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Abstract: Members of the order Mucorales may cause severe invasive fungal infections (mucormy-
cosis) in immune-compromised and otherwise ill patients. Diagnosis of Mucorales infections and
discrimination from other filamentous fungi are crucial for correct management. Here, we present an
overview of current state-of-the-art mucormycosis diagnoses, with a focus on recent developments in
the molecular field. Classical diagnostic methods comprise histology/microscopy as well as culture
and are still the gold standard. Newer molecular methods are evolving quickly and display great
potential in early diagnosis, although standardization is still missing. Among them, quantitative
PCR assays with or without melt curve analysis are most widely used to detect fungal DNA in
clinical samples. Depending on the respective assay, sequencing of the resulting PCR product can be
necessary for genus or even species identification. Further, DNA-based methods include microarrays
and PCR-ESI-MS. However, general laboratory standards are still in development, meaning that
molecular methods are currently limited to add-on analytics to culture and microscopy.

Keywords: Mucorales; diagnosis; DNA; PCR; specificity; sensitivity; clinical evaluation; standardiza-
tion; culture; microscopy

1. Introduction

Diagnosing invasive mucormycosis is challenging as clinical symptoms and imaging
are non-specific, blood cultures are commonly negative and specific biomarkers are not
available [1]. Conventional methods such as microscopy and culture remain the gold
standard but may lack sensitivity, in addition, cultures may take a long time to yield a
positive result [2]. In this context, the development of alternative culture-independent
methods, which are based on the detection of genetic material, has been pursued by many
researchers in the last decades. This review aims to give a comprehensive overview of
current investigational and commercial molecular assays and to discuss the potential,
limitations, and perspectives in this rapidly evolving field.

2. Histological and Microscopic Diagnosis

Microscopy of primarily sterile body specimens is an important tool in the diagnosis
of invasive fungal infections, as positivity provides proof of an infection. Bronchoalveolar-
lavage fluids and sinus tissue must be handled as sterile specimens [3]. Microscopy
supports a wide and easy application as well as a rapid processing time. Sensitivity
depends on the source and quality of specimens obtained; Mucorales hyphae are vulnerable
and therefore may be hurt when preparing the sample (grind), which in turn may result in
decreased fungal growth.

Direct examination applying optical brighteners (Blankophor, Calcofluor White) sup-
ports a quick and presumptive diagnosis of mucormycosis [4]. Mucorales hyphae are
variable in broadness (6 to 25 µm), non- or sparsely-septated, have irregular branching
(ribbon-like), and angles variable up to 90◦ (wide-angle bifurcations) (Figure 1) [2,4]. In
addition, standards of care are Gomori’s methenamine silver or periodic acid–Schiff stain.
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Tissue histopathology displays a neutrophilic or granulomatous inflammation, the latter
characteristic is absent in immunosuppressed patients [4]. Invasive mucormycosis include
prominent infarcts and angioinvasion; neutropenic patients present substantial angioin-
vasion in contrast to non-neutropenic patients [4]. In most cases, microscopy prohibits
conclusive differentiation of Mucorales from Aspergillus and other filamentous fungi [5];
special occasions (clear fungal morphology) may provide initial information on the fungal
class. The determination between septate (e.g., Aspergillus) and non-septate hyphae (e.g.,
Mucorales) is of clinical significance, as this strongly affects antifungal treatment [4].
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Figure 1. Broad, ribbon-like, non-septate hyphae of Mucor sp. with wide-angle branching, stained
with fluorescent brightener (Calcofluor White × 400).

3. Microbiological Diagnosis

Culture is the gold standard for fungal specification and, in addition, enables antifun-
gal susceptibility testing [1]. Mucorales are fast-growing (3–5 days) on standard fungal
culture media (e.g., Sabouraud agar and potato dextrose agar) incubated at 25 ◦C to 30 ◦C.
It is important to note that, even in positive microscopy, only 50% of cases are culture
positive [2]. Based on the lack of clinical breakpoints, the implementation of antifungal
susceptibility testing in the management of mucormycosis is not supported [4].

The identification of culture isolates by matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF) is a quick and reliable method for bacterial
and yeast infections. In contrast, the handling of filamentous fungi is more complicated,
as multiple pre-analytic steps are needed and the age of the culture influences the re-
sulting spectra [6]. Nevertheless, methods for MALDI-TOF identification of Mucorales
isolates were evaluated successfully by several authors [6–9]. Schwarz et al. (2019) studied
38 Mucorales isolates, covering 12 different species, which previously were identified
by molecular-based methods [6]. A database containing 10 main spectra profiles was
created and resulted in good interspecies discrimination; database accuracy resulted in a
log-score > 2. If enough reference isolates for each species are included, identification at
the species level seems possible. Shao et al. (2018) suggest improving the existing Brucker
library, due to the lack of some fungal species [7]. Zvezdanova et al. (2019) adopted
the method for filamentous fungi by applying a mechanical lysis followed by a protein
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extraction step [9]. The implementation of an in-house library enabled accurate species
(91.3%) and genus (8.7%) identification.

4. DNA-Based Diagnosis

The molecular detection of Mucorales is currently restricted to the detection of DNA,
as ß-D-glucan and galactomannan assays do not detect this fungal group [10]. Initially,
the detection of Mucorales DNA from clinical specimens was mainly developed for tissue
samples as an add-on to histopathological and microbiological diagnosis [11,12]. Later,
assays for blood and even urine were developed [13,14]. Compared to invasive aspergillo-
sis, the load of circulating Mucorales DNA in serum was found to be very high, probably
due to the angioinvasive nature of Mucorales infections [13,15]. Therefore, blood samples
are suitable for suspicion-independent screenings of high-risk patients and therapeutic
monitoring [13].

4.1. DNA Extractability and Biological Specifics of Mucorales

The sensitivity of DNA-based diagnostic methods is strongly influenced by the amount
and extractability of fungal DNA in a clinical sample, which in turn depends on the sample
type. In comparison with fresh tissue, DNA extractability from formalin-fixed paraffin-
embedded tissue (FF-PET) is reduced due to the adverse effect of formalin on DNA [16].
The partial fragmentation of DNA by formalin reduces the sensitivity of the detection via
PCR [4]. This can be counteracted using very short PCR amplicons [16]. Concerning the
DNA extraction method, Muñoz-Cadavid et al. (2010) tested five different commercially
available extraction kits and found differences in the proportion of FF-PET samples, from
which DNA could be extracted and subsequently amplified in a pan-fungal PCR. [17].
Further, Scharf et al. (2020) observed that for Aspergillus, bead beating could significantly
increase the amount of DNA extracted from serum and respiratory samples [18]. However,
an inter-laboratory study displayed no significant effect of the method of extraction of
Mucorales DNA from the serum on the diagnostic sensitivity [19].

Further, the characteristics and physiological status of the causative pathogen are
highly relevant to the amount of DNA. As mentioned above, Mucorales hyphae are not
or scarcely septated, multinucleic, and fragile compared with Aspergillus hyphae. For As-
pergillus oryzae, it could be demonstrated that the number of nuclei depends on the nutrition
and proliferation status of the hyphae section, and this is regulated by macroautophagy of
whole nuclei as a nutrient recycling process [20,21]. Therefore, the vitality of the fungus
may have an impact on the sensitivity of the diagnostic methods [22]. Further, the copy
number of the target gene, mostly ribosomal DNA, is relevant for the detectability of an
organism. Maicas et al. (2000) and Millon et al. (2016) estimated that the genomes of Mucor
miehei and Lichtheimia corymbifera contain 100 and 25−41 copies of the ribosomal DNA unit,
respectively [13,23], which is in the normal range for filamentous fungi [24,25].

4.2. PCR-Based Methods

Most DNA-based detection methods (except for fluorescence in-situ hybridization)
apply the amplification of the target genomic information via PCR, leading to high analytic
sensitivities. This high sensitivity, however, also leads to an increased risk of contamination
with ubiquitous environmental fungi [26]. Target DNA can be detected during (quantitative
real-time PCR) or after PCR (gel electrophoresis, microarray, and electrospray-ionization
mass spectrometry (ESI-MS) sequencing) (Figure 2). The use of probes or high-resolution
melt (HRM) analysis in qPCR, as well as the use of microarrays or ESI-MS, increases the
specificity of the assays and reduces the false positivity rate [27]. In terms of feasibility,
the need for special technical equipment and, therefore, the costs for implementation, are
lower in PCR or qPCR methods compared with microarrays and ESI-MS, sequencing is not
necessary or can be easily outsourced.
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PCR/ESI-MS involves a PCR with multiple pairs of broad-range primers coupled with
electro-spray ionization mass spectrometry [28]. ESI-MS yields a molecular fingerprint,
which can be used to identify organisms by comparison with a reference database [28].
Massire et al. (2013) evaluated a PCR/ESI-MS assay for clinical isolates and found good
results for Aspergillus and Candida, and moderate data for Mucorales (Table 1) [28]. Mi-
croarrays for fungal pathogens including Mucorales were developed by Spiess et al. (2007)
and Hsiao et al. (2005) for 14 (including 2 Mucorales) and 64 (including 4 Mucorales)
fungal taxa, respectively (Table 1) [29,30]. The assay of Spiess et al. (2007) was also eval-
uated for clinical specimens and yielded a sensitivity of 64% and a specificity of 80% for
non-Aspergillus invasive fungal infections [31].

In general, PCR assays can be classified based on the specificity of their applied primers
and probes (Table 1). In general, there are species/genus-specific, order (Mucorales)-
specific, and pan-fungal PCR assays. Although identification of the causative Mucorales at
the genus or species level has little implication for the choice of antifungal treatment, it is
crucial for epidemiology [4]. Therefore, the “One World One Guideline” initiative of the
European Confederation of Medical Mycology recommends the molecular identification of
clinical Mucorales isolates [4].
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Table 1. Selection of molecular diagnostic assays for Mucorales. C, Cunninghamella; L, Lichtheimia; M, Mucor; Rp, Rhizopus; Rm, Rhizomucor; S, Syncephalastrum; Fl, fragment length; np, not
published; (q)PCR, (quantitative) polymerase chain reaction; RFLP, restriction fragment length polymorphism; HRM, high resolution melt curve; ESI-MS, electrospray-ionization mass
spectrometry; f, forward primer; r, reverse primer; p, probe; rRNA, ribosomal RNA; CotH, spore coat protein; rnl, large ribosomal RNA; ITS, internal transcribed spacers.

Type Method Target Gene Primer Specificity Identification Level Primer/Probe Fl (bp)

(q
)P

C
R

+
se

qu
en

ci
ng

semi-nested PCR + sequencing
(Bialek 2005) [11] 18S rRNA Mucorales species, Rm. only genus

f1−ATTACCATGAGCAAATCAGA,
r1−TCCGTCAATTCCTTTAAGTTTC,

f2 = f1,
r2–CAATCCAAGAATTTCACCTCTAG

175–177

Probe-based qPCR
+sequencing of 18S amplicon

(Springer 2016a) [27]

18S rRNA

Mucorales genus

f−TTA CCRTGAGCAAATCAGARTG,
r–AA TCYAAGAATTTCACCTCTAGCG,
p–TYRR(G)G(G)B(A)T(T)T(G)T(A)TTT *1

175

28S rRNA
f−TTTGGGAATGCAGCCT,

r−TCARAGTTCTTTTCAWCTTTCCCT,
p–CGARARACCGATAGCRAACAAGTACCGT

107

PC
R

+
R

FL
P semi-nested PCR + RFLP

(Zaman 2017) [32] 18S rRNA Mucorales species, genus See Bialek 2005 *2 175–177

multiplex PCR + RFLP
(Machouart 2006) [33] 18S rRNA Rp sp., Rm sp., M. sp., and L.

corymbifera species, genus

f−TGATCTACGTGACAAATTCT +
f−TGATCTACGCGAGCGAACAA +
f−TGATCTACGTGACATATTCT +
f−TGATCTACACGGCATCAAAT,

r–AGTAGTTTGTCTTCGGKCAA *3

approx. 830

PC
R

+
ge

l
el

ec
tr

op
ho

re
si

s

PCR + electrophoresis
(Baldin 2018) [14] CotH Mucorales Mucorales np np

qP
C

R
+

H
R

M

nested-qPCR + HRM
(Hrncirova 2010) [34] 18S rRNA Mucorales species, genus See Bialek 2005 175–177

qPCR + HRM
(Caramalho 2019) [35] mitochondrial rnl Mucorales genus/species f−GGTGTAGAATACAAGGGAGTCGA,

r−GGAGAAATCCGCCCCAGATAA 124

FRET-qPCR + HRM
(Hata 2008) [36] cytochrome b Mucorales genus

f−TAGGAATTACAGCAAAT,
r−CCAATGCAAACTCC,

anchor-ACAATTTTCTTATTCTTCTTAGTATTAG,
Donor–TTTATTCTTATTC

167
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Table 1. Cont.

Type Method Target Gene Primer Specificity Identification Level Primer/Probe Fl (bp)

qP
C

R

Probe-based qPCR
(EPA) [37] n. g.

L. genus
f−CACCGCCCGTCGCTAC,

r−GCAAAGCGTTCCGAAGGACA,
p−ATGGCACGAGCAAGCATTAGGGACG

118

Rm. genus
f−CACCGCCCGTCGCTAC,

r−GTAGTTTGCCATAGTTCGGCTA,
p–TGGCTATAGTGAGCATATGGGAGGCT

105

M. and Rp. 2 genera
f-CACCGCCCGTCGCTAC,

r−CCTAGTTTGCCATAGTTCTCA *4 GCAG,
p–CCGATTGAATGGTTATAGTGAGCATATGGGATC

105

Probe-based qPCR
(Bellanger 2018) [38] 18S rRNA C. genus

f–TGTGGCTATGCAGCTGGTCA,
r−ACACATTCAGGCACGAAGGC,

p–TCGGTCGGCGTGGTTCTCTGCCCA
162

MucorGenius®-qPCR
(PathoNostics) 28S (according to [39]) Mucorales order according to [39], similar to Springer 2016a np

M
ul

ti
pl

ex
qP

C
R

2 × Multiplex qPCR
(Salehi 2016) [40]

ITS 2

Quadriplex assay: Rp.
microsporus, Rp. oryzae, M.,

and C. bertholletiae
genus/species

f−TGAATCATCRARTCTTTGAACGCA,
r−ATATGCTTAAGTTCAGCGGGT,

species-specific probes (see Salehi 2016)
approx. 300

Triplex assay: L., S., and Rm. genus/species
f−GAATCATCGARTTCTYGAACGCA,

r−ATATGCTTAAGTTCAGCGGGT,
species-specific probes (see Salehi 2016)

approx. 350

Multiplex probe-based qPCR
(Bernal-Martinez 2013) [41]

ITS 1 Rp. oryzae species
f−TCTGGGGTAAGTGATTGC,
r–GCGAGAACCAAGAGATCC,

p–CGCGATAACCAGGAGTGGCATCGATCAAATCGCG
192

ITS 1 Rp. microsporus species
F–CTTCTCAGTATTGTTTGC,

r−ATGGTATATGGTAAAGGG,
p-CGCGATCCTCTGGCGATGAAGGTCGTATCGCG

187

ITS 2 M. genus
f−GTCTTTGAACGCAACTTG,
r−CCTGATTTCAGATCAAAT,

p–CGCGATTTCCAATGAGCACGCCTGTTATCGCG
263

PC
R

+
m

ic
ro

ar
ra

y Multiplex PCR + microarray
(Spiess 2007) [29] ITS 1

M. racemosus, Rp.
microsporus, Rp. oryzae (and
12 other non-Mucorales fungi)

species 9 different f primer + 3 different r primer *5 (see Spiess 2007) np

PCR + microarray
(Hsiao 2005) [30] ITS 1/5.8S rRNA/ITS 2

L. corymbifera, C. spp., Rp.
oryzae, Rm. pusillus (and 60
other non-Mucorales fungi)

species f–TCCGTAGGTGAACCTGCGG,
r–TCCTCCGCTTATTGATATG*6 640

PC
R

+
ES

I-
M

S

PCR + ESI-MS
(Massire 2013) [28]

28S rRNA, 18S rRNA,
mitochondrial 18S rRNA and

cytB, tub, hpr
Fungi genus/species 16 primer pairs, detection range from broad-range fungal to order

level specificity 72–154

*1 parentheses indicate nucleotide with locked nucleic acid modification, primers modified from Bialek et al., (2005) [11]. *2 restriction enzymes: BsrD I, Afl II, Eco 0109I, and Hae II. *3 mixture of specific forward
primers and a degenerated reverse primer; restriction enzymes: PpuMI, XhoII, BmgBI, AseI, CspCI, AflII, XmnI, and AclI. *4 the A at this position was replaced by a T in Millon et al., (2016) and Legrand et al.,
(2016) [13,42]. *5 r primers were Cy3 modified; array was extended by Boch et al., (2015) [31]. *6 r primer was digoxigenin modified.
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4.3. Genus- to Species-Specific PCR Assays

Species/genus-specific PCR assays combine the detection and identification of the
infectious fungus in one step. However, these assays are limited to the detection of
taxa within their panel and therefore multiple parallel PCR assays are necessary to cover
the range of possible invasive fungi. The application of multiplex qPCRs increases the
feasibility in this context. Bernal-Martínez et al., (2013) presented a triplex qPCR assay
for the detection of Rhizopus orzyae, Rhizopus microsporus, and Mucor sp. (Table 1) [41].
Salehi et al., (2016) developed two multiplex assays, which cover seven common Mucorales
species in total [40]. Further, the United States Environmental Protection Agency (US
EPA) has published a panel of 36 primer sets for Mold Specific Quantitative PCR to assess
home mold burden [37]. This panel includes three primer sets for the genera Lichtheimia,
Rhizomucor, and Mucor/Rhizopus, which were evaluated for diagnostic application multiple
times (Table 2). The EPA assay can be expanded with a primer set for Cunninghamella spp.,
designed by Bellanger et al., (2018) [38].

4.4. Mucorales-Specific PCR Assays

In contrast, the use of Mucorales-specific primers gives a broader detection range
but increases the need for additional analysis to identify the infectious agent. These
post-PCR analyses can include sequencing of the amplicons, restriction-fragment-length
polymorphism, microarray, and the analysis of HRM in qPCR applications (Figure 2).
In this context, the most applied and modified PCR assay is from Bialek et al., (2005)
(Tables 1 and 2) [11]. In their original publication, they presented a semi-nested PCR
targeting the 18S rRNA gene, which could be combined with sequencing of the amplicons
to reach an identification at the genus level [11]. This assay was later used for subsequent
restriction fragment length polymorphism analysis [31] and adapted for qPCR application
by Springer et al., (2016) [27,34]. Further, the only commercially available kit for PCR-based
Mucorales detection, MucorGenius®from PathoNostics, is assumed to have its roots in this
assay [39]. Both qPCR assays, from Springer et al. and PathoNostics, were evaluated for
clinical samples as listed in Table 2.

4.5. Pan-Fungal PCR Assays

Finally, Mucorales infections can also be detected using pan-fungal primers and identi-
fied by subsequent sequencing. Pan-fungal PCR assays have the advantage, that they detect
any (at least in theory) fungal DNA, even from uncultured, rare, or unknown pathogenic
fungi. Therefore, they can be applied if there is no clear suspicion of the pathogen involved.
However, this non-specificity in detection also prevents direct identification of the fungus.
Pan-fungal PCR assays are generally combined with Sanger sequencing of amplicons,
which requires single-species PCR products and prolongs the time until diagnosis. To
address this problem, Valero et al., (2016) developed a pan-fungal qPCR combining in the
same PCR reaction: (i) a DNA-binding fluorescent dye for the detection of fungi in general,
(ii) a multiplex application of group-specific fluorescent labelled-probes, and (iii) melt curve
analysis [43]. This approach allowed group or species identification without sequencing in
78% or 44% of the PCR-positive samples, respectively, leading to faster diagnosis [43].

Pan-fungal PCR assays were tested in multiple studies, displaying a large range of
sensitivities depending on the sample material and the primers used. As these studies were
too diverse to be summarized in Table 2, they will be described in more detail here. Gade
et al., (2017) compared three different PCR assays targeting the ITS, D1/D2, and extended
28S region and found that fungal DNA could be amplified in 58%, 34%, and 100% of FF-PET
samples from patients with invasive fungal infections (including 29% mucormycosis cases),
respectively [44]. Wagner et al., (2018) found that qPCR + sequencing of the 18S rRNA
gene demonstrated higher sensitivity (98%) than PCR + sequencing of the ITS region (87%)
in 233 clinical samples [45]. Zeller et al., (2017) adapted primers from White et al., (1990)
and Khot et al., (2009) for qPCR and reached a sensitivity of 90% for 98 patients with
invasive fungal infections (including 6% mucormycosis cases) [46–48]. When comparing
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specific PCRs for Mucorales and Aspergillus, respectively, with two broad-range PCRs,
Springer et al., (2019) found higher sensitivities with the specific PCR, especially in mixed
infections [49]. Most diagnostic laboratories use in-house assays for panfungal PCR. The
only currently available CE/IVD certified assay that also targets fungal 18S rRNA is the
SepsiTest™ from Molzym (Molzym Molecular Diagnostic, Bremen, Germany) [50].

4.6. Target Genes and Sequence Databases

In most cases, primers target the fungal ribosomal RNA gene, which comprises se-
quence encoding for the 18S rRNA, 5.8S rRNA, 28S rRNA (including D1/D2), and 5S rRNA
as well as the internal transcribed spacers (ITS1 and ITS2,) and the intergenic sequences
(IGS1 and IGS2) [51]. CLSI recommends the use of the ITS region for species identification
for Mucorales because it demonstrates good differentiation between the genera, although
the resolution of the taxonomy of Lichtheimia spp. is incomplete [52]. As an alternative
DNA target, they recommend the D1/D2 region [52]. Schwarz et al., (2006) investigated
the similarities and variabilities in the ITS1-5.8S-ITS2 region of Mucorales [53]. They found
high sequence similarities within the species (>98%) and much lower similarities between
the species, which is the prerequisite for a genetic target for species identification [53].
In contrast, Nilsson et al., (2008) demonstrated that intraspecific variability within the
former fungal group Zygomycota (comprised of the current taxa Mucoromycota and
Zoopagomycota) is on average 3.24% in the ITS1-5.8S-ITS2 region, varying largely between
species [54]. Therefore, it is difficult to set a general valid threshold of sequence similarity
for species discrimination. The original collection of primers targeting the ITS region was
published in 1990 by White et al. [47], comprising the primers ITS1 to ITS5, which are
still used [26,45,55]. Further primers designed since then are summarized in Khot et al.,
(2009) [48], who themselves added 27 new broad-range primers to the list.

However, some taxa cannot be sufficiently identified based on the ITS region only and
need additional barcodes, which are mostly based on housekeeping genes [56]. Therefore,
in some cases, target genes other than ribosomal were tested for the diagnosis of Mucorales.
Baldin et al., (2018) designed a PCR assay targeting the spore coating protein homolog
encoding CotH genes, which are uniquely and universally present in Mucorales [14].
They evaluated their method using experimentally infected mice for plasma, urine, and
bronchoalveolar lavages as well as urine from patients with proven mucormycosis and
concluded that the CotH gene was a promising target for diagnostics in urine samples [14].
Further, Caramalho et al., (2019) tested the mitochondrial rnl gene, which encodes for
the large subunit of the rRNA, for diagnostic purposes, using a qPCR + HRM assay [35].
The authors found a 100% rate of correct identification of culture isolates and a relatively
high sensitivity for the detection of Mucorales in FFPE samples of 71%. Mitochondrial
genes are more protected from degradation and are present in higher copy numbers than
nuclear DNA, which makes them promising candidates for diagnostic assays [35]. Finally,
the cytochrome b gene was targeted by a probe-based qPCR + HRM Mucorales-specific
assay, which was evaluated for culture isolates, fresh tissue, and FFPE tissue, resulting in
sensitivities of 100%, 100%, and 56%, respectively [36].

4.7. Potential and Limitations of Molecular Diagnostic Tools

Molecular diagnostics have advantages and disadvantages compared with histopatho-
logic and microbiological methods. The main advantage is that PCR-based methods allow
quicker and earlier diagnosis, which can lead to an early initiation of therapy and therefore
lower mortality [4]. For example, Legrand et al., (2016) demonstrated reduced mortality in
severely burned patients with invasive wound mycormycosis due to implementation of a
systematic qPCR screening of plasma samples using the EPA assay, which led to earlier
diagnosis [42]. Further, taxa identification based on DNA-sequences is more objective and
requires less expertise than identification based on morphology [56]. In this context, a state-
of-the-art taxonomy, which includes molecular phylogeny, is available for the important
medical genera Rhizpopus, Lichtheimia, and Apophyses [57]. Only recently, Wagner et al.,



Microorganisms 2021, 9, 1518 9 of 16

(2020) revised the species concept of the genus Mucor by combining a multi-locus analy-
sis of seven genes with phenotypic characteristics, mating tests, and maximum growth
temperatures [57].

The main disadvantages of PCR-based methods are the lack of standardization and
clinical evaluation. The quality of a diagnostic method is defined by its analytic and more
importantly diagnostic sensitivity and specificity (Table 2). These parameters depend on
the applied method but also on the type of sample material. Due to the low incidence
of invasive mucormycosis, large evaluations on clinical samples are rare. In contrast, the
determination of the analytic sensitivity (Limit of Detection) and specificity is not restricted
by incidences. Further, many evaluations lack a negative control group (e.g., patients with
no mycormycosis or healthy people), making it impossible to calculate specificity values.

Despite these difficulties, the Fungal PCR Initiative (FPCRI, www.fpcri.eu), work-
ing group of the ISHAM, aims to include PCR diagnostics in the EORTC/MSG criteria
for fungal infections, which they achieved for Aspergillus PCR; Candida, Mucorales, and
Pneumocystis PCR must follow. In this context, an inter-laboratory study on two simulated
serum panels (spiked with Mucorales DNA) was performed in 2017–2018, with 23 Euro-
pean laboratories participating [19]. The study evaluated the reproducibility of different
DNA extraction and qPCR methods. The methods used by the laboratories included
the genus-specific assay from the EPA, the Mucorales-specific qPCR from Springer et al.,
(2016) [27], the species-specific assay from Hrncirova et al., (2010) [34], and the commercial
MucorGenius kit (Pathonostics). The assays were compared concerning the Cq (quantifica-
tion cycle) during qPCR, which is inverse to the amount of target nucleic acid that can be
detected. Therefore, low Cq values indicate low detection thresholds and a high sensitivity.
In general, the assay of the EPA and MucorGenius demonstrated lower Cq values than
the other assays. However, some assays were used much less than others, which limited
statistical power. Within the laboratories using the EPA assay, the only technical parame-
ter, which demonstrated a significant impact on the result, was the qPCR platform, with
Rotor-Gene achieving the lowest Cq values. Overall, the study demonstrated very good
concordance in results throughout the laboratories and methods used [19].

www.fpcri.eu
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Table 2. Evaluations of the most tested assays. Ap, Apophysomyces; Am, Actinomucor; C, Cunninghamella; L, Lichtheimia; M, Mucor; Rp, Rhizopus; Rm, Rhizomucor; S, Syncephalastrum;
ev, evaluated; ng, not given; na, not applicable; MM, mucomycosis; D, day (calculated from day of conventional diagnosis); FF-PET, formalin-fixed paraffin embedded tissue; BAL,
bronchoalveolar-lavages; EORTC, European Organisation for Research and Treatment of Cancer; MSG, Mycoses Study Group.
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spp., L. sp.

[58] fresh tissue (n = 9) proven MM (EORTC/MSG
criteria)

ng
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ng samples = patients Rp. spp.

FF-PET (n = 18) 56% Rp. spp.
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(histopathology diagnosis) 100% 100% samples = patients Rp. sp., Rm. spp., C.

spp., L. sp.

[59] FF-PET (n = 27) proven MM (EORTC/MSG
criteria) ng 81% ng samples = patients

Rp. spp., M. spp., C.
spp., Rm. spp., and L.

spp.

[60] FF-PET (n = 30 from 20 patients) MM (histopathology diagnosis) aspergillosis (histopathology diagnosis) 68% 100% samples no sequencing

[61] fresh tissue (n = 28) MM (histopathology diagnosis) ng
86%

ng samples = patients no sequencing
serum (n = 28) 0%

[62] fresh tissue (n = 56) MM (histopathology diagnosis) aspergillosis (histopathology diagnosis) 100% 100% samples = patients Rp. sp., Rm. spp., L. sp.

[63] serum (n = 62 from 31 patients) MM diagnosis no MM diagnosis 0% 100% samples na

[32] tissue samples
(rhino-orbito-cerebral) (n = 50)
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rhino-orbito-cerebral-MM ng 100% ng samples = patients Rp. spp., Ap. sp.
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culture isolates (n = 28)
Ap. spp., Cokeromyces sp., C.

spp., M. spp., Rm. sp., Rp. spp.,
Saksenaea sp., S. sp.

other clinically relevant fungi 100% 18S + 28S assay na

fresh (n = 3 from 3 patients) and
FF-PET (n = 14 from 11 patients) proven invasive MM proven non-Mucorales IFD 90% 88% 18S + 28S assay Rm. spp., L. spp., Rp.

spp.

[64]

FF-PET (n = 16 from 15 patients) proven invasive MM
(EORTC/MSG criteria)

patients without signs or symptoms
typical for IFD

91% 100% patients Rm. spp., L. spp., Rp.
spp.

83% 100% samples
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ff serum (n = 52 of 5 patients) Proven/probable invasive MM
(EORTC/MSG criteria) ng

100% ng patients Rm. spp., L. spp., Rp.
spp., M. spp., Am. sp.

25% ng samples

[49] FF-PET (n = 46)
MM (histopathology or broad

range 18S PCR/sequencing
diagnosis) (n = 2)

No MM (histopathology or broad range
18S PCR/sequencing diagnosis) 100% 93% samples Rp. spp.

[65] BAL (n = 99 from 96 patients) proven/probable invasive
fungal infection (MM: n = 6) no invasive fungal infection 68% 93% samples (supernatant +

pellet) no sequencing
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Table 2. Cont.

Assay Ev. in Samples Pos. Control Group Neg. Control Group Sensitivity Specificity Calculated on Detected Taxa
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) [66] pulmonary samples *1 (n = 319

patients)
proven/probable MM

(EORTC/MSG criteria) (n = 10)
proven/probable aspergillosis
(EORTC/MSG criteria) (n = 63) 90% 98% samples = patients ng

[39] blood samples *2 (n = 106 from
16 patients)

proven/probable MM
(EORTC/MSG criteria) (n = 10)

ng
75% ng patients ng

44% ng samples (D-20 to D75) ng

[19] spiked serum (n = 28 samples in
4 labs) spiked serum not-spiked serum 84% 100% samples ng

qP
C

R
(E
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20
18
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[67]

culture isolates (n = 19) L. spp., Rp. spp., M. spp., Rm.
spp. other clinically relevant fungi na 100% isolates na

frozen serum (n = 51 from 10
patients)

proven MM
healthy/hematological

malignancy/aspergillosis/pneumocystis
infection

90% 100% patients L., Rm., M./Rp.

51% 100% samples (D-68 to D29
from time of diagnosis)

[13] frozen serum (n = 194 from 44
patients)

proven MM (EORTC/MSG
criteria)

ng
88% ng patients L., Rm., M./Rp.

81% ng samples (D-32 to D17
from time of diagnosis)

[66] pulmonary samples *1 (n = 319
patients)

proven/probable MM
(EORTC/MSG criteria) (n = 10)

proven/probable aspergillosis according
to EORTC/MSG criteria (n = 63) 100% 96% samples = patients L., Rm., M./Rp., C.

[68] BAL (n = 450 from 374 patients) proven/probable MM
(EORTC/MSG criteria) other or no fungal infections 100% 97% patients L., Rm., M./Rp.

[42] plasma (n = 418 from 77 patients)
proven/probable invasive

wound MM (EORTC/MSG
criteria)

ng 100% ng patients (earlier than
standard diagnosis) L., M./Rp.

[19] spiked serum (n = 112 samples in
16 labs) spiked serum not-spiked serum 90% 97% samples L., Rm.

*1 bronchoalveolar-lavages, tracheal aspirations, sputum, pleural fluids, or lung biopsies. *2 whole blood, serum, or plasma.
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4.8. Future Perspectives and Outlook

Besides the ongoing need for large multi-center evaluation studies and standardiza-
tion, there are also technical developments and improvements in molecular diagnostics.
Costs for whole genome sequencing are currently dropping, allowing intensified usage in
applied and basic clinical research [69–72] as well as outbreak management. For example,
Garcia-Hermoso et al., (2018) demonstrated that an outbreak of Mucor circinelloides in a
burn unit of a French hospital was caused by cross-transmissions between patients as well
as contaminations with a heterogeneous pool of strains from an unknown environmental
reservoir [72].

Further, although not yet applied to fungal infections, the CRISPR-Cas mechanism
appears to be a promising method for future molecular diagnostics [73]. In nature, CRISPR-
Cas is part of the antiviral defense of bacteria [74]. It involves a specific single-stranded
nucleic acid and an enzyme with endonuclease activity [68]. Within the Cas-enzyme
family, Cas9, Cas12, and Cas13 were adapted for diagnostic purposes so far, mostly for
the detection of viral or human nucleic acids [75]. Currently, all systems, except the
CRISPR-Chip device, rely on upstream (isothermal) amplification of the DNA/RNA [74].
The diagnostic tools are still in development and mostly aim for implementation as an
instrument-free assay with a read-out via lateral-flow assay or fluorescence detection by
Smartphone [74]. Compared to PCR-based techniques, it displays higher specificity while
maintaining adequate sensitivity, and is a cheap and easy application, which indicates
great potential for point-of-care applications and low infrastructure settings [74,75].

Finally, there are advances in other fields of Mucorales diagnostics, which were not
in the main scope of this review but will be addressed here shortly. Burnha-Maurish
et al., (2018) observed a monoclonal antibody (2DA6) to be highly reactive with purified
fucomannan of Mucor sp. [76]. A constructed lateral flow immunoassay for detection of
Mucorales demonstrated good results for bronchoalveolar lavages, serum, urine, and tissue
specimens. A murine model supported the rapid and accurate detection of Rhizopus delemar,
Lichtheimia corymbifera, Mucor circinelloides, and Cunninghamella bertholletiae [77]; however,
more clinical data is needed. Further, Koshy et al., (2017) studied breath volatile metabolite
profiles (thermal desorption gas chromatography/tandem mass spectrometry (GC–MS)),
applying an experimental murine model of invasive mucormycosis including Rhizopus
arrhizus var. arrhizus, R. arrhizus var. delemar, and R. microsporus [78]. The volatile metabolite
sesquiterpene displayed distinct breath profiles and distinguished mucormycosis from
aspergillosis. The metabolomic-breath test appears promising, but also needs further
clinical evaluation. Another diagnostic approach is the evaluation of specific cytokine-
profiles in response to a Mucorales infection [79]. The analysis of fungus-reactive T cells in
the diagnostic management of infections due to Mucorales needs further evaluation, as only
limited data are available. Low level concentration of mold-reactive T cells was present
in healthy donors, compared with increased CD154+ T cells in patients with invasive
fungal infections [80]. Beyond the lab: imaging provides a significant role in diagnosis of
fungal disease; volumetric high-resolution computed tomography (CT) is the standard of
care, although there is no radiologic pattern pathognomonic for infections of Mucorales;
and the reversed halo and hypodense signs are typical for pulmonary diseases [80]. In
non-neutropenic patients, CT imaging may present with atypical patterns [80].
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