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Abstract

Proline-rich tyrosine kinase 2 (Pyk2) is a member of focal adhesion kinase (FAK) non-receptor tyrosine kinase family and
has been found to promote cancer cell survival, proliferation, migration, invasion, and metastasis. Pyk2 takes part in
different carcinogenic signaling pathways to promote cancer progression, including epidermal growth factor receptor
(EGFR) signaling pathway. EGFR signaling pathway is a traditional carcinogenic signaling pathway, which plays a critical
role in tumorigenesis and tumor progression. FAK inhibitors have been reported to fail to get the ideal anti-cancer
outcomes because of activation of EGFR signaling pathway. Better understanding of Pyk2 downstream targets and
interconnectivity between Pyk2 and carcinogenic EGFR signaling pathway will help finding more effective targets for
clinical anti-cancer combination therapies. Thus, the interconnectivity between Pyk2 and EGFR signaling pathway, which
regulates tumor development and metastasis, needs to be elucidated. In this review, we summarized the downstream targets
of Pyk2 in cancers, focused on the connection between Pyk2 and EGFR signaling pathway in different cancer types, and
provided a new overview of the roles of Pyk2 in EGFR signaling pathway and cancer development.
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Introduction and contributes to tumorigenicity and tumor development
(Sood et al., 2004; Carelli et al., 2006; Yom et al.,, 2011; Tai
et al., 2016). Proline-rich tyrosine kinase 2 (Pyk2) is a close
paralogue to FAK and possesses 46% sequence identity and
65% similarity related to FAK in structure (Du et al., 2001;
Schaller, 2010). The effects on cellular events are not always
the same between FAK and Pyk2. Pyk2 is only abundant in
specific cell types such as macrophages, osteoclasts, and
lymphocytes (Menegon et al, 1999; Allen et al., 2009;
Beinke et al., 2010; Gao et al., 2015) and could be activated
by multiple growth factors, neuropeptides, cytokines,
hormones, and chemokines (Ivankovic-Dikic et al., 2000;

Focal adhesion kinase (FAK), a kind of multi-domain non-
receptor protein tyrosine kinase (PTK), controls cell
survival, adhesion, and migration by transferring signals
from integrins or growth-factor receptors to downstream
kinases (Arold, 2011; Kleinschmidt and Schlaepfer, 2017).
FAK is widely detectable in adult tissues and aberrant
expression of FAK could be regarded as a promising factor
to predict aggressive behavior and poor prognosis in
patients with tumors (Ji et al., 2013; Li et al., 2015; Omura
et al,, 2016). FAK is overexpressed in many kinds of tumors
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Abbreviations: AR, androgen receptor; Arg, Abl-related gene; BCSC, breast cancer stem cell; CCL19, chemokine (C-C motif) ligand 19; CCR7,
chemokine receptor 7; CREB, cyclic-AMP response element-binding protein; DFX, deferasirox; ECM, extracellular matrix; EGFR, epidermal growth
factor receptor; EMT, epithelial-mesenchymal transition; ERK, extracellular regulated protein kinase; FAK, focal adhesion kinase; FAT, focal adhesion
targeting; GSTO1, glutathione S-transferase omega 1; HER2, human epidermal growth factor receptor 2; Hic-5, hydrogen peroxide inducible clone-5;
HRG, heregulin; JAK, janus kinase; MAPK, mitogen-activated protein kinase; MM, multiple myeloma; MMP-10, matrix metalloproteinase-10; NDRG1,
N-myc downstream regulated 1 gene; NEDD4, neural precursor cell-expressed developmentally downregulated gene 4; PCa, prostate cancer; pEGFR,
phosphorylated epidermal growth factor receptor; pERK, phosphorylated extracellular signal-regulated protein kinase; PI3K, phosphoinositide 3-
kinase; PKC, protein kinase C; PTEN, phosphatase and tensin homolog deleted on chromosome ten; PTK, protein tyrosine kinase; Pyk2, proline-rich
tyrosine kinase 2; RTKs, receptor tyrosine kinases; S6K, S6-kinase; SCCHN, squamous cell carcinoma of the head and neck; SCLC, small cell lung
cancer; STAT, signal transducers and activators of transcription; TNBC, triple negative breast cancer; TNFRSF19/TROY, mouse tumor necrosis factor
receptor superfamily member 19; VEGF, vascular endothelial growth factor
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Di Cioccio et al., 2004; Roelle et al., 2008; Cattaneo et al,,
2009; Lane et al., 2016). In numerous researches in vivo and
in vitro, overexpression of Pyk2 is found in different
malignant tumors (Sun et al., 2007; Zhang et al., 2008;
Hsiao et al,, 2016) and it is implicated in multiple signal
transduction cascades, which regulate cancer cell prolifera-
tion, apoptosis, and invasion (Okigaki et al., 2003; Sun
et al., 2008; Wiese et al., 2015). Pyk2 promotes tumor
progression and owes to a number of cancer-related
functional domains in structure: N-terminal FERM do-
main, a central catalytic kinase domain, and C-terminal
focal adhesion targeting (FAT) domain (Lipinski and
Loftus, 2010). The FERM domain of Pyk2 could mediate
both protein-protein and protein-membrane targeting
interactions and plays a critical role in Pyk2-induced
migration of tumor cells (Hirao et al., 1996; Hamada et al,,
2000, 2003; Pearson et al., 2000; Loftus et al., 2009). Pyk2
contains central catalytic kinase domain that may be of
potential use in the design of selective kinase inhibitors for
cancer treatments (Han et al., 2009). The C-terminal
domain of Pyk2 includes a FAT domain, which is
implicated in the activation of carcinogenic mitogen-
activated protein kinase (MAPK) signaling pathway
(Blaukat et al., 1999; Kuang et al., 2013). In recent years,
Pyk2 is found to be involved in epidermal growth factor
receptor (EGFR) signaling pathway in cancer progression.

EGFR is a member of the EGF receptor tyrosine kinase
family, which includes EGFR (ErbB1/HER1), HER2/neu
(ErbB2), HER3 (ErbB3), and HER4 (ErbB4). EGFR is a
transmembrane growth factor receptor and its downstream
signaling pathways frequently contribute to tumor progres-
sion and metastasis (Ciardiello and Tortora, 2008; Kumar
et al,, 2016; Koustas et al., 2017; Singla et al., 2018). EGFR
signaling mainly contains the RAS/MEK/ERK (extracellular
regulated protein kinase), PI3K (phosphoinositide 3-kinase)/
AKT and PLCy/PKC (protein kinase C) cascades, moreover,
the Src tyrosine kinase and janus kinase (JAK)/signal
transducers and activators of transcription (STAT) pathway
are also induced by EGFR activation (Brand et al., 2011). After
ligand binding to EGFR, receptor auto-transphosphorylation
triggers a series of signaling events, which result in the
induction of cell proliferation, blockade of apoptosis, activa-
tion of invasion, and stimulation of neovascularization
(Shepard et al., 2008). With ligand combining with EGFR,
STATS3 is phosphorylated and promotes tumor cell invasion
and poor prognosis of colorectal adenocarcinoma (Kusaba
et al,, 2006). Overexpression of EGFR antagonizes neoalba-
conol-induced VEGF reduction and impairs anti-angiogenesis
of neoalbaconol in cancer (Yu et al, 2017). EGFR-related
downstream proteins, such as phosphatase and tensin
homolog deleted on chromosome ten (PTEN), PI3K, and
Akt, could have a significant impact on cell proliferation or
apoptosis (Harle et al., 2015). EGFR can activate the RAS-
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MEK-ERK pathway and lead to cell proliferation and survival,
which makes it a suitable target for cancer inhibition (Misale
et al,, 2014).

Pyk2 and EGEFR signaling pathway are both proved to
decide the fate of cancer. However, the exact role that Pyk2
plays in the EGFR signaling pathway still remains unclear.
Traditionally, Pyk2 has been identified as a potential
therapeutic target for human cancer treatment. Targeting
Pyk2 could regulate its downstream signaling pathways and
control the growth and metastasis of cancer cells. However,
monotherapy of FAK has been found to fail to get the ideal
anti-cancer outcomes because of the effects of compensa-
tory signaling. Thus, as a member of the FAK family, Pyk2-
related network of tumorigenesis and tumor progression
needs to be elucidated and Pyk2-related carcinogenic
signaling pathways should be paid more attention to.
EGEFR signaling has an important place and role in Pyk2
downstream signaling pathways, which will affect the
growth and metastasis of cancer cells. In this review, we
summarize the recent findings of endogenous mechanisms
used by cells with respect to Pyk2-related regulation of
cancer cell growth, proliferation, apoptosis, migration,
invasion, metastasis, tumorigenesis, and tumor angiogen-
esis. We explore the interconnectivity between Pyk2 and
EGEFR signaling pathway in different cancer types, as well as
aid in the identification of potential targets for cancer
therapy. A systematic understanding of these mechanisms
could contribute to the design of novel and more effective
therapeutic interventions, which will block the aggressive
growth of cancer cells.

Anti-cancer effectiveness of FAK inhibitors could
be arrested by compensatory EGFR-related
signaling

FAK is overexpressed in 80% of all solid tumors and FAK
inhibitors have been considered as promising anti-cancer drugs
(Weiner et al, 1993; Owens et al, 1995; Lark et al, 2003).
However, anti-cancer clinical trials of FAK inhibitors show the
limited single-agent efficacy (Gan et al, 2012; Infante et al,
2012) and compensatory signaling has been found to be
responsible for this phenomenon. In the study performed by
Marlowe et al., the results confirmed that the expression of
receptor tyrosine kinases (RTKs) predicted patient response to
FAK-kinase inhibitors. FAK-kinase inhibition induced RTK
activation in RTK high cancer cells while the selective pressure
of FAK-kinase inhibition was able to drive RTK low triple-
negative breast cancer cells to express human epidermal growth
factor receptor 2 (HER2). The inhibition of FAK induced
compensatory increases of phosphorylated EGFR (pEGFR),
pHER2, pAKT, and phosphorylated extracellular signal-
regulated protein kinase (pERK). Moreover, FAK inhibition
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The biological roles of downstream targets of Pyk2 in cancers
cancer cell EMT, migration, invasion, and metastasis; inhibiting EMT,

motility, and migration of liver cancer cells
Inhibiting cancer cell EMT, migration, invasion, and metastasis

Inhibiting cancer cell growth, survival, and proliferation, attenuating
cancer growth

Arresting EMT, migration, invasion of SCCHN cells; inhibiting breast

Inhibiting EMT, motility, and migration of cancer cells

Table 2 Downstream target sites of Pyk2 in human cancers. Pyk2 promotes the progression of different cancers by inhibiting some downstream targets.

EMT, epithelial-mesenchymal transition; NDRG1, N-myc downstream regulated 1 gene; SCCHN, squamous cell carcinoma of the head and neck.

Relationship between Pyk2 and EGFR signaling

Pyk2 downregulation is proved to decrease CREB phos-
phorylation and expression and inhibits the viability of
neuroblastoma (Hirschler-Laszkiewicz et al., 2018). Src is
also a downstream target of Pyk2 in cancer development.
Pyk2 promotes neuropeptide-mediated Src kinase phos-
phorylation and neuropeptide-stimulated survival and
proliferation of small-cell lung cancer (SCLC) cells while
FAK activity isn’t affected by neuropeptides in SCLC cells
(Roelle et al., 2008). Pyk2 could induce the expression of
cancer stem cell marker ALDH1al, ABCG2, and Bmi-1 and
is proved to be associated with the colony formation of
lung cancer cells (Kuang et al., 2013). In multiple myeloma
(MM), Pyk2 plays a tumor-promoting role and facilitates
cell adhesion ability, cell-cycle progression, and cell
proliferation by activating Wnt/p-catenin signaling.
Inhibition of Pyk2 will result in the decrease of B-catenin
and p-Akt. Moreover, Pyk2 overexpression is found to
increase the phosphorylation of Src and Paxillin in MM
cells (Zhang et al., 2014). Pyk2 shows a more malignant
phenotype and promotes MM cell growth and proliferation
by enhancing JAK1/STAT3 signaling (Meads et al., 2016).
Pyk2 is important for cancer cell growth and proliferation.

The roles of Pyk2-modulated downstream targets in
inhibiting cancer cell apoptosis

Overexpression of Pyk2 increases downstream AKT phos-
phorylation, arrests HCC cell necrosis and apoptosis, and
contributes to cancer resistance to cisplatin (Geng et al,
2011). Iron chelator deferasirox (DFX) could inhibit Pyk2

<O'( = o expression, subsequently arrest P-catenin expression, and
= ,L\) pa induce MM cell apoptosis. However, FAK is not correlated
= O
T QO ) with DFX-induced MM cell apoptosis (Kamihara et al., 2016).
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£|3 Oz Q9 S metastasis, epithelial-mesenchymal transition (EMT) has
o
=0 Tao become an increasingly serious concern. EMT is the
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- = cytokeratin and E-cadherin and upregulating mesenchymal
[
< i oL gene Twist, N-cadherin, fibronectin, hydrogen peroxide
5|l gg= ©8 inducible clone-5 (Hic-5) and STAT5b, thus contributin
= g o ;. © © 8
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Cell Biol Int 44 (2020) 2-13 © 2019 The Authors. Cell Biology International published by John Wiley & Sons Ltd on behalf of 7

International Federation of Cell Biology



Relationship between Pyk2 and EGFR signaling

of STAT3 induced by chemokine (C-C motif) ligand 19
(CCL19), thus arresting SCCHN cell EMT, migration,
invasion, and metastasis (Liu et al., 2014). In breast cancer,
Pyk2 is found to promote cancer cell migration, invasion,
and metastasis by regulating distinct downstream targets.
EGF activates Pyk2, regulates functions of downstream
Twist-1,2, CD44, Snail-1,2, matrix metalloproteinase-10
(MMP-10), B-catenin, fibronectin, vimentin, E-cadherin,
Z0O-1, and Zeb-1,2, promotes EMT, migration, invasion,
and metastasis of breast cancer cells. However, FAK cannot
be activated by EGF. Under EGF stimulation, Pyk2, STAT3,
and c-Met interact with each other and form positive
feedback, which contributes to prolonging EMT-associated
signals and cancer metastasis (Verma et al., 2015). Pyk2 has
higher affinity with cortactin than FAK. Pyk2 colocalizes
with cortactin to invadopodia of breast cancer cells and
regulates EGF-induced cortactin phosphorylation through
Src-mediated Abl-related gene (Arg) activation, leading to
actin polymerization and breast cancer cell invasion. In
addition, Pyk2-depleted cells show a decreased MMP
secretion and extracellular matrix degradation (Genna
et al., 2018). The abundance of breast cancer stem cell
(BCSC) has proved to be essential for breast cancer
recurrence and metastasis. Pyk2/Src/STAT3 signaling
pathway is activated by the rise of glutathione S-transferase
omega 1 (GSTO1)-induced cytosolic calcium and leads to
BCSC enrichment (Lu et al., 2017). Pyk2 acts downstream
of ErbB-2 and can be phosphorylated by heregulin (HRG).
Phosphorylated Pyk2 activates ERK and plays a key role in
breast cancer cell invasion (Zrihan-Licht et al., 2000). Src/
FAK/Pyk2/p130 Cas (crk-associated substrate) is another
effective pathway, which is reported to be associated with
cell migration and invasion of breast cancer (Vultur et al,,
2008). Through phosphorylating GTPase-activating protein
AMAP1, Pyk2 plays a critical role in CCL18-induced cell
adhesion, migration, and invasion in breast cancer (Li et al.,
2018). ERK is an important downstream target, which
contributes to different cancer cell migration, invasion, and
metastasis. Overexpression of Pyk2 facilitates HCC cell
invasiveness by upregulating the phosphorylation of c-Src,
ERK1/2, and MEK1/2 (Sun et al., 2008). Through activating
Pyk2, elevated ErbB-2 could increase the ERK/MAPK
activity and enhance cell adhesive ability and metastasis in
human prostate cancer (PCa), while FAK isn’t correlated
with PCa cell adhesive ability (Yuan et al, 2007). As a
member of Ras homolog gene family, RhoC promotes PCa
cell invasion and metastasis via sequentially phosphory-
lating Pyk2, FAK, MAPK and AKT (liizumi et al., 2008).
Under the effects of Heregulin/HER3-stimulated signaling
pathway, phosphorylated Pyk2 activates the MAPK
pathway and facilitates glioma cell invasion (van der
Horst et al., 2005). In urothelial carcinoma, FAK depletion
doesn’t affect (insulin-like growth factor I [IGF-I])-
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mediated cell invasion while Pyk2 is strongly activated by
IGF-I and promotes IGF-IR-dependent motility and
invasion. Knockdown of Pyk2 is found to inhibit down-
stream IGF-I-dependent activation of Akt, ERK1/2,
P90RSK, as well as ribosomal protein S6K (Genua et al,
2012). Depletion of Pyk2 inhibits tumor necrosis factor
receptor superfamily member 19 (TNFRSF19/TROY)-
mediated glioma cell migration by suppressing TROY-
induced Racl activity. Pyk2 lies downstream of TROY and
plays an important role in TROY-induced glioma cell
migration (Paulino et al., 2010).

Pyk2 promotes tumorigenesis and tumor angiogenesis
by regulating downstream signaling pathways

Pyk2 and FAK are overexpressed in intestinal cancer. Elevated
Pyk2/FAK is found to function redundantly in the activation of
Wnt/B-catenin pathway by phosphorylating GSK3p™*'® and
enhances intestinal tumorigenesis (Gao et al,, 2015). In HCC,
Pyk2 activates PI3K/AKT pathway to increase vascular
endothelial growth factor (VEGF) expression, which is
associated with tumor angiogenesis (Cao et al.,, 2013).

Concluding remarks

Pyk2 represents a potential high-value target for therapeutic
discovery efforts due to its critical position within signaling
pathways, which regulate cancer progression and invasion.
Systematical understanding of downstream targets of Pyk2 is
necessary to find more effective ways to control human cancer
progression. Pyk2 promotes distinct cancers progression by
regulating different downstream signaling pathways, and EGFR
signaling pathway is found to be involved in Pyk2-regulated
downstream signaling pathways in liver cancer, breast cancer,
lung cancer, MM, prostate cancer, bladder cancer, SCCHN,
and glioma. Pyk2 could regulate AKT, STAT3, ERK, MEK1/2,
Src, HER3, MAPK, EGFR, and STAT5b in EGFR signaling in
different cancer types. Moreover, EGFR signaling is reported to
be responsible for the single-agent limitation of FAK inhibitors.
As a member of FAK family, the relationship between Pyk2
and EGFR signaling pathway requires more attention in cancer
development.

Nowadays, targeting a single receptor using monotherapy
often relapses due to the utilization of autonomous parallel-
redundant signaling (Fan and Guan, 2011). There are usually
downstream molecules, which enable EGFR-independent
activation to compensate the inhibition of intracellular
signaling cascades (Normanno et al, 2009). Approaches to
the therapeutic discovery of small molecules, which prevent
protein-protein interactions between key signaling effectors,
represent a promising area of anti-cancer therapy.
Combination therapies using two or more drugs usually lead
to better anti-cancer effects. For example, dual inhibition of
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FAK and Src enhanced the rate of detachment and apoptosis of
colon cancer cells than FAK inhibition alone or Src inhibition
alone (Golubovskaya et al., 2003). The combination of FAK/
Pyk2 tyrosine kinase inhibitor (PF-562,271) and sunitinib could
inhibit different aspects of angiogenesis and tumor aggressive-
ness and it might have better anti-cancer effect than a relevant
single agent in HCC (Bagi et al, 2009). Pyk2 acts as the
crossroad of multiple carcinogenic signaling pathways and
Pyk2 is involved in the modulation of EGFR signaling pathway,
which facilitates cancer cell proliferation, survival, migration,
invasion, metastasis, and chemo-resistance. In some cases, Pyk2
could regulate malignant biological behavior of tumor when
FAK doesn’t work (Roelle et al., 2008; Kamihara et al., 2016).
Thus, Pyk2 could be considered as an important target in
cancer treatment. Significant progress in the exploration of
Pyk2-regulated mechanisms during cancer formation and
progression will provide a robust list of potential targets for
therapeutic intervention. The combination treatments of Pyk2
inhibitors with molecules that target carcinogenic EGFR
signaling pathway may help acquiring better clinical outcomes
of anti-cancer treatment. Some catalytic inhibitors of the FAK,
such as PF-562,271, can also inhibit Pyk2 activity (Bagi et al.,
2008). Dual inhibition of FAK and Pyk2 can be more
promising in cancer treatment. However, it may be easier to
lead to limitation of therapy due to the possibility of activation
of complementary EGFR signaling. As there is no relevant
study reporting mechanisms of Pyk2 resistance yet, combina-
tion treatments of Pyk2 inhibitors and EGFR signaling
inhibitors may be a better choice than the combination of
FAK inhibitors and EGFR signaling inhibitors in some cases.
Moreover, the combined inhibition of Pyk2 and EGFR
signaling may be a rescue therapy when the combination
treatments of FAK inhibitors and EGFR signaling inhibitors fail
to get the ideal effects in cancer treatment.
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