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Abstract: Directional cell migration and the establishment of polarity play an important role in
development, wound healing, and host cell defense. While actin polymerization provides the driving
force at the cell front, the microtubule network assumes a regulatory function, in coordinating front
protrusion and rear retraction. By using Dictyostelium discoideum cells as a model for amoeboid
movement in different 2D and 3D environments, the position of the centrosome relative to the
nucleus was analyzed using live-cell microscopy. Our results showed that the centrosome was
preferentially located rearward of the nucleus under all conditions tested for directed migration,
while the nucleus was oriented toward the expanding front. When cells are hindered from straight
movement by obstacles, the centrosome is displaced temporarily from its rearward location to the
side of the nucleus, but is reoriented within seconds. This relocalization is supported by the presence
of intact microtubules and their contact with the cortex. The data suggest that the centrosome is
responsible for coordinating microtubules with respect to the nucleus. In summary, we have analyzed
the orientation of the centrosome during different modes of migration in an amoeboid model and
present evidence that the basic principles of centrosome positioning and movement are conserved
between Dictyostelium and human leukocytes.

Keywords: amoeboid cell migration; cAMP; chemotaxis; Dictyostelium discoideum; folate; microchannels;
micropipette assay; microtubules; 3D matrix

1. Introduction

Cell migration is a complex process and, as such, important for morphogenesis during
embryonic development, wound healing, or immune responses. Mechanistically, different
types of cell movement can be distinguished: amoeboid, mesenchymal, multicellular
streaming, and collective cell migration [1]. Migrating cells are usually characterized by
polarity, recognizable by the extension of protrusions at the front or leading edge and
retraction of the rear end [2,3].

Individual cells, such as fibroblasts, myoblasts, neural crest cells, and various cancer
cells have been shown to migrate in the mesenchymal migration mode, which is character-
ized by a strong adhesive capacity, mediated by focal adhesions and proteolytic degradation
of the surrounding extracellular matrix during interstitial movement. These cells exhibit a
rather low migration speed.
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In contrast, leukocytes, including neutrophils, T-cells, and dendritic cells, and cells of
the model organism Dictyostelium discoideum display an amoeboid mode of migration that
is characterized by a lack of focal adhesions and stress fibers [4–6]. These cells are rather
poorly adhesive, migrate with considerably higher speed, and do not perform proteolytic
remodeling of their surrounding matrix when migrating in three-dimensional (3D) envi-
ronments. Depending on the mechanical constraints, amoeboid cells can switch between
F-actin-driven and bleb-based pseudopod formation [1,7–10]. Recent work has shown that
both forms of surface extensions can coexist and cooperate during chemotaxis [11,12].

For many years Dictyostelium has been used to explore basic principles in cell and
developmental biology, and more recently it has emerged as a valuable biomedical model
system for studying several human diseases [13,14]. Dictyostelium cells are intrinsically
motile and serve as an excellent model to analyze cell motility and host defense [13,15,16].
Single Dictyostelium cells, just like leukocytes, migrate either randomly or perform directed
movement when sensing chemical cues in their microenvironment. During chemotactic
migration, the gradient of the extracellular chemoattractant is sensed by the cells through
G-protein coupled receptors and transduced into an intracellular signaling cascade, which
allows the establishment of cell polarity, expansion of pseudopods, and migration of
the cells [17–20]. Depending on the life cycle phase, either folic acid or cyclic AMP can
act as chemoattractant for Dictyostelium. Dictyostelium cells are professional phagocytes
that, in their vegetative growth phase, sense bacteria by chemotaxis toward folic acid
and ingest them by phagocytosis [21]. Chemotaxis toward the cAMP released by cells
is important for development into fruiting bodies [22]. The cAMP receptor, cAR1, was
the first chemoattractant G-protein coupled receptor identified in eukaryotic cells [23],
whereas the G-protein-coupled receptor for folic acid-mediated signaling was identified
more recently [24].

Microtubules are important cytoskeletal structures, essential for cell division, intracel-
lular transport, motion of cilia and flagella, as well as cell migration and establishment of
polarity [25]. How microtubules are involved in the mechanism of migration is not yet fully
understood and largely depends on the cell type. Most studies have concluded that micro-
tubules play a positive role, by regulating actin polymerization, transporting membrane
vesicles to the leading edge, and/or facilitating the turnover of adhesion plaques. Several
studies have shown that microtubules regulate cell migration in a cell type-dependent
manner [26,27]. To give a few examples, it was shown that their depolymerization can
impair cell migration in types of cells such as fibroblasts [26,28], and suppress the polarity
and promote motility of neutrophils [29], while their absence had no influence on the mi-
gratory properties of fish keratinocytes [30]. In addition, microtubules have been reported
to restrain cell movement and to specify directionality [31]. For immune cells, the role of
the microtubule cytoskeleton and its importance in cell polarization and directed migration
has been recently reviewed [32].

Microtubules nucleate either from basal bodies or microtubule organizing centers
(MTOCs). Centrosomes are the major MTOCs, and during migration, their intracellular
position seems to depend on the cell type. In slow-moving non-leukocyte cells, the MTOC
is often located in front of the nucleus (relative to the direction of cell migration) and
microtubules radiate primarily towards the leading edge [33,34]. Similarly, in slow-moving
macrophages, the MTOC often locates in front of the nucleus [35,36]. However, in fast-
moving leukocytes, such as dendritic cells and T-cells, MTOCs and microtubules have
been described to localize behind the nucleus during directional migration [36–39]. This
positioning of the nucleus, frontward to the centrosome, enables these fast-migrating
cells to use their nucleus as a mechanical gauge to probe for suitable larger pores in the
microenvironment [39]. However, in fast migrating neutrophils, the MTOC frequently
localizes between the lobes of the segmented nucleus [39–41], but also has been reported
to either localize to the back of the nucleus during polarization on 2D surfaces [39], or to
localize to the front of the nucleus during migration in living zebrafish [27], suggesting that
MTOC positioning might also be influenced by the cellular microenvironment.
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The Dictyostelium centrosome has been explored in detail in recent years [42,43]. It
is structurally different, as it contains no centrioles and shows some differences with
respect to centrosome duplication and its regulation. In the interphase, the Dictyostelium
centrosome remains adjacent to the nucleus, and several proteins have been demonstrated
to play a role in connecting centrosomes to nuclei, including a Sun1 homolog [44,45], a
centrin B homolog [46], the centrosomal protein CP148 [47], and the kinesin Kif9 [48]. They
play either a structural or regulatory role in anchoring microtubule minus ends into the
centrosome corona or in linking components at the nuclear envelope [43,48].

In the present study, we investigated the position of the centrosome relative to that
of the nucleus, and the proximity of the centrosome to the nucleus during migration of
Dictyostelium single cells. Although several studies have addressed the position of the
centrosome in the past [49–54], a systematic investigation considering different migration
conditions has been lacking. Here, we used microfabricated polydimethylsiloxane (PDMS)
surfaces and 3D matrices, in addition to standard chemotaxis micropipette assays, to
systematically test centrosome positioning in diverse microenvironments and different
developmental stages.

2. Materials and Methods
2.1. Cells and Culture Conditions

Cells of the Dictyostelium discoideum strain AX2-214 expressing both GFP-α-tubulin (tubA1;
DDB0191380|DDB_G0287689) [52] and mRFP-histone (H2Bv3; DDB0231622|DDB_G0286509) [55]
were cultivated in polystyrene Petri dishes in HL5 medium (Formedium, Hunstanton,
Norfolk, UK) supplemented with 20 µg/mL of Geneticin (Sigma-Aldrich, Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany) and 10 µg/mL of Blasticidin S (Gibco, Fisher
Scientific GmbH, Schwerte, Germany) at 22 ◦C. To induce aggregation competence and
development, cells were washed in phosphate buffer (PB; 17 mM phosphate, pH 6.0), and
starved in PB for 8 to 10 h.

2.2. Chemotaxis Conditions

For chemotaxis of growth phase cells versus pterines, a final concentration of 100 µM
folate (Sigma-Aldrich; F8758) was used to set up the gradient in PDMS microfabricated or
3D µ-slide chemotaxis devices (ibidi GmbH, Gräfelfing, Germany) with a VitroGel Hydrogel
matrix (TheWell Bioscience Inc., North Brunswick, NJ, USA). For chemotaxis experiments
with cells during the aggregation competent stage, cAMP (Sigma-Aldrich; A9501) was used
at a final concentration of 10 µM in micropipette assays, PDMS microfabricated devices, and
3D µ-slide chemotaxis devices (ibidi GmbH, Gräfelfing, Germany) with VitroGel Hydrogel
(TheWell Bioscience Inc., North Brunswick, NJ, USA) or rat collagen type I (ibidi GmbH,
Gräfelfing, Germany) matrices.

2.3. Micropipette Chemotaxis Assay

For analysis of cell motility in 2D conditions, starved cells or cells treated with 30 µM
of nocodazole for 1 h, were plated in low 35-mm standard-bottom µ-dishes (ibidi GmbH,
Gräfelfing, Germany), and migration toward a micropipette (Eppendorf) filled with 10
µM cyclic AMP was recorded using a confocal laser scanning microscope (LSM 780, Zeiss)
with a Plan-Apochromat 63x/1.4 Oil DIC objective. Images were taken at 1.5 s intervals
for 30–60 min. Centrosome and nucleus displacement were tracked using the automatic
ImarisTrack tool of the Imaris software (Bitplane), followed by manual cell tracking.

2.4. Migration within Microfabricated Polydimethylsiloxane (PDMS)-Based Microchannels or
Pillar Arrays

Dictyostelium cells expressing both GFP-tubulin and mRFP-histone were propagated
in the growth phase, or the developmental phase as described above (2.1.). Microfabricated
PDMS microchannels (8 µm width, 4.8 µm height) or pillar arrays (micropillars with
a diameter of 7 µm, positioned with a distance of 10 µm, and a height of 4.2 µm to
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connect the bottom glass-slide with the PDMS-composed ceiling) were used, as previously
described [56,57]. To investigate the chemotaxis of Dictyostelium cells in the growth phase,
we loaded 100,000 cells and employed a final concentration of 100 µM folate (Sigma-
Aldrich, F8758) to set up the gradient. To analyze the chemotactic migration of cells of the
developmental stage, 50,000 cells were loaded and 10 µM of cAMP was used to generate
the chemoattractant gradient.

2.5. Migration in 3D Hydrogel and Collagen Matrices

To analyze the position of the centrosome in relation to the nucleus during migration in
3D environments, 3D µ-slide chemotaxis devices (ibidi GmbH, Gräfelfing, Germany) were
used in combination either with VitroGel Hydrogel (TheWell Bioscience) or rat collagen
type I (ibidi GmbH, Gräfelfing, Germany) matrices.

Hydrogel: 100,000 Dictyostelium cells of the developmental phase were suspended
in PB and mixed with hydrogel (v/v 1:2), loaded into a 3D µ-slide chemotaxis chamber
(6 µL into the middle channel), and were allowed to settle down for 1 h at RT. To set up a
gradient of cAMP, a final concentration of 10 µM cAMP was loaded (65 µL) into one outer
compartment of the chamber, the other one was filled with PB (65 µL).

Collagen: 100,000 Dictyostelium cells of the developmental stage were suspended in a
final volume of 75 µL containing rat tail collagen type I (ibidi GmbH, Gräfelfing, Germany;
1.5 mg/mL) in PB supplemented with 6.7 mM NaOH, 1.2 mM CaCl2, and 0.2% NaHCO3.
The cell–collagen mix was loaded into the 3D µ-slide chemotaxis chamber (6 µL into the
middle channel), and was allowed to settle down for 30 min at RT for polymerization [58].
Then, 100 nM cAMP was added to one side (65 µL) to generate a chemoattractant gradient,
and the other side was filled with PB (65 µL).

2.6. Live-Cell Imaging of Migrating Cells

Cell migration was recorded using a Zeiss LSM 780 or 880 confocal microscope
equipped with a Plan-Apochromat 63x/1.4 Oil DIC objective, image size 512 × 512 pixels,
and a frame interval of 1.26 s. For GFP: ex 488 nm/em filter BP 495–550 nm; for mRFP: ex
561 nm/em filter LP 570 nm.

Cell migration in PDMS microchannels and PDMS pillar arrays was recorded with
an inverted Leica DMi8 LED fluorescence microscope using an 40× objective, image size
2048 × 2048 pixels, and a frame interval of 10 s. For GFP: ex 475 nm/em 519 nm; for RFP:
ex 560 nm/em 594 nm (DFT51011 for both channels).

2.7. Statistics

Results of the migration experiments were statistically analyzed using Graph Prism
v9 with Students’ t tests (Welch’s t-test) for Figures 1d, 2d, 3d, 4c,e and S3a, or One-way
ANOVA (Brown-Forsythe and Welch ANOVA tests) for Figures 1c,f, 2c, 3c, 4b, S1d and S4.
Data shown represent mean values plus or minus SDs. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.8. Determination of Centrosome and Nucleus Distance

Centrosome and nucleus centroids were tracked using an Imaris automatic tool. The
track values of each center object (centrosome or nucleus) were subtracted and the difference
between the tracks were calculated as the distance of centrosome and nucleus centers
(Figure S1f–h). The displayed frames of the trajectory give the values of the nucleus
position in relation to the centrosome during oriented migration (Figure S1h).
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s at the top. The cell shape is highlighted by a yellow dashed line. (b) Principle of quantification. (c) 

Figure 1. The centrosome of Dictyostelium cells migrating in microchannels or micropillar arrays along
a cAMP gradient is preferentially located behind the nucleus. (a) Scheme (left) and representative
microscopy images (right) of an aggregation competent Dictyostelium cell migrating in a microchannel
along a gradient of cAMP. The cells express both the nuclear marker mRFP-histone (red), and GFP-
tubulin (green) to highlight centrosomes and microtubules. Time is indicated in min and s at the top.
The cell shape is highlighted by a yellow dashed line. (b) Principle of quantification. (c) Centrosome
position during migration in microchannels within a gradient of cAMP. N = 3, number of cells = 32.
(d) Representative images of Dictyostelium cells showing analysis of nucleus (red) and centrosome
(green) centroid distances (indicated by “X”) (left). Histogram (right) displays the quantification
of the distances between the nucleus and centrosome centroids during migration in microchannels
and micropillar arrays along a cAMP gradient. N = 3, number of cells = 30. (e) Scheme (left), and
representative microscopy images (right) of a cell migrating in a field of micropillars along a gradient
of cAMP gradient, recorded with a time interval of 10 s per frame. The white arrows indicate the
trajectory of the cell. The numbers indicate the time in min and s. (f) Quantification of the centrosome
position during migration in an micropillar array along a gradient of cAMP. N = 3, number of
cells = 30. Scale bars are 10 µm. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 are significant, and
ns = not significant.



Cells 2022, 11, 1776 6 of 15

Cells 2022, 11, x 7 of 15 
 

 

Centrosome position during migration in microchannels within a gradient of cAMP. N = 3, number 
of cells = 32. (d) Representative images of Dictyostelium cells showing analysis of nucleus (red) and 
centrosome (green) centroid distances (indicated by “X”) (left). Histogram (right) displays the quan-
tification of the distances between the nucleus and centrosome centroids during migration in mi-
crochannels and micropillar arrays along a cAMP gradient. N = 3, number of cells = 30. (e) Scheme 
(left), and representative microscopy images (right) of a cell migrating in a field of micropillars along 
a gradient of cAMP gradient, recorded with a time interval of 10 s per frame. The white arrows 
indicate the trajectory of the cell. The numbers indicate the time in min and s. (f) Quantification of 
the centrosome position during migration in an micropillar array along a gradient of cAMP. N = 3, 
number of cells = 30. Scale bars are 10 µm. P < 0.05, **P < 0.01, ***P < 0.001 are significant, and ns = 
not significant. 
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cleus axis while Dictyostelium migrates within a gradient of cAMP released from a mi-
cropipette (Figure 2a,b). The repositioning of the micropipette filled with cAMP, causes a 
local change within the gradient, which is sensed by the cells and causes reorientation 
towards the pipette tip within seconds [60]. While Dictyostelium cells migrated in this ex-
periment on a two-dimensional surface, their path was not dictated by the microenviron-
ment and, thus, allowed non-straight migration, such as between micropillars (Video 3). 
Moreover, in this experimental setting, we observed a non-random orientation of the cen-
trosome–nucleus axis, with the centrosome located behind the nucleus (Figure 2c). 

 Figure 2. In aggregation-competent Dictyostelium cells moving in a gradient of cAMP released from
a micropipette, the centrosome is positioned behind the nucleus, but frequently relocates when
microtubules are disrupted. (a,b) Schemes (left) and representative microscopy images (right) of
Dictyostelium cells migrating toward a micropipette tip releasing cAMP (indicated by asterisks). The
cells express both the nuclear marker mRFP-histone (red), and GFP-tubulin (green) to highlight
centrosomes and microtubules. Time is indicated in min and s at the top. The cell shape is highlighted
by a yellow dashed line. Images were taken with 10 s-frame intervals. N = 6, number of cells = 50 for
control; N = 6, number of cells = 52 for nocodazole. (a) Shows control cells, (b) nocodazole-treated
cells. (c) Analysis of centrosome positions in control and nocodazole-treated (noco.) cells. Note that
there were no events for the side control. (d) Nocodazole treatment decreases the distance between
the center position (centroid) of the nucleus and the center of the centrosome. Scale bars are 10 µm.
* p < 0.05, ** p < 0.01, *** p < 0.001 are significant, and ns = not significant.

2.9. Analysis of the Centrosome Position Nucleus/Centrosome Centroids Relative to Cell Center

Manual analysis: Manual analysis of the orientation of the centrosome-to-nucleus axis in
linear microchannels (Figure S1a–c) was performed using ImageJ (https://imagej.net/) [59].
Seven horizontal lines with equal spacing were added to each image sequence (Figure S1a).
Cells that did not cross at least three lines while migrating, were excluded from analysis.
Additionally, only single cells migrating directionally along the chemoattractant gradient
were analyzed. The nucleus and centrosome length were determined using a line tool
from Image J, and the nucleus and centrosome centroids were determined as length/2.
The centrosome and nucleus positions, as well as their centroids relative to the cell center,
were evaluated for each frame when the nucleus of a cell reached one of the horizontal
crossing lines (Figures S1b and S2). To calculate the nucleus and centroid distances to the

https://imagej.net/
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cell center, seven crossing lines were drawn in each image and used as reference for the
calculation of cell length, the cell centroid, and the distances from the nucleus/centrosome
centroid to the cell center (Figure S2a–d). The nucleus/centrosome centroid distances to
the cell rear, where divided by the distance of the cell center to the back of the cell; thus,
the values closer to 1.0, mean closer to the center of the cell. The evaluation of centroid
centrosome/nucleus distance to the cell center of a single cell per frame was calculated for
the folate experiments, as displayed in Figure S2e,f.
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Figure 3. Centrosome positioning in aggregation competent Dictyostelium cells moving chemotac-
tically in 3D environments. (a,b) Schemes (left), and representative microscopy images (right) of a
Dictyostelium cell migrating in a chemotaxis chamber with a 3D hydrogel matrix. The cells express
both the nuclear marker mRFP-histone (red), and GFP-tubulin (green) to highlight centrosomes and
microtubules. The cell shape is marked by a yellow dashed line. Images were taken with 10 s-frame
intervals. Time is indicated in min and s at the top. N = 4, number of cells = 40 for control; N = 4, num-
ber of cells = 40 for nocodazole. (c) Analysis of the position of the centrosome in Dictyostelium cells
moving chemotactically in 3D hydrogels. Note that there were no events for side control. (d) After
nocodazole treatment, in cells moving chemotactically in 3D the distance between the centroid of the
nucleus and the centroid of the centrosome was slightly decreased. Scale bars are 10 µm. * p < 0.05,
** p < 0.01 are considered significant, and ns = not significant.
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Figure 4. In growth phase Dictyostelium cells migrating in microchannels along a gradient of folate,
the centrosome is preferentially located behind the nucleus. (a) Scheme (left) and representative
microscopy images (right) of a Dictyostelium cell migrating in a microchannel along a folate gradient.
The cell shape is highlighted by a yellow dashed line. Images were taken with 10 s-frame intervals.
Time is indicated in min and s at the top. (b) Quantification of the centrosome position during
migration in microchannels along a gradient of folate. N = 6, number of cells = 40. (c) Quantification
of the distance between nucleus and centrosome of Dictyostelium cells migrating in microchannels in a
folate gradient (n = 6, cells = 40). (d) Displacement of tracks for nucleus (red) and centrosome (green)
recorded for one cell over time. (e) Migration speed in microchannels determined for growth phase
Dictyostelium cells moving along a gradient of folate and for aggregation competent cells moving in a
gradient of cAMP. * p < 0.05, ** p < 0.01, **** p < 0.0001 are significant, and ns = not significant.

For cAMP or folate chemotaxis experiments in linear microchannels (Figures S1a,b and S2b,c),
the positions of the nucleus and centrosome along the cell axis were manually determined
by measuring their distance from the cell rear in relation to the cell length, to calculate their
relative intracellular position along the cell axis (Figure S1d). From this dataset, we further
calculated the centrosome-to-nucleus distance (Figure S1e) and the nucleus/centrosome
centroid relative distance to the cell center (Figure S2).

Automatic analysis: Centrosome and nucleus centroids were tracked using the Imaris
automatic tool “Spots creation tool’s automatic generation feature”. After completion of au-
tomatic generation, further optimization of tracks was completed manually. The trajectory
was determined between a reference point, where the chemoatractant was released, and
the centroid of the objects (nucleus and centrosome). The distance from the centrosome
centroid minus the distance of the nucleus centroid to a reference chemoatractant point was
calculated and used to determine the centrosome position (Figure S1f,g). A spot of 2.0 µm
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was set for the nucleus and a spot of 1.0 µm for the centrosome, with centroids determined
automatically. The distance of the nucleus centroid to the nucleus border was set to 1.0
µm, and the centrosome centroid distance to the centroid border was 0.5 µm. Thus, all
centrosomes with a difference of centrosome centroid distance minus the nucleus centroid
larger than +1.5 µm were characterized as having a centrosome position at the ‘back’ of
the nucleus. Values smaller than +1.5 µm were characterized as “side-back” position.
Positions of the centrosome within differences smaller than −1.5 µm were characterized as
“side-front”, and larger than −1.5 µm as “front” (Figure S1g,h).

3. Results
3.1. Nucleus and Centrosome Positioning in Dictyostelium Cells Migrating in
Confined Environments

To study centrosome and nucleus positioning in migrating Dictyostelium discoideum,
we employed cells in the early developmental stage, stably encoding both the nuclear
marker mRFP-histone and GFP-tubulin as a marker for the microtubules and centrosomes,
and performed live-cell imaging in linear microchannels with a gradient of cAMP as
chemoattractant. In this confined environment, Dictyostelium cells migrate highly direc-
tionally and persistently along straight paths (Figure 1a; Video S1). This setup allows the
precise quantification of the orientation of the centrosome–nucleus axis with an accurate
centrosome positioning classification (Figures 1b and S1), as well as the determination of
the nucleus and centrosome centroids relative to the cell center (Figure S2). Automated
tracking (Figure S1g,h) and quantification, which we controlled by manual analysis (Figure
S1b–d), revealed a preferential positioning of the centrosome behind the nucleus (Figure 1c).
While we also observed positioning of the centrosome to the sideward and front of the
nucleus (Figure 1c), and dynamic re-positioning of the centrosome closer to the cell center
in individual cells (Figures S1e and S2; Video S1), we found a strong preference of the
centrosome to be positioned in very close proximity, behind the nucleus (Figure 1c,d).

We next imaged mRFP-histone and GFP-tubulin expressing Dictyostelium cells migrat-
ing along a cAMP gradient in between arrays of micropillars, as this environment requires
Dictyostelium to deviate from entirely straight paths, by performing turns around individual
micropillars. Notably, we observed that during reorientation of the centrosome-nucleus, the
position of the nucleus within the cells stays relatively unchanged, while the centrosome
dynamically repositions between a frontward and rearward localization in relation to the
nucleus (Figure 1e; Video S2). Again, we noted a close proximity of the centrosome and
the nucleus, and a strong preference of the centrosome to be positioned at the back and
side-back of the nucleus (Figure 1f).

To corroborate these results, we investigated the orientation of the centrosome–nucleus
axis while Dictyostelium migrates within a gradient of cAMP released from a micropipette
(Figure 2a,b). The repositioning of the micropipette filled with cAMP, causes a local change
within the gradient, which is sensed by the cells and causes reorientation towards the
pipette tip within seconds [60]. While Dictyostelium cells migrated in this experiment on a
two-dimensional surface, their path was not dictated by the microenvironment and, thus,
allowed non-straight migration, such as between micropillars (Video S3). Moreover, in this
experimental setting, we observed a non-random orientation of the centrosome–nucleus
axis, with the centrosome located behind the nucleus (Figure 2c).

3.2. The Role of Microtubules for Centrosome Positioning in Dictyostelium Cells Migrating in 2D
Confined Environments

To investigate the role of the microtubule cytoskeleton in centrosome positioning, we
tested the orientation of the centrosome–nucleus axis after application of the microtubule-
depolymerizing drug nocodazole. Nocodazole interferes with the polymerization of micro-
tubules, and though it is known to be less efficient in Dictyostelium than in other eukaryotes,
it causes massive shortening of microtubules, visible as short stumps radiating from the
centrosome [61]. Live-cell imaging of migration to a cAMP-containing micropipette still
revealed a preferential positioning of the centrosome behind the nucleus in the presence
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of nocodazole, yet with a more frequently inverted orientation, in which the centrosome
is positioned frontward of the nucleus (Figure 2c). In the presence of nocodazole, Dic-
tyostelium cells migrate with reduced velocity (Figure S3a) and show a higher mobility of
the centrosome when the microtubule cytoskeleton is non-functional, leading to a reduction
of the distance between nucleus-centrosome centroids (Figure 2d). Nocodazole treatment
abolishes the contact of long microtubules that typically span through the cell body toward
cortical areas, whereas short microtubules in the direct vicinity of the centrosome remain
present (Figure S3b; Video S4). Thus, this suggests that the remaining short microtubules
mechanically connect the centrosome with the nucleus.

These findings show that a functional microtubule cytoskeleton contributes to the
correct orientation of the centrosome–nucleus axis in motile Dictyostelium.

3.3. Nucleus and Centrosome Positioning in Dictyostelium Cells Migrating in 3D
Confined Environments

We then tested whether the observed configuration of the centrosome-to-nucleus axis
can be characterized as well in three-dimensional matrices, which represent a close proxy
of natural environments. To this end, we imaged chemotactic migration of Dictyostelium
in hydrogel, as well as collagen matrices (Figure 3; Figure S4). As in 2D migration, Dic-
tyostelium cells moving in 3D showed a strong preference to position the centrosome behind
the nucleus (Figure 3a; Video S5). This location was altered upon depolymerization of
microtubules (Figure 3b; Video S6), which resulted in the centrosome being found much
more frequently on the side or front-ward of the nucleus (Figure 3c). It should also be noted
that, in nocodazole-treated cells, the distance between the centrosome and the nucleus was
slightly reduced (Figure 3d).

In summary, we found that the centrosome and the nucleus are non-randomly posi-
tioned in motile Dictyostelium cells. This non-random configuration positions the nucleus
in front of the centrosome, with respect to the direction of migration. This orientation is
clearly preferred in motile Dictyostelium cells at the developmental stage, occurring on flat
two-dimensional substrates, in confining microchannels, in between micropillars, as well
as in three-dimensional matrices.

3.4. Nucleus and Centrosome Positioning in Dictyostelium Cells Migrating in Confined
Environments toward Folate

To test whether the orientation of the “centrosome-nucleus in front” axis is the gener-
ally preferred position at the different developmental stages of Dictyostelium, we imaged
cells at the growth phase migrating chemotactically along a folate gradient in linear mi-
crochannels (Figure 4a; Video S7). Subsequent analysis revealed a strong preference to
position the centrosome behind or side-back of the nucleus (Figure 4b). The determina-
tion of the distance between the centroids of the nucleus and the centrosome revealed no
fundamental differences between cells migrating in folate or cAMP gradients (Figure 4c).
The plot of an exemplary track shows how the centrosome follows the nucleus (Figure 4d).
In 2D microchannels, growth phase Dictyostelium cells migrate more slowly toward folate
than cells of the early aggregation state toward cAMP as chemoattractant (Figure 4e). A
similar difference has been shown previously for other conditions.

Altogether, our data show that Dictyostelium cells position their centrosome and the
nucleus in a non-random orientation during motility at different developmental stages,
with the preferred position of the centrosome always at the back of the nucleus. This
positioning is reinforced by microtubules that emanate from the centrosome and extend to
the front cortex. Changes in the direction of a cell caused by a change in the chemoattractant
gradient results in a transient displacement of the centrosome from the pseudopod-nucleus-
centrosome axis.

4. Discussion

The positioning of organelles inside cells is non-random, and this non-random po-
sitioning is functionally important [62]. The nucleus — the largest and stiffest cell or-
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ganelle [63] — and the centrosome — the major microtubule organizing center [25] — are
typically positioned in close proximity in a particular orientation [33]. Many motile cells,
such as fibroblasts and neurons, preferentially position their centrosome frontward of the
nucleus [34], e.g., during polarized fibroblast migration into cell-free wound areas [64].
This particular alignment of the centrosome-to-nucleus axis is established by linking the
nucleus with the cytoskeleton [65], and supports local release of proteases for extracellular
matrix proteolysis at constricting pores [66], and the pulling of the nucleus through narrow
pores [67].

Whereas the cellular microenvironment (e.g., degree of confinement) also appears
to influence the orientation of the centrosome-to-nucleus axis [33,68], the general concept
emerges that slowly migrating mesenchymal-like cells preferentially position their centro-
some in front of the nucleus. In contrast, recent findings have shown that fast amoeboid-like
migrating immune cells, such as dendritic cells, preferentially position their centrosome to
the rear of the nucleus [38,39]. This unexpected positioning of the nucleus frontward to the
centrosome [32,39], and closely behind the cellular leading edge [39,69], supports these fast
migrating cells in using their nucleus as a mechanical gauge to probe for suitable larger
pores in the microenvironment along their paths of migration [39].

Here, we investigated the positioning of the centrosome-to-nucleus axis in motile
Dictyostelium discoideum cells. Dictyostelium represents a long-standing cellular model to
discover general concepts in cell motility [19,20,70–73]. Surprisingly, the positioning of
the centrosome in relation to the nucleus in this traditional model for amoeboid migration
was initially analyzed only by evaluating electron micrographs [50]. The authors came to
the conclusion that the centrosome shows no preferential position anterior or posterior to
the nucleus; rather, its position correlates with the type of migration and perhaps with the
nature of cell–cell adhesion [50].

Another early study previously showed that the centrosome does not bias the cell, as it
was observed that after formation of a new pseudopod, the centrosome reorientates within
an average of 12 s [51]. Thus, they concluded that the centrosome does not determine
the alignment of the movement [51]. However, it has been consistently discussed that
the centrosome may also be located anterior to the nucleus relative to the direction of
movement, depending on the developmental stage or the conditions of migration. In
summary, a systematic analysis that investigated the position of the centrosome during
migration was lacking.

To close this knowledge gap, we investigated two major motile states of Dictyostelium:
single-cell migration in the growth phase along a folate gradient, and single-cell migration
in the developmental stage along a cAMP gradient. We found that the centrosome is
positioned in both states close to the cell center, and that the nucleus is positioned frontward
of the centrosome. Furthermore, by extensively investigating Dictyostelium migration
in diverse microenvironments, ranging from two-dimensional substrates and confining
microchannels to three-dimensional extracellular matrices, we discovered that this specific
orientation of the centrosome-to-nucleus axis is a general feature of migrating Dictyostelium
cells. Thus, amoeboid migrating Dictyostelium cells position the nucleus frontward of
the centrosome, similarly to amoeboid migrating immune cells, suggesting evolutionary
conservation of centrosome-to-nucleus positioning in motile amoeboid cells.

The extension of a pseudopod in a new direction causes the reorientation of the
centrosome. A crucial question that remains to be solved is how these processes are
coupled. The present study was not designed to answer this general question. However,
our findings are in agreement with the assumption that reorientation of the centrosome and
microtubules extending toward the front reinforce the direction of movement. Thus, the
active balancing of the pseudopod-nucleus-centrosome axis is a critical component. Our
results with nocodazole-treated cells strongly support this notion.

Our findings suggest a general concept, in which fast moving amoeboid-like cells
position their nucleus in front of the centrosome, whereas slow mesenchymal-like cells
position their nucleus behind the centrosome. In future, it will be interesting to further
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elucidate what other functional significance this configuration and positioning of the
centrosome–nucleus axis has for amoeboid migration. Moreover, our findings highlight the
relevance of the genetically accessible amoeba Dictyostelium as a cellular model to discover
mechanisms of cell migration. This approach will also help to transfer well established
techniques in Dictyostelium to the leukocyte model system, and thus may yield new insights
into principles of directional cell migration and polarity, as important elements in host
defense, wound healing, and development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11111776/s1, Figure S1. Microchannel setup and man-
ual/automatic analysis of centrosome positioning. Figure S2. Position of nucleus and centrosome
centroids in relation to the cell center. Figure S3. Nocodazole treatment results in decrease of cell
speed and shorter microtubules in Dictyostelium cells. Figure S4. Positioning of the centrosome
relative to the nucleus in aggregation competent Dictyostelium cells migrating chemotactically in
3D hydrogel or collagen type I matrices. Video S1. The centrosome of Dictyostelium cells migrating
in microchannels along a cAMP gradient preferentially locates rearward of the nucleus. Video S2.
The centrosome of Dictyostelium cells migrating in a micropillar array along a cAMP gradient pref-
erentially locates rearward of the nucleus. Video S3. The preferential position of the centrosome of
Dictyostelium cells during migration toward cAMP released from a micropipette is rearward of the
nucleus. Video S4. In Dictyostelium cells with disrupted microtubules, the position of the centrosome
changes frequently from the back to sides and front of the nucleus during migration in a gradient of
cAMP released from a micropipette. Video S5. The centrosome of Dictyostelium cells is predominantly
located behind the nucleus during migration in 3D environments. Video S6. In Dictyostelium cells
moving in 3D environments, the position of the centrosome is more variable relative to the nucleus
when microtubules are disrupted. Video S7. The centrosome of Dictyostelium cells migrating in
microchannels along a folate gradient preferentially locates rearward of the nucleus.
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