, where  is a vector of Pauli matrices, clearly 
should be evaluated.

In the standard derivation of the electromagnetic and spin 
Hamiltonian by approximate elimination of negative energies from 
Dirac’s equation, the first occurrence of the r ×  product is in 
the angular magnetoelectric (AME) part (26) of the gauge invariant 
form of spin-orbit (SO) coupling

	​​ ​   H ​​ SO+AME​​ =  − ​  eħ ─ 
4 ​m​​ 2​ ​c​​ 2​

 ​  ⋅ [[∇ φ ] × (p + eA ) ]​	 (5)

The conventional SO term is not interesting to us here—it comes 
from the scalar potential—but the triple product with the vector 
potential is easily rearranged into a form that exposes the presence 
of the spin part of the toroidal operator

	​​ ​   H ​​ AME​​  = ​   ​e​​ 2​ ħ ─ 
4 ​m​​ 2​ ​c​​ 2​

 ​ A ⋅ [[∇ φ ] × ]​	 (6)

This is directly visible in the special case of a hydrogen-like atom 
with a nuclear charge Z

	​ ∇ φ(r ) = −  ​  Ze ─ 4 ​​ 0​​ ​  ​ 
r ─ 
​r​​ 3​

 ​​	 (7)

where the spin part r ×  of the toroidal dipole moment is coupled 
to the vector potential

	​​ ​   H ​​ AME​​  =  −  ​ 
​​B​ 2 ​

 ─ ec  ​  ​ Z ─ 
​r​​ 3​

 ​ A ⋅ [r × ]​	 (8)

where  is the fine structure constant, and B is the Bohr magneton. 
This was previously considered a spin interaction (26); the form 
presented here views it instead as pertaining to the relativistic com-
ponent of the toroidal dipole moment.

Selection rules
Although the interaction described by Eq. 8 is exceedingly weak, its 
transitions are nonetheless expected to be observable because their 
selection rules are different from the selection rules associated 
with electric and magnetic dipoles (Table 1). The corresponding 
operators are

	​ d ∝  r,     ​​ S​​ ∝  S,     ​t​ S​​ ∝  r × S​	 (9)

where d stands for electric dipole, S stands for the spin part of mag-
netic dipole, tS stands for the spin part of the toroidal dipole, and 
the electron spin operator is S = ħ/2. In each specific SO multiplet 
of a hydrogen-like atom, the total magnetic moment is proportional, 
by Wigner-Eckart theorem, to the total momentum J = L + S.

The spin part is critical because ∆ms = ±1 in combination with 
∆L = ±1 transitions are only excited through the toroidal coupling 
and not through electric or magnetic dipole moments. Although its 
operator has the same symmetry, the hypothetical spin-independent 
magnetic quadrupole moment of the atom would only interact with 
magnetic field gradient of the electromagnetic wave and would 
therefore have, for the same reasons, even lower observability than 
r × r × p transitions discussed above. Electron spin does not con-
tribute to the magnetic quadrupole moment of a spherical atom 



Kuprov et al., Sci. Adv. 8, eabq6751 (2022)     9 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 4

because electron spin is fundamentally a point magnetic dipole. 
Similar arguments apply to other multipoles and their cross terms.

DISCUSSION
We now show that toroidal dipole transitions can be observed in 
hydrogen-like atoms when the spin projection ms is a good quan-
tum number. In practice, this means Paschen-Back regime: strong 
static magnetic field and weak fine structure interaction. We will 
skip the consideration of nuclear spin because the transitions in 
question conserve nuclear spin orientation.

Consider a hydrogen-like atom exposed to a plane electromagnetic 
wave with circular polarization propagating along the z axis, here 
chosen as the quantization axis. ​B =  B ​​  ϵ​​ ±​​​ is the optical magnetic 
field, and ​​​  ϵ​​ ±​​​ is a unit vector corresponding to the two possible signs 
of circular polarization. The interaction Hamiltonian in Eq. 8 becomes

	​​ ​   H ​​ AME​​(​​̂  ϵ​​ ±​​ ) = ± ​  ─ 
​√ 
_

 2 ​
 ​ ​ 
​​B​ 2 ​

 ─ ec ​ ​ Z ─ 
​r​​ 3​

 ​ ​ B ─ k ​( ​e​​ ±iφ​ ​​ Z​​ − z ​​ ±​​)​	 (10)

where φ is the azimuthal angle,  is the radial position operator, k is 
the wave number, and ± = X ± Y. The last term is of particular 
interest because z± simultaneously flips the spin and drives spatial 
orbital transitions with ∆L = ±1. In principle, this makes highly 
transition-selective multiple-quantum filtered spectroscopies possi-
ble because spin can also be manipulated separately, with very high 
precision, using microwave pulses.

Consider now ​n ​​  ​ 2​ S​​​​ 1/2​​ →  n′​​  ​ 2​ P​​​​ 3/2,1/2​​​ transition for which the ener-
gies are shown in Fig. 2 as functions of the external static magnetic 
field ​​B​ DC​​  = ​ B​ DC​​​   z ​​. The transitions ∣m = 0, ms = ±1/2⟩g → ∣m = 0, 
ms = ∓1/2⟩e (black dashed arrows) are only toroidal dipole 
allowed.

In a zero magnetic field, SO coupling partially lifts the excited 
state degeneracy and makes j a good quantum number (27). This 
situation is not suitable for observation of toroidal transitions 
because toroidal transitions then coincide in energy with the much 
stronger electric dipole ones. However, in strong magnetic fields, 
orbital and spin quantum numbers again become independent, and 
toroidal transitions become distinguishable.

State mixing (green arrows in Fig. 2) decreases as  = ∆EFS/2BBDC, 
where ∆EFS is the fine structure energy splitting; toroidal transition 
rate exceeds electric dipolar transition rate when

	​​   ​∣⟨0, ∓ 1 / 2∣​H​ AME​​∣0, ± 1 / 2⟩∣​​ 2​   ─────────────────────   
​​​ 2​ ​∣⟨∓ 1, ± 1 / 2∣​H​ E​​∣0, ± 1 / 2⟩∣​​ 2​

 ​ ≈ ​  1 ─ 2 ​ ​​(​​ ​  ​a​ 0​​ k ─   ​​)​​​​ 
2
​ >  1​	 (11)

where a0 is the Bohr radius, and HE = −d ∙ E is the electric dipole 
Hamiltonian. Thus, the most easily observable toroidal transitions 
are likely to be those with small ∆EFS. For hydrogen-like atoms 
∆EFS ≈ 4mc2Z2/4n′3, which is favorable for light atoms and states 
with high principal quantum numbers. For actual hydrogen at 
BDC = 5 T, the inequality in Eq. 11 is fulfilled for the n′ ≈ 51 Rydberg 
state and above, which may be addressed from n = 2 (Balmer series) 
with a continuous wave laser at a wavelength around 364 nm. This 
wavelength is available by doubling frequency of a tuneable Ti:Sapphire 
laser, for example. The fundamental laser may be frequency-locked 
on an optical frequency comb to get a precise and tuneable optical 
frequency.

Although its frequency is now different, the toroidal transition 
moment is around ​​1 _ 2​ ​( ​a​ 0​​ k)​​ 2​ ≈  2 ∙ ​10​​ −11​​ times smaller than the elec-
tric dipole transition moment. We therefore propose the following 
practical measures to make its observation possible:

Fig. 2. Energy spectrum of the transition ​n ​​  ​ 2​ S​​​​ 1/2​​  → ​ n ′ ​ ​​  ​ 2​ P​​​​ 3/2,1/2​​​ as a function of 
the static magnetic field BDC. Black, red, and blue curves correspond to the 
ground state, to J = 1/2 excited state manifold, and J = 3/2 excited state manifold 
in the BDC → 0 limit, respectively. Black dashed arrows indicate the toroidal transition; 
red dashed arrows indicate the electric dipole allowed primary de-excitation route. 
The quantum numbers in brackets refer to orbital angular momentum (first) and 
spin (second) projection, in the BDC → +∞ limit. Green double arrows indicate state 
mixing due to fine structure coupling.

Table 1. Selection rules for electric, magnetic, and toroidal dipolar transitions in a hydrogen-like atom. L, mL, and mS are, respectively, the orbital 
quantum number, the orbital projection quantum number, and the spin projection quantum number. For magnetic and toroidal dipole moments, the photon 
polarization either changes the orbital angular momentum or flips the spin, and therefore, ∆mJ ≤ 1 (31). 

Moment Parity symmetry Time-reversal 
symmetry Orbital selection rule Spin selection rule J selection rule

Electric dipole Odd Even ∆L = ± 1, ∆mL = 0, ± 1 ∆ms = 0 ∆J = 0, ± 1, ∆mJ = 0, ± 1

Magnetic dipole Even Odd ∆L = 0∆mL = 0, ± 1 ∆ms = 0, ± 1 ∆J = 0, ± 1, ∆mJ = 0, ± 1

Toroidal dipole Odd Odd ∆L = ± 1, ∆mL = 0, ± 1 ∆ms = 0, ± 1 ∆J = 0, ± 1 ∆mJ = 0, ± 1
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1) Frequency-modulation spectroscopy should be used to detect 
the weak resonance against the background signal coming from the 
off-resonance nearby electric dipole transitions (28).

2) Because de-excitation occurs mainly over inelastic electric 
dipole allowed transitions, appropriate frequency filtering of the 
fluorescence signal should be performed to remove the spurious 
signal at the excitation frequency.

3) Hydrogen atoms could be replaced by lithium atoms, which 
also have favorable fine structure splitting (29). There, we can con-
sider excitations from the fundamental ground state but deeper into 
the ultraviolet part of the spectrum.

4) Toroidal dipole coupling operator is odd under time-reversal 
symmetry. It therefore changes sign under a change of the static 
magnetic field sign (equivalent to a flip in the light polarization state 
in Eq. 10), whereas the electric dipole operator remains unaffected. 
Hence, the experiment may be conducted in a differential mode, 
where the toroidal contribution is extracted from the difference in 
absorption between the experiments conducted with BDC > 0 and 
BDC < 0 or in a way similar to the recent measurement of parity 
nonconservation in caesium (7).

In high magnetic fields, diamagnetic response operators (which 
scale as B2) are also expected to become pertinent because they mix 
the principal and the orbital quantum numbers (30). This breaks 
the selection rules in Table 1 and could therefore impose extra con-
ditions on the optimal magnetic field and the choice of atoms for 
observation of toroidal excitations.

Last, it is important to emphasize the difference between the 
well-characterized static nuclear toroidal moments that contribute, 
for example, to the parity-violating transition between the 6S and 7S 
states of caesium (7) and the dynamic spin-dependent toroidal 
interactions between electromagnetic waves and the electronic struc-
ture or atoms that are explored in this work.
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