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Abstract
Introduction: This paper develops a methodology and defines a measure that can 
be	used	to	separate	subjects	that	received	an	experimental	therapy	into	those	that	
benefitted from those that did not in recent-onset type 1 diabetes. Benefit means a 
slowing (or arresting) the decline in beta-cell function over time. The measure can 
be applied to comparing treatment arms from a clinical trial or to response at the 
individual level.
Methods: An	analysis	of	covariance	model	was	 fitted	 to	 the	12-month	area	under	
the	 curve	C-peptide	 following	 a	 2-hour	mixed	meal	 tolerance	 test	 from	492	 indi-
viduals	enrolled	on	five	TrialNet	studies	of	recent-onset	type	1	diabetes.	Significant	
predictors in the model were age and C-peptide at study entry. The observed minus 
the	model-based	expected	C-peptide	value	(quantitative	response,	QR)	is	defined	to	
reflect the effect of the therapy.
Results: A	comparison	of	the	primary	hypothesis	test	for	each	study	included	and	a	
t	test	of	the	QR	value	by	treatment	group	were	comparable.	The	results	were	also	
confirmed	for	a	new	TrialNet	study,	independent	of	the	set	of	studies	used	to	derive	
the	model.	With	our	proposed	analytical	method	and	using	QR	as	the	end-point,	we	
conducted	simulation	studies,	to	estimate	statistical	power	in	detecting	a	biomarker	
that	expresses	differential	treatment	effect.	The	QR	in	its	continuous	form	provided	
the greatest statistical power when compared to several ways of defining responder/
non-responder	using	various	QR	thresholds.
Conclusions: This	paper	illustrates	the	use	of	the	QR,	as	a	measure	of	the	magnitude	
of	treatment	effect	at	the	aggregate	and	subject-level.	We	show	that	the	QR	distribu-
tion by treatment group provides a better sense of the treatment effect than simply 
giving	 the	mean	estimates.	Using	 the	QR	 in	 its	 continuous	 form	 is	 shown	 to	have	
higher statistical power in comparison with dichotomized categorization.

K E Y W O R D S

CLINICAL	trial,	C-peptide,	predictive	variable,	prognostic	variable,	type	1	diabetes

www.wileyonlinelibrary.com/journal/edm2
https://orcid.org/0000-0003-3478-714X
mailto:￼
https://orcid.org/0000-0003-4526-888X
http://creativecommons.org/licenses/by/4.0/
mailto:jpkrischer@epi.usf.edu


2 of 9  |     BUNDY et al.

1  | INTRODUC TION

Researchers	 have	 expressed	 a	 strong	 desire	 to	 define	 a	 measure	
of response at the individual level in studies of recent-onset type 
1	diabetes	(T1D)	subjects	treated	with	an	experimental	agent	from	
a completed randomized clinical trial. Motivation for this reflects a 
need	to	provide	regulators,	considering	approval	of	an	experimental	
therapy,	a	percentage	of	subjects	that	 ‘benefited’	from	that	exper-
imental	therapy.	As	well,	patients	might	better	understand	the	po-
tential	benefit	of	treatment,	if	put	in	terms	of	the	chance	of	achieving	
a specific state in their disease (eg reduced hypoglycaemic episodes). 
The desired state should be relevant and meaningful from the per-
spective of the patient. This paper addresses another purpose: to 
separate	subjects	that	received	the	experimental	therapy	into	those	
that benefitted from those that did not. Benefit for the recently di-
agnosed type 1 diabetes subject means a slowing (or arresting) the 
decline in beta-cell function over time. Serum C-peptide measured 
over	2	hours	during	a	mixed	meal	tolerance	test	(MMTT)	has	become	
an	accepted	surrogate	for	beta-cell	function.	Presumably,	one	might	
conclude that subjects that had minimal decline (or no decline) ben-
efited	from	the	therapy,	while	those	with	steeper	declines	did	not.	
A	counterargument	is	that	the	rate	of	decline	varies	independent	of	
treatment and this variation may stem from differences in the un-
derlying	severity	of	the	disease.	Thus,	it	is	unclear	how	to	distinguish	
differential therapeutic benefit from disease severity in the treated 
group.

Additionally,	a	goal	of	biomarker	studies	is	to	identify	a	patient	
characteristic (usually genetic or immunological) that is associated 
with	 (and	 thus	 may	 explain)	 any	 variation	 in	 therapeutic	 effect.	
This association may help elucidate the mechanistic function of 
the therapy administered or identify a subpopulation for interven-
tion as part of a strategy to refine and develop effective therapies. 
However,	in	general,	a	biomarker	that	is	associated	(or	statistically	
speaking,	correlated)	with	C-peptide	decline	in	the	treated	group	
is either predictive of benefit or prognostic (ie indicative of the 
severity	of	T1D).	A	prognostic variable (for recent-onset T1D) is a 
characteristic,	measured	 prior	 to	 therapy,	which	 correlates	with	
C-peptide	outcome.	A	key	feature	 is	 that	 the	correlation	 is	pres-
ent	in	both	treated	and	untreated	(ie	placebo)	groups.	A	predictive 
variable correlates with C-peptide outcome only for the treated 
group,	 and	 no	 correlation	 exists	 in	 the	 placebo	 group.	 Thus,	 an	
initially	promising	biomarker	requires	testing	in	both	placebo	and	
treated samples to distinguish whether it is predictive or prognos-
tic.	Age	 is	 a	 classic	example	of	 a	prognostic	 variable	 since	 there	
is a strong direct correlation between age and 1-year C-peptide 
decline	regardless	of	the	agents	that	TrialNet	has	studied	to	date.	
This does not preclude the possibility of age being predictive for 
some	experimental	agent	in	the	future.

Many attempts at identifying subjects that have benefited from 
therapy (from those that have not benefited) have dichotomized the 
change (from baseline) in the stimulated C-peptide from an MMTT. 
Responders are often defined to be those above some C-peptide 
threshold and the complement being non-responders. Herold et al1,	

evaluating the effect of anti–CD3-based response on the change in 
C-peptide	 level,	 defined	 as	 the	 area	 under	 the	 curve	 (AUC)	mean	
increase over the fasting C-peptide level. Response was consid-
ered	when	the	value	 increased	by	more	 than	7.5%	from	the	base-
line	 value—7.5%	was	 used	 because	 it	 is	 one-half	 of	 the	C-peptide	
interassay coefficient of variation. Mortensen et al2 used the coef-
ficients	from	modelling	C-peptide	regressing	on	HbA1c	and	insulin	
dose	per	kilogram	weight	to	define	a	responder	(if	HbA1C	per	cent	
+4∙insulin	dose	units	per	kilogram	per	24	hours	≤	9	then	classify	as	
responder).	Again	Herold	et	al3,	evaluating	the	effect	of	anti-CD20,	
defined response using the coefficient of variation estimate of 
0.097.	If	the	6-month	C-peptide	AUC	mean	was	greater	or	equal	to	
90.3	per	 cent	of	baseline	 (≤0.097	decrease),	 the	 subject	was	 clas-
sified as a responder. In another report by Herold et al4,	 response	
was	defined	as	<40%	decline	of	C-peptide	at	2	years	from	baseline.	
This threshold was selected primarily because all control subjects 
had	≥40%	decline.	Beam	et	al5 recommended using strictly no de-
crease	in	6-month	C-peptide	from	baseline	to	define	responder.	He	
indicated	that	the	bias	(‘the	amount	by	which	a	responder	definition	
will,	on	average,	over-	or	underestimate	the	responder	percentage	in	
a	patient	population’)	is	nearly	zero	compared	with	definitions	that	
include	some	percentage	decline	(eg	7.5%)	as	responders	where	the	
bias was not negligible. The limitations of these efforts appear ad 
hoc,	possibly	data-driven	and	are	applied	to	a	single	study.

This paper proposes the use of an adjusted end-point we refer 
to	as	the	quantitative	response	(QR)	and	a	specific	model	structure	
(additive model with an interaction term) for screening biomarkers to 
determine their predictive or prognostic attribute. The basis of the 
QR	is	an	analysis	of	covariance	(ANCOVA)	model	of	C-peptide	that	
adjusts for baseline C-peptide and age and has been previously de-
scribed.6 The model forecasts the C-peptide level at 12 months but 
does	not	include	any	effect	of	an	active	therapy.	The	QR	is	defined	as	
the observed	12-month	C-peptide	AUC	minus	the	model's	predicted	
C-peptide	AUC	(expected).	This	age-adjusted	value	may	reflect	a	dif-
ferential benefit of treatment although distinguishing disease sever-
ity from a differential treatment effect on a subject-by-subject basis 
is	impossible	by	simply	viewing	the	QR	distribution.	It	requires	that	
a	biomarker	 (eg	expressing	a	mechanistic	 function	of	 the	 therapy)	
be measured and analysed for any association (correlation) with the 
QR	end-point.	The	correlation	needs	to	be	quantified	using	an	ad-
ditive	model	(eg	ANCOVA)	with	QR	as	the	dependent	variable	and	
covariates:	the	biomarker,	treatment	group	(0	=	placebo	and	1	=	ac-
tive therapy group) and the product of these two covariates (inter-
action term) as the third covariate. We demonstrate the advantage 
of	 the	QR	and	 the	method	of	analysis	as	being	general	by	making	
various	 use	 of	 six	 TrialNet	 studies,	 the	method	 is	 not	 data-driven	
(method	was	not	based	any	biomarker	and	QR	is	independent	of	all	
but	 the	 first	 five	 recent-onset	TrialNet	 studies),	 and	 it	 is	based	on	
statistical	method	that	allows	expressing	the	prognostic	and/or	pre-
dictive feature of the biomarker being tested. Our hope is that this 
approach will provide a uniform and general framework for evaluat-
ing biomarkers when the goal is to determine whether the biomarker 
expresses	differential	treatment	benefit	(ie	predictive	biomarker).
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2  | MATERIAL S AND METHODS

2.1 | Subjects

Baseline	and	one-year	follow-up	data	from	five	completed	TrialNet	
studies of recent-onset type 1 diabetes subjects7-11 were used in 
fitting	 an	 analysis	 of	 covariance	 (ANCOVA)	 model.	 The	 model	
cohort	 is	also	used	to	 illustrate	the	utility	of	the	quantitative	re-
sponse measure. The more recently completed antithymocyte 
globulin	 (ATG),	 with	 and	without	 pegylated	 granulocyte	 colony-
stimulating	factor	(GCSF),	trial12 was also included to illustrate the 
generalizability of the proposed statistic on an independent data 
set. Participants completed a written informed consent and/or as-
sent before participation in these studies. The eligibility for these 
studies	was	quite	similar	in	that	all	had	to	meet	the	definition	with	
respect to the diagnosis of type 1 diabetes and enrolment within 
100	days	of	diagnosis	and	a	C-peptide	 level	≥	0.2	pmol/mL.	The	
studies did vary at the younger age range by design with an upper 
limit	of	45	years.

2.2 | Statistical considerations

The primary outcome is the C-peptide levels from the first 2 hours of 
a	mixed-meal	tolerance	test	(MMTT).	The	trapezoidal	rule	is	applied	
to	the	five	timed	measurements	and	then	summed	to	approximate	
the	area	under	the	curve	then	divided	by	the	120-minute	 interval,	
henceforth	C-peptide	AUC	mean.

2.2.1 | Model

In	our	previous	paper	(Bundy	&	Krischer,	2016),	we	fit	the	ANCOVA	
model	to	the	1-year	C-peptide	AUC	mean	from	the	modelled	cohort	
regressing	on	age	at	study	entry,	natural	log-transformed	(after	add-
ing	1)	baseline	C-peptide	AUC	mean	and	each	experimental	 treat-
ment	 assignment.	 Although	 there	 was	 no	 systematic	 process	 in	
considering	other	covariates,	neither	body	mass	index	(transformed	
to z-score) nor the second-degree term for age (which allows a 
parabolic fit to transformed C-peptide value) provided an improved 
model	 fit.	 HbA1c	 was	 statistically	 significant	 but	 because	 of	 col-
linearity with baseline C-peptide the improvement in the model fit 
was negligible (R2	increased	from	.593	to	.599).	The	following	equa-
tion (from the fitted model) gives the predicted transformed 1-year 
C-peptide	AUC	mean	given	the	age	and	baseline	C-peptide	of	any	
subject if administered placebo:

The	Cp	variables	represent	the	pertinent	C-peptide	AUC	means,	
and	Age	is	the	year	of	age	at	study	entry.	ln	is	the	natural	logarithm	
function,	and	E[·]	represents	the	expected	value.	The	square	root	of	
the	residual	mean	squared	error	(RMSE)	is	0.151.

2.2.2 | Quantitative response (QR)

Having	measured	the	1-year	C-peptide	AUC	mean	of	a	subject	(usual	
units: nano-moles per litre; the time units in minutes are cancelled 
out	by	division	by	120	minutes),	we	can	compute	the	transformed	
difference	between	their	observed	C-peptide	sAUC	from	their	ex-
pected	level	(ie	observed	minus	expected).	Hence,	for	an	individual,	
i,	the	QR	is	defined	to	be

(the units: plus-one-natural-log of nano-moles per litre). It may be 
useful	to	consider	QR	as	an	adjusted	normalized	value	of	the	1-year	
C-peptide with the empirical distribution centred at zero in the ab-
sence of any treatment effect.

To	evaluate	the	variation	of	the	QR	as	a	function	of	the	observed	
baseline	C-peptide	(statistically	referred	to	as	heteroscedasticity),	
we	followed	White's	method.13	A	linear	regression	model	was	fit-
ted	to	the	squared	QR	values	regressing	on	baseline	C-peptide	to	
estimate the change in variance by baseline C-peptide. The fit indi-
cated	that	the	median	square	root	of	the	RMSE	was	0.152	(10th	and	
90th	percentiles:	 0.108	 and	0.199).	Although	 the	 variance	of	 the	
QR	varies	with	baseline	C-peptide,	the	QR	is	an	accurate	estimate	
(the	statistical	term	is	unbiased	estimate.	A	non-technical	explana-
tion	is	if	the	QR	could	be	theoretically	measured	multiple	times	on	
the	 same	subject,	 the	average	of	 those	multiple	values	would	be	
ever	nearer	 the	 true	QR	value).	The	variance	of	QR	was	not	cor-
related	with	age.	 (An	analysis	demonstrating	that	 the	QR	 is	 inde-
pendent	of	age	and	baseline	C-peptide	can	be	found	in	Appendix	
S1:	Figures	S1	and	S2).

2.2.3 | Estimating statistical power

Monte Carlo simulation was employed to estimate the statistical 
power when testing for a correlation between a linear predictive 
variable	 (ie	 biomarker)	 and	 QR.	 Each	 simulation	 sampled	 base-
line C-peptide and age pairs from the modelled cohort at random 
with replacement (real data). The sample size for each simulated 
trial	was	set	 to	 typical	 size	TrialNet	phase	 II	 recent-onset	 trial	 (ie	
33	 and	 17	 subjects	 in	 experimental	 and	 placebo	 group,	 respec-
tively,	 having	 the	end-point	of	1-year	C-peptide	AUC	mean).	The	
size	was	based	on	50%	minimal	detectable	difference	(MDD;	alge-
braically: Δ) in the treatment group means at 12 months poststudy 
entry	(0.376	vs.	0.564	nano-moles/L),	85%	statistical	power,	type	
1	 error	 of	 0.05	 (1-tail	 test),	 allocation	 ratio	 of	 2:1	 (experimental:	
placebo)	and	standard	deviation	of	0.158	 (see	Bundy	&	Krischer).	
The predictive biomarker was formulated such that it had a range 
from zero to twice the mean (to preserve symmetry) when follow-
ing a normal distribution. The treatment effect varied linearly with 
the	biomarker,	that	 is,	Δ∙biomarker.	For	generalizability,	two	other	
distributions for the predictive variable were considered: the chi-
square	and	uniform	distributions.	The	mean	treatment	effect	for	all	

(1)E
[

ln (Cp1year+1)
]

=−0.191+0.812 ⋅ ln (Cp0+1)+0.00638 ⋅Age

(2)QRi= ln (Cp1year,i+1)−0.812 ⋅ ln (Cp0,i+1)−0.00638 ⋅Agei+0.191
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three biomarker distributions was set at 1.18Δ. This value repre-
sents midway between the MDD and the largest treatment effect 
seen	in	a	TrialNet	study	of	recent-onset	type	1	diabetes	(the	ATG/
GCSF	study	had	an	effect	of	1.37Δ).12	For	the	normal	and	uniform	
distributions,	 the	 treatment	 effect	 ranged	 from	 0	 to	 2.36Δ. The 
right-skewed	 square	 root	 of	 the	 chi-square	 distribution	 function	
required	extending	the	range	to	4.25	and	also	setting	the	degrees	
of	 freedom	 to	 1.815	 in	 order	 to	 keep	 the	mean	 the	 same	 as	 the	
other	distributions.	For	the	normal	distribution,	the	standard	devia-
tion	was	set	to	1.18/2;	extreme	values	outside	the	range	of	(0,	2.36)	
were	 resampled	 for	both	 the	normal	and	 the	chi-square	distribu-
tions.	To	 reflect	biomarker	measurement	error	 (unexplained	vari-
ation),	an	independent	normally	distributed	random	variables	with	
mean 0 and variances of σ2 and σ2/2 were added to the predicted 
value. The σ2	 is	the	unexplained	variance	of	the	QR	(or	C-peptide	
AUC	mean	after	 adjustment)	which	was	estimated	as	0.151	 from	
the modelled cohort.

The choice of the biomarker measurement error is somewhat 
arbitrary	but	considered	to	be	in	the	same	range	as	QR	measure-
ment error. The primary purpose is to illustrate the loss in power 
for some response definitions. We did not consider a dichotomized 
predictive	 variable	 for	 the	 sake	 of	 simplicity.	 In	 general,	 consid-
erably	 larger	 sample	 size	 is	 required	 to	 have	 nominal	 power	 in	
detecting a dichotomous predictive variable. We set the simula-
tions	 to	 20	 000	 replications,	which	 yields	 a	maximum	95%	 con-
fidence	 interval	 for	 the	 statistical	 power	 of	 ±0.00693	 (binomial	
approximation).

A	 formal	 statistical	 test	 was	 employed	 to	 each	 simulated	 trial	
with	a	threshold	of	significance	set	at	0.05	(one-sided).	The	test	was	
based	on	a	three	covariate	ANCOVA	model	of	QR:	biomarker,	treat-
ment	group	(parametrized:	0	=	placebo	group	and	1	=	experimental	
treatment group) and the product (interaction) term; the coefficient 
of this last term was the basis of the test.

2.2.4 | Percentile-based responder

A	series	of	QR	thresholds	were	used	to	illustrate	a	forced	dichoto-
mized responder definitions to be evaluated in the simulation. The 
goal	was	to	determine	what	QR	threshold	might	be	preferable,	if	one	
required	classifying	subjects	as	responders	and	non-responders	on	
the	basis	of	the	QR.	The	control	group	was	used	to	establish	any	shift	
in	the	QR	distribution	by	calculating	the	mean	and	the	average	dis-
persion for each treatment group (pooled variance). The percentiles 
extracted	from	the	normal	distribution	were	used	as	thresholds	to	
classify responders in the treated group. The logic of this algorithm is 
that	it	corrects	the	thresholds	for	a	trial	where	the	QR	distribution	is	
not centred at zero (this may happen when the eligibility criteria have 
been	altered	or	the	experimental	agent	being	studied	has	altered	the	
subject selection process).

All	 analyses	 were	 conducted	 in	 TIBCO	 Spotfire	 S+™	 8.2	
Workbench.

3  | RESULTS

The expected C-peptide level at 1 year for a subject is calculated by 
substituting	 their	 age	 at	 entry,	 and	 their	 baseline	C-peptide	 value	
in	 Equation	 1.	 Figure	 1	 displays	 the	 observed transformed 1-year 
C-peptide and the corresponding expected C-peptide for all pla-
cebo group subjects from the modelled cohort. The figure provides 
a visual of the observed minus expected distribution via the vertical 
distances	from	the	diagonal	line	to	each	point	(the	QR	is	negative	if	
the	point	is	below	the	diagonal	line).	There	are	60	(50.8%)	positive	
and	58	negative	QRs	indicating	symmetry	around	zero	overall,	and	
the symmetry is reasonably consistent across the range of expected 
baseline	C-peptide	values.	The	variation	of	the	QR	was	greater	for	
greater values of expected	C-peptide.	No	such	correlation	was	pre-
sent	for	age.	A	regression	line	adequately	expresses	the	variation	in	
QR	for	 the	 range	of	baseline	C-peptide.	The	median	variation	was	
0.152,	 and	 the	 10th	 and	 90th	 percentiles	 were	 0.108	 and	 0.199,	
respectively.	Regardless	of	this	change	in	the	QR	variation,	the	QR	
value is accurate (unbiased estimator).

Figure	2	is	a	boxplot	of	the	QRs	for	three	treatment	groups	and	
displays	all	observations.	The	symmetry	of	QRs	around	zero	 is	reaf-
firmed	in	the	placebo	group.	In	contrast,	there	is	a	positive	shift	in	the	
QR	distribution	for	the	experimental	treatment	groups	compared	with	
the	placebo	group	from	these	two	trials	(TrialNet	rituximab	and	aba-
tacept studies).8,10	There	are	34	(68.0%)	and	48	(68.6%)	subjects	with	
QRs	greater	than	zero	in	the	rituximab-	and	abatacept-treated	groups,	
respectively.	The	median	QR	 is	an	estimate	of	 the	 treatment	effect	
albeit on a scale which is not relatable clinically. We suggest that dis-
playing	the	QRs	for	every	subject	by	treatment	group	provides	a	bet-
ter	sense	of	the	treatment	effect	than	simply	the	average,	specifically,	
that there may be a fair number of subjects in the treated group with 
lower	QRs	than	the	control	group	despite	an	overall	positive	result.

The	QR	may	be	used	to	test	a	treatment	effect	using	a	simple	t	
test,	(or	a	non-parametric	test	such	as	the	Wilcoxon	rank-sum	test).	
Table 1 displays a comparison of the recomputed primary hypothesis 
test (any slight difference from published results is due to post-pub-
lication	data	corrections)	and	a	t	test	of	the	QR	value	by	treatment	
group. The table includes the treatment effect coefficient from the 
analysis of covariance model adjusting for age and baseline C-peptide 
and the Wald significance level (the stipulated primary hypothesis 
test	used	in	the	primary	analysis	of	each	study).	For	comparison,	the	
mean	difference	in	the	QR	between	treatment	groups	and	the	sig-
nificance level of the associated t test are provided. The right side of 
the	table	is	the	comparison	of	the	second	experimental	treatment	to	
the	control	group	for	the	three	TrialNet	studies	that	randomized	to	
three treatments. The two analytical approaches for each compar-
ison	agree.	The	TrialNet	ATG/GCSF	study12 is independent of the 
data	used	in	determining	the	QR	coefficients	[Equation	2];	yet,	the	
two	approaches	agree	for	both	experimental	groups.

A	histogram	of	the	QRs	for	each	treatment	group	from	TrialNet	
ATG/GCSF	study	is	in	Figure	3.	Also	displayed	are	the	normal	bell-
shaped	curve	(probability	density)	determined	from	the	average	QR	
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of	each	group	and	an	overall	variation	of	QR	(pooled	variance).	It	is	
visually	apparent	that	there	is	an	increase	in	the	QRs	in	the	ATG-only	
group compared with the placebo group and the treatment effect 
appears to be a positive shift for the entire group rather than for just 
certain	levels	of	QR’s.

We propose an analytical method to screen biomarkers to assess 
their	prognostic	or	predictive	attribute.	Fit	a	statistical	model	of	QR	
(dependent variable) with three covariates (independent variables): 
the	biomarker	to	be	evaluated,	the	treatment	group	category	(both	
treatment	groups:	0	=	placebo	and	1	=	treatment)	and	an	interaction	
term of the biomarker and treatment covariates. The fitted coeffi-
cients and their significance levels will delineate the biomarker as 
prognostic,	 predictive,	 both	 or	 neither.	 Figure	 4	 provides	 scatter-
plots	of	QR	and	 three	hypothetical	biomarkers	 representing	 three	
possible	relationships	with	treatment	and	the	end-point	QR.	These	

hypothetical	biomarkers	represent	prognostic,	predictive	and	both	
in	panels	A,	B	and	C,	respectively.	All	three	figures	reflect	an	active	
experimental	therapy.	In	addition,	panels	A	and	B	display	a	positive	
association	between	the	biomarker	and	QR.	Panel	C	displays	a	neg-
ative association between the biomarker and treatment effect but a 
positive	association	between	the	biomarker	and	QR	for	the	placebo	
group only. Other relationships are possible.

We evaluated the chance of detecting (statistical power) a 
predictive biomarker using the model structure described above 
and a formal statistical test associated with the interaction term. 
The simulation studies set the treatment effect to be proportional 
to the value of the biomarker (linear effect). Measurement errors 
were	included	for	both	the	QR	(via	C-peptide	AUC	mean)	and	the	
biomarker to reflect the reality of measuring constituents from 
subject	samples.	Although	we	do	not	suggest	strict	adherence	to	

F I G U R E  1   Observed 1-year C-peptide 
by	expected	model-based	C-peptide	
for subjects in the placebo groups. The 
vertical distance from the point to the 
diagonal line is the observed 1-year 
C-peptide minus the model-based 
expected	1-year	C-peptide,	that	is,	the	
quantitative	response	(QR)

F I G U R E  2  Box	plot	of	quantitative	
response of three treatment groups: 
Placebo	[from	the	combined	studies],	
rituximab8 and abatacept.10 The horizontal 
sides	of	the	box	mark	the	25th	and	75th	
percentiles,	the	horizontal	line	within	the	
box	marks	the	median,	and	the	whiskers	
mark	the	5th	and	95th	percentiles.	The	
horizontal variation of the points is for 
visual clarity and has no meaning
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0.05	significance	level	when	evaluating	biomarkers	(lack	of	statis-
tical power is often an issue when testing interaction terms) for 
their	 predictive	 attribute,	we	did	 so	 for	 the	 simulations.	 Table	2	
presents the chance of detecting (statistical power) a predictive 
biomarker	for	two	possible	biomarker	measurements	errors,	sev-
eral	QR-based	responder	definitions	and	QR	as	a	continuous	vari-
able.	 The	 QR-based	 responder	 definitions	 were	 determined	 by	
the thresholds from the percentiles of the normal distribution (in 
5%	increments)	where	the	mean	was	set	to	the	QR	control	group	
mean and the variation (variance) was the combined variation from 
both treatment groups (pooled variance).

The	 continuous	QR	 produced	 the	 highest	 chance	 of	 detecting	
a predictive biomarker (statistical power) regardless of the varia-
tion in measuring the biomarker (measurement error). This was true 
with other levels of variation and when the biomarker distribution 

was	not	bell-shaped	(see	Appendix	S1:	Table	S1).	The	chance	of	de-
tecting a predictive biomarker (statistical power) when dichotomiz-
ing	 the	QR	 for	 the	 various	 percentile-based	 responder	 definitions	
varied	considerably.	From	Table	2,	the	highest	chance	of	detecting	
a	 predictive	 biomarker	 occurs	 at	 the	 70th	 percentile	 definition	 of	
responder regardless of the precision of measuring the biomarker 
(measurement	error).	It	also	remains	the	maximum	chance	of	detect-
ing (greatest statistical power) when the biomarker distribution is 
other	than	bell-shaped	(see	Appendix	S1:	Table	S1).	Nonetheless,	the	
continuous	QR	provides	the	maximum	chance	of	detecting	a	predic-
tive	biomarker	over	any	of	these	responder	definitions.	When	relax-
ing	the	level	of	significance	from	0.05	to	0.10	(offered	as	a	solution	
when	testing	 interactions	and	statistical	power	 is	 low),	 the	chance	
of detecting a predictive biomarker when analysed as a continuous 
variable	comes	close	to	conventional	levels	(0.720	and	0.746	when	

TA B L E  1  Treatment	effect	estimates	and	significance	levels	for	six	TrialNet	studies	by	the	original	primary	hypothesis	test	(Wald	test	for	
treatment	from	the	ANCOVA	model)	and	two-sample	t	test	of	quantitative	response	(QR)

Triala 

Experimental Group vs. Placebo Second Experimental Group vs. Placebo

ANCOVA Model
Quantitative Response 
t test ANCOVA Model

Quantitative Response 
t test

Treatment 
Effect P-value

Treatment 
Effect P-value

Treatment 
Effect P-value

Treatment 
Effect

P-
value

DZB	&	MMF7 0.0244 .24 0.00765 .43 0.0123 .37 0.0266 .22

Rituximab8 0.0637 .03 0.0668 .03 – – – –

GAD	+	Alum9 −0.0206 .74 −0.00556 .57 −0.00121 .52 −0.0151 .69

Abatacept10 0.0803 .006 0.0794 .009 – – – –

Canakinumab11 −0.0068 .57 0.0042 .46 – – – –

ATG	+	GCSF	12 0.157 <.001 0.159 <.001 0.0829 .03 0.0832 .03

aDZB	&	MMF:	mycophenolate	mofetil	(MMF)	with	or	without	daclizumab	(DZB),7	rituximab,8	GAD	+	Alum:	recombinant	human	glutamic	acid	
decarboxylase	(GAD)	formulated	in	aluminium	hydroxide	(GAD-Alum),9	abatacept,10 canakinumab11	and	antithymocyte	globulin	(ATG)	and	pegylated	
granulocyte	colony-stimulating	factor	(GCSF).12 

F I G U R E  3  Quantitative	response	
histogram	by	treatment	group	of	TrialNet	
ATG/GCSF	study:	panel	A	is	the	placebo	
group,	panel	B	is	the	ATG	and	GCSF	
group,	and	panel	C	is	the	ATG-only	group.	
Superimposed on each histogram is the 
normal density function where the mean 
was	set	to	the	mean	of	the	quantitative	
response of the group and the standard 
deviation was set to the pooled (over 
the 3 groups) standard deviation of the 
quantitative	response.	Panel	D	displays	
just the three treatment group normal 
density functions using the same line 
type	as	in	panels	A-C,	respectively,	
solid	=	placebo,	short	dash	=	ATG	only	and	
long	dash	=	ATG	and	GCSF
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the measurement error of the biomarker is σ and σ/2,	respectively.	
See	Appendix	S1:	Table	S2).

4  | DISCUSSION

We	have	 shown	 that	 the	 analysis	 of	 covariance	 (ANCOVA)	model	
of	 1-year	 log-transformed,	 age-adjusted,	 C-peptide	 is	 consistently	
good	predictor	across	several	TrialNet	studies.	We	defined	the	quan-
titative	 response	 (QR)	as	 the	observed 1-year C-peptide minus the 
model-based expected	C-peptide	level.	We	confirmed	the	excellent	

behaviour	of	QR	using	a	few	of	the	studies	used	in	fitting	the	model	
as well as a trial that was independent of the modelling.12 Defined 
in	this	way,	a	positive	shift	in	the	QR	distribution	provides	the	mag-
nitude	 of	 the	 treatment	 effect	 on	 C-peptide	 for	 an	 ‘active’	 treat-
ment,	while	the	QR	mean	is	around	zero	for	the	placebo	group	(or	
an	inactive	treatment).	The	QR	is	calculated	at	the	subject	level	and	
so provides a visually informative way of viewing all subjects in the 
study	and	the	treatment	effect.	In	addition,	the	QR	allows	for	a	sim-
ple analytical test of treatment effect consistent with the standard 
ANCOVA	model	test.

Without	any	a	priori	biological	basis,	 there	 is	 little	 justification	
for choosing any particular threshold to partition the treated group 
into distinct categories of responder and non-responder. This is 
particularly true if the interpretation is to identify subjects that had 
treatment benefit from those that did not (or benefited minimally). 
We	offer	several	arguments	to	support	this	contention.	One,	some	
of	the	individuals	classified	as	‘responders’	may	have	attained	their	
QR	value	 (or	 less	C-peptide	decline)	because	 they	have	 inherently	
less severe disease (without considering the benefit they received 
from	treatment).	Two,	when	setting	the	threshold	at	a	very	stringent	
level	(eg	no	C-peptide	decline),	those	classified	as	‘responders’	have	
a	higher	 likelihood	of	having	exaggerated	 levels	of	C-peptide.	This	
is a proven statistical phenomenon referred to as regression to the 
mean.	Three,	it	is	possible	that	subjects	that	were	destined	to	have	
low	C-peptide	 levels	 if	 not	 treated,	had	 substantial	benefit	due	 to	
treatment but still not greater than the selected threshold used to 
define	 responder.	 Thus,	 the	 degree	 of	misclassification	 due	 to	 di-
chotomizing may be substantial and misclassification may go either 
way.	Our	simulation	studies	clearly	indicate	that	using	the	QR	in	its	
continuous form will increase the chance of discovering a biomarker 
correlated	with	treatment	effect,	that	is,	a	predictive	biomarker.

Nonetheless,	if	a	compelling	reason	remains	to	group	subjects	
as	responders	and	non-responders,	then	using	the	placebo	group's	
70th	 or	 65th	 percentile	 of	 the	QR	distribution	 as	 a	 threshold	 to	
partition	 the	experimental	 treatment	 group	 into	 responder	 cate-
gories provides the smallest reduction in the chance of detecting 

F I G U R E  4   Scatterplots of the 
relationship of three types of hypothetical 
biomarkers with treatment group and 
QR.	Panel	A:	prognostic	biomarker,	Panel	
B:	predictive	biomarker,	Panel	C:	both	
prognostic and predictive biomarker. 
Other relationship other than these 
three	may	exist.	The	variation	around	the	
regression line (not shown) has been set 
low for visual clarity

TA B L E  2   Statistical power (via simulation) to detect a predictive 
biomarker	by	several	responder	definitions	(and	QR)	and	two	
measurement errors of the biomarker. The treatment effect 
is proportional to the biomarker (minimum of no effect and a 
maximum	of	2.36Δ)

Responder definition

Measurement errorb 

σ σ/2

≥55th	Percentile 0.309 0.324

≥60th	Percentile 0.335 0.351

≥65th	Percentile 0.35 0.368

≥70th	Percentile 0.352 0.374

≥75th	Percentile 0.338 0.36

≥80th	Percentile 0.295 0.31

≥85th	Percentile 0.225 0.24

≥90th	Percentile 0.131 0.141

≥95th	Percentile 0.0486 0.048

None	(Continuous) 0.587 0.616

aThe normal distributed biomarker was restricted such that 
0	≤	biomarker (b)	≤2.36	(symmetry	retained)	and	the	treatment	effect	
was	expressed	as	b∙Δ where Δ	=	0.182.	
bThe standard deviation of the measurement errors of the biomarker is 
expressed	as	fractions	of	σ,	the	unexplained	standard	deviation	of	QR,	
0.151.	
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a predictive biomarker. We suggest using the placebo or control 
group	 to	define	 the	 threshold	and	did	 so	 in	our	 simulations.	Not	
presented	were	other	ways	of	determining	a	QR	threshold	to	de-
fine	response.	The	power	was	slightly	less	(2	to	3%)	than	the	val-
ues displayed in Table 2 when using the empirical percentiles of 
QR	from	the	placebo	group.	Alternatively,	using	a	fixed	percentile	
threshold taken from the normal distribution with mean of zero 
and	 standard	 deviation	 of	 0.151	 (determined	 from	 the	modelled	
cohort) provided a slightly higher statistical power than in Table 2 
but	 only	 by	 less	 than	 1%.	However,	 this	 fixed	 threshold	 ignores	
the	QR	distribution	from	the	placebo	group	of	the	trial	analysed.	
Determining	thresholds	using	the	QR	distribution	from	the	 inter-
nal control group adjusts for any possible shift that may occur in 
a future trial.

It is imperative that investigators involved in the analysis of bio-
markers	 in	the	context	of	a	clinical	 trial	understand	the	difference	
between a prognostic and a predictive biomarker. It is essential that 
any	 biomarker	 that	 is	 correlated	with	QR	 in	 the	 treated	 group	 be	
evaluated	in	the	placebo	group.	We	suggest	to	model	the	QR	with	
two	covariates,	treatment	group	and	the	biomarker	to	be	evaluated,	
as	well	as	an	interaction	term;	this	allows	a	way	to	quantify	the	pre-
dictive from the prognostic effect of the biomarker. The interpre-
tation	 of	 the	 biomarker's	 utility	will	 be	 dramatically	 different.	 If	 a	
biomarker	is	prognostic,	it	will	be	advisable	to	measure	this	marker	
in	subsequent	trials	in	order	to	adjust	for	it	in	the	analysis.	If	the	bio-
marker	is	predictive,	it	will	likely	have	value	for	targeting	subjects	for	
further	study,	particularly	 in	primary	prevention	trials	of	the	agent	
associated with the biomarker.

Our analytical approach provides less statistical power (see 
Table 2) than approaches that ignore the distinction between 
predictive and prognostic biomarkers. Testing for an interaction 
effect term in any model is always subject to less power than 
the	main	 effect	 terms.	 Testing	 at	 a	 relaxed	 level	 of	 significance	
(α	 =	 0.10)	 increases	 the	 statistical	 power	 to	 an	 acceptable	 level.	
While	rectifying	the	low	power,	such	an	adjustment	increases	the	
chance	 of	 a	 false-positive	 result.	 In	 addition,	 these	 studies	 usu-
ally evaluate multiple biomarkers (multiple testing problem) that 
further contributes to the risk of one or more false positives. In 
dealing	with	both	circumstances,	a	reasonable	strategy	would	be	
not to adjust for multiple tests but rather consider the detection 
of any predictive biomarker as hypothesis generating and pursue 
confirmation	in	an	independent	setting.	One	weakness	of	the	QR	
is	 that	 there	 remains	a	 fair	 amount	of	unexplained	variance.	We	
have suggested that using our method may identify a biomarker as 
predictive.	Alternatively,	our	approach	could	identify	a	biomarker	
as	prognostic	and	therefore	lead	to	a	revised	QR	equation	which	
would	have	reduced	unexplained	variance,	that	is,	 improved	pre-
diction	 at	 the	 subject	 level.	 The	QR	units	 are	 not	meaningful	 to	
investigators	 except	 that	 a	 positive	 value	 represents	 a	 subject	
that	 had	 higher	 1-year	 c-peptide	 level	 than	 what	 was	 expected	
from	their	age	and	baseline	c-peptide,	and	conversely,	a	negative	
QR	means	 lower	1-year	c-peptide	than	expected.	One	caution	 is	
in	order,	 if	an	agent	provides	differential	effect	across	age,	 then	

using	the	QR	method	may	not	be	prudent	at	least	until	one	quan-
tifies	 its	 predictive	 effect.	 For	 this	 reason,	we	 suggest	 checking	
age as a predictive variable using the observed change in c-pep-
tide	and	then	proceed	using	age-adjusted	QR	method	if	there	is	no	
convincing evidence of such an effect.

Future	 plans	 are	 to	 apply	 the	QR	method	 to	 empirical	 data	 in	
which biomarkers have been measured from the samples in both 
treated	 and	 controls.	 Furthermore,	 to	 address	 the	 timing	of	when	
the	biomarker	was	measured	(baseline	and	after/during	treatment),	
this timing not only changes the interpretation of the results but also 
changes the analytical methods employed.
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