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NMDA receptor subunit composition determines
beta-amyloid-induced neurodegeneration and
synaptic loss

C Tackenberg*,1, S Grinschgl1, A Trutzel1, AC Santuccione1, MC Frey1, U Konietzko1, J Grimm2, R Brandt3 and RM Nitsch1

Aggregates of amyloid-beta (Ab) and tau are hallmarks of Alzheimer’s disease (AD) leading to neurodegeneration and synaptic
loss. While increasing evidence suggests that inhibition of N-methyl-D-aspartate receptors (NMDARs) may mitigate certain
aspects of AD neuropathology, the precise role of different NMDAR subtypes for Ab- and tau-mediated toxicity remains to be
elucidated. Using mouse organotypic hippocampal slice cultures from arcAb transgenic mice combined with Sindbis virus-
mediated expression of human wild-type tau protein (hTau), we show that Ab caused dendritic spine loss independently of tau.
However, the presence of hTau was required for Ab-induced cell death accompanied by increased hTau phosphorylation.
Inhibition of NR2B-containing NMDARs abolished Ab-induced hTau phosphorylation and toxicity by preventing GSK-3b
activation but did not affect dendritic spine loss. Inversely, NR2A-containing NMDAR inhibition as well as NR2A-subunit
knockout diminished dendritic spine loss but not the Ab effect on hTau. Activation of extrasynaptic NMDARs in primary neurons
caused degeneration of hTau-expressing neurons, which could be prevented by NR2B–NMDAR inhibition but not by NR2A
knockout. Furthermore, caspase-3 activity was increased in arcAb transgenic cultures. Activity was reduced by NR2A knockout
but not by NR2B inhibition. Accordingly, caspase-3 inhibition abolished spine loss but not hTau-dependent toxicity in arcAb

transgenic slice cultures. Our data show that Ab induces dendritic spine loss via a pathway involving NR2A-containing NMDARs
and active caspase-3 whereas activation of eSyn NR2B-containing NMDARs is required for hTau-dependent neurodegeneration,
independent of caspase-3.
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Aggregates of amyloid-beta (Ab) and tau are hallmarks of
Alzheimer’s disease (AD). It has been shown that tau may
mediate critical pathological effects downstream of Ab.1–5

Nevertheless, how extracellular Ab and intracellular tau
pathology is functionally connected remains unclear.

Soluble Ab can bind to or near NMDARs indicating
NMDARs as potential targets of Ab.6–8 Preventing synaptic

targeting of Ab9 or blocking NMDAR activation2,10 can abolish

Ab-induced dendritic spine loss and tau-dependent toxicity.

NMDARs can be categorized by subunit composition and by

localization. It has been shown that synaptic and extrasynap-

tic (eSyn) NMDAR signaling is gated by different coago-

nists,11 has opposite effects on cell survival and that

differentially located NMDARs are coupled to different

intracellular cascades.12,13 Some studies showed NR2A-

subunit-containing NMDARs incorporated into the synapse

whereas NR2B-containing NMDARs were found predomi-

nantly at extrasynaptic locations.11,14–16 However, others

reported NR2A- and NR2B-containing NMDARs at both

locations.17,18 Contrasting data exist on the effect of Ab on

different NMDAR types. Oligomeric Ab induced neuronal

dysfunctions by activation of NR2B-containing NMDARs.19

Further, Ab caused loss of synaptic proteins PSD-95 and
synaptophysin by NR2B-containing NMDAR activation
accompanied by the suppression of NR2A-containing
NMDAR function.20 In contrast, Ab particularly activated
NR2A-containing NMDARs after heterologous expression in
Xenopus oocytes.21

Here, we show that NR2A- and NR2B-subunit containing
NMDARs differentially mediate Ab-induced tau phosphoryla-
tion, cell death and dendritic spine loss. The presence of
human wild-type tau protein (hTau) was essential for
Ab-induced neurodegeneration. Neuronal death required
activation of extrasynaptic NR2B-containing NMDARs fol-
lowed by increased hTau phosphorylation while dendritic
spine loss was mediated by NR2A-containing NMDARs
signaling and active caspase-3, independent of tau.

Results

Ab induces hTau-dependent neurotoxicity and
tau-independent dendritic spine loss. We determined
the role of Ab and tau for neuronal cell death and dendritic
spine loss using organotypic hippocampal slice cultures from

1Division of Psychiatry Research, University of Zurich, August-Forel-Strasse 1, 8008 Zurich, Switzerland; 2Neurimmune Holding AG, Wagistrasse 13, 8952 Schlieren,
Switzerland and 3Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
*Corresponding author: C Tackenberg, Division of Psychiatry Research, University of Zurich, August-Forel-Strasse 1, 8008 Zurich, Switzerland. Tel: +41 44 634 8888;
Fax: +41 44 634 8879; E-mail: christian.tackenberg@bli.uzh.ch

Received 13.12.12; revised 13.3.13; accepted 18.3.13; Edited by A Verkhratsky

Keywords: amyloid-beta; Ab; tau; dendritic spine; neurodegeneration; NMDA receptor
Abbreviations: APP, amyloid precursor protein; Ab, amyloid b-peptide; AD, Alzheimer’s disease; EGFP, enhanced green fluorescent protein; hTau, human wild-type
tau protein; mTau, endogenous murine tau; NMDAR, N-methyl-D-aspartate receptor

Citation: Cell Death and Disease (2013) 4, e608; doi:10.1038/cddis.2013.129
& 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2013.129
mailto:christian.tackenberg@bli.uzh.ch
http://www.nature.com/cddis


7-day-old arcAb tg mice combined with virus-mediated
expression of enhanced green fluorescent protein (EGFP)-
coupled 441 residue isoform of hTau or EGFP alone
using neurovirulent Sindbis virus. By Live/Dead assays, the
proportion of living and dead cells in slice cultures was
determined. After 16 days in vitro (DIV), dead cell staining
increased significantly after hTau overexpression in arcAb
tg cultures compared with non-tg cultures, which was
prevented in the presence of 1mg/ml of the N-terminal Ab
antibody Ab antibody 6E10 (Figure 1a). In agreement, hTau
overexpression caused cytotoxicity in arcAb transgenic slice
cultures compared with non-tg controls (Figure 1b) as analyzed
with Cytotox-Glo assay. Toxicity was completely abolished
in the presence of 1mg/ml of 6E10 or mid-domain Ab antibody,
which does not detect cell-surface amyloid precursor
protein (APP) but not with control antibody suggesting that
hTau-dependent toxicity in arcAb cultures was induced by
Ab rather than by APP or any other product of APP
processing.

To determine the effect of Ab and tau on dendritic spines,
high-resolution imaging of dendritic segments and spines
was performed in slice cultures. A strong reduction of dendritic
spine numbers by 40–50% was observed in CA1 and
CA3 neurons from arcAb cultures compared with non-tg
cultures. Spine loss was completely abolished after treatment
with 6E10 or mid-domain Ab antibody but not by control
antibody (Figures 1c and d). Antibody treatment reduced
Ab ELISA signals (Figure 1e) indicating that the removal of
Ab from culture medium is sufficient to prevent hTau-
dependent toxicity. The effects of Ab in cultures from
transgenic mice could be confirmed by treatment of
wild-type (wt) cultures with recombinant preparations of
Ab4222 (Supplementary Figure S1).

We showed previously that overexpression of wt or mutant
hTau in the presence or absence of Ab did not affect dendritic
spine density or morphology.2,23 Nevertheless, it could not be
excluded that endogenous mouse tau mediated Ab-induced
dendritic spine loss. To determine a potential involvement of
endogenous tau, organotypic slice cultures were prepared from
tau� /� mice and treated with 1mM recombinant Ab42, which
caused strong reduction in spine density compared with
untreated tau� /� cultures (Figures 1f and g). Tau depletion itself
did not affect dendritic spine number. The degree of spine loss in
tau� /� cultures after Ab treatment was similar to that observed in
cultures expressing endogenous tau, indicating that endogenous
tau is not involved in Ab-induced spine loss in our model.

NR2B-containing NMDARs mediate Ab-induced hTau-
dependent toxicity whereas NR2A-containing NMDARs
are involved in dendritic spine loss. We determined
the role of NR2A- and NR2B-containing NMDARs for
Ab-induced neuronal cell death and dendritic spine loss.
Although potent NR2B antagonists, for example, Ifenprodil,
exist, selectivity of NR2A antagonists is rather low. One of
the most selective NR2A antagonists, PEAQX, has been
shown to have a 13–130-fold preference for NR1/NR2A over
NR1/NR2B receptors.24–26 However, to avoid any bias due to
nonspecific binding of PEAQX, we supported this data
by using cultures from NR2A-knockout (NR2AKO) mice
in addition. Ifenprodil and PEAQX concentrations were

chosen according to previous reports demonstrating highest
degree of specificity.19,26

We found increased toxicity and AT8 phosphorylation of
hTau in cultures from NR2AKO � arcAb tg mice compared
with NR2AKO control cultures (Figures 2a and b). In
agreement, treatment with NR2A antagonist PEAQX did not
prevent toxicity and AT8 phosphorylation of hTau in arcAb tg
cultures (Figures 2c and d). In contrast, treatment with NR2B
antagonist Ifenprodil abolished hTau-dependent toxicity
(Figure 2e) and reduced AT8 phosphorylation of hTau in
arcAb tg slices (Figure 2f). We further show that activity of
GSK-3b, one of the major tau kinases, was increased in arcAb
tg slices. Activity could be reduced by Ifenprodil treatment to
control levels (Supplementary Figures S2a and b). In addition,
slice cultures were treated with 20 mM lithium (LiCl), known to
block GSK-3b activity,27,28 which prevented hTau toxicity in
arcAb tg slices (Supplementary Figure S2c). This suggests
that GSK-3b causes hTau phosphorylation and toxicity
downstream of NR2B-containing NMDARs.

Opposite effects with respect to NMDA receptor
subunit composition were observed on dendritic spine density
as both NR2AKO and PEAQX treatment prevented
Ab-induced spine loss while Ifenprodil did not (Figures 2g–l).
We confirmed the Ifenprodil data by using a further NR2B
inhibitor, Ro 25–6981, which gave identical results
(Supplementary Figure S3). Note that NR2A–NMDAR inhibi-
tion with PEAQX slightly decreased spine density in control
cultures. Our data suggest that Ab induces tau-dependent
cell death and tau-independent loss of dendritic spines by
different pathways involving NR2B- or NR2A-containing
NMDAR-mediated signaling, respectively.

Activation of extrasynaptic NMDARs induces hTau-
dependent toxicity but no spine loss. We aimed to
determine the role of synaptic and extrasynaptic NMDARs
for Ab-induced hTau toxicity using a protocol that has been
shown to selectively activate synaptic versus extrasynaptic
NMDARs.12,29,30 In primary neuronal cultures from non-tg mice
expressing only EGFP, we observed no toxicity after synaptic
or extrasynaptic NMDAR activation (Figure 3a upper row,
Figure 3c). This is in agreement with a study showing that the
use of NMDA for up to 180 min to activate extrasynaptic
NMDARs does not induce morphological changes to the
neuronal network or increase LDH release from neuronal
cultures.30 However, upon hTau expression, the activation of
extrasynaptic NMDARs caused a significant increase in toxicity
as evidenced by fragmented or beaded neurites and ballooned
neurons (Figure 3a lower row, Figure 3c). A ballooned
phenotype was already found to be a characteristic for cell
death caused by abnormally phosphorylated tau in culture2,23

and is a histopathological feature of several neurodegenerative
diseases, including Pick’s disease and AD.31 Immunostaining
against bIII tubulin showed no degeneration of non-infected
neurons after extrasynaptic activation in primary neuronal
cultures (Figure 3b, arrows) confirming that extrasynaptic
NMDAR activation causes selective toxicity only in EGFP-
hTau-expressing neurons. Increased phosphorylation of ERK
kinase after synaptic but not after extrasynaptic activation
confirms the selective activation of the respective NMDARs in
our protocol.29,30 Extrasynaptic activation also induced hTau-
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dependent toxicity and increased AT8 phosphorylation in
organotypic hippocampal slices (Figures 3e and f). However,
extrasynaptic activation did not affect dendritic spine density in
slice cultures (Figures 3g and h). These data suggests a major
role of extrasynaptic NMDARs for tau-dependent cell death.

Antagonizing NR2B-containing NMDARs abolishes
hTau-dependent toxicity after extrasynaptic NMDAR
activation. We showed that hTau-dependent toxicity in
arcAb tg cultures was mediated via NR2B-dependent
signaling (Figures 2a and b) and that activation of

Figure 1 Ab induces hTau-dependent neurotoxicity and tau-independent spine loss. (a) Quantification of dead cell fluorescence intensities of hTau-expressing
hippocampal slice cultures from arcAb tg and non-tg mice treated with Ab antibody 6E10 determined by Live/Dead cell viability/cytotoxicity assay. (b) Cytotoxicity of hTau in
arcAb tg and non-tg control slice cultures treated with 1mg/ml of Ab antibody 6E10, a mid-domain Ab antibody or control antibody measured by Cytotox-Glo assay.
(c) Confocal images of apical dendritic segments from CA1 neurons of arcAb tg and non-tg slices in the presence or absence of Ab antibody 6E10, mid-domain Ab antibody or
control antibody. (d) Quantification of spine density in cultures from arcAb tg and non-tg mice. (e) Quantitative bar graphs representing mean values of the amount of Ab40 and
Ab42 peptides in medium of arcAb hippocampal slice cultures after treatment with respective Ab antibodies as determined by ELISA. (f) Representative images of apical
dendritic segments from CA1 neurons from tau� /� mice treated with 1mM recombinant Ab42. (g) Quantification of spine density in tau� /� cultures treated with recombinant
Ab42. rec. Ab, recombinant Ab42; mid. Ab, mid-domain Ab antibody; contr. Ab, control antibody; mean±S.E.M.; **Po0.01 and ***Po0.001; Mann–Whitney-U-test;
n¼ 9–13, n¼ 4 (e) scale bar: 5 mm
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extrasynaptic NMDARs could mimic the effect of Ab
to induce hTau-dependent toxicity (Figures 3a–c). We
next aimed to determine whether extrasynaptically located

NR2B-containing NMDARs mediated the induction of hTau-
dependent toxicity. Activation of extrasynaptic NMDARs in
the presence of Ifenprodil did not induce hTau-dependent
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toxicity (Figures 4a, c and d), while strong degeneration of
hTau-expressing neurons was observed after extrasynaptic
activation in NR2AKO neurons (Figures 4b and e). This
suggests that extrasynaptically localized NR2B- but not
NR2A-containing NMDARs mediated hTau-dependent toxi-
city. The expression of both NR2A- and NR2B-subunits
(GRIN2A and GRIN2B) in primary neurons was verified by
RT-PCR (Grinschgl et al., unpublished observations).

Ab-induced caspase-3 activity is required for dendritic
spine loss. Caspase-3 has been shown to be activated by
Ab20 and to trigger early synaptic dysfunctions in APPSwe tg
mice.32 Accordingly, increased proteolytic cleavage of
procaspase-3 into a 17-kDa active caspase-3 fragment was
observed in arcAb transgenic slice cultures. Treatment with
NR2B antagonist Ifenprodil did not prevent caspase-3
activation whereas increased caspase-3 activation was not
observed after NR2A-subunit knockout (Figures 5a and b).
To verify the role of active caspase-3 in mediating the effects
of Ab, slices were treated with 10 mM of caspase-3 inhibitor
Z-DEVD-FMK. Treatment did not prevent hTau-dependent
toxicity in arcAb tg cultures (Figure 5c) but abolished
Ab-induced spine loss (Figures 5d and e). Thus, active
caspase-3 is involved in NR2A-dependent dendritic spine
loss, while it is not required for hTau-dependent toxicity
induced by Ab in our model.

Discussion

The results of this study establish the differential involvement
of synaptic and extrasynaptic NR2A- and NR2B-subunit-
containing NMDARs in pathways coupling Ab to loss of
dendritic spines and hTau-dependent neurodegeneration.
Using selective pharmacological inhibition combined with
knockout techniques, we show that Ab induced hTau-
dependent toxicity accompanied by increased hTau phos-
phorylation via activation of extrasynaptic NR2B-containing
NMDARs. In contrast, loss of dendritic spines was mediated
by NR2A-containing NMDAR signaling. Importantly, Ab also
induced spine loss in cultures prepared from tau-deficient
mice suggesting that loss of postsynaptic spines is not
dependent on endogenous mouse tau. In agreement with
the missing involvement of endogenous tau for spine loss,
overexpression of wt or mutant hTau did also not affect spine
number or shape as previously shown.2,23 However, hTau
overexpression in the presence of either recombinant or
transgenically expressed Ab caused cell death with hTau
being abnormally phosphorylated at the AT8 epitope. Inter-
estingly, Ab did not induce detectable toxicity in the presence

of endogenous murine tau (mTau). We did not find any effect
of Ab on AT8 phosphorylation of mTau (Supplementary
Figure S4), suggesting that hTau may be a better substrate for
hyperphosphorylation and induction of cell death than mTau.
In agreement, lentiviral expression of hTau accelerated the
neurotoxic effect of Ab dimers compared with endogenous tau
in primary neurons.33

Increased activation or expression of several tau kinases,
for example GSK-3b,34 as well as reduced activity
of tau phosphatases35 has been reported in AD, and
toxicity of phosphorylated tau has been shown in various
studies.2,23,33,36 Recently, a longitudinal study of 286
participants revealed that Ab-associated brain volume loss
occurs only in the presence of phosphorylated tau in the
human brain.37

The mechanisms by which tau causes degeneration of
neurons are discussed controversially. Four independently
created tau-knockout lines show largely normal behavior,38–41

indicating that loss of tau function does not cause neurode-
generation. Accumulating evidence points to the possibility
that physiological functions of tau may be involved in neuronal
excitotoxicity3,4,42 or axonal transport dysfunction43 in APP
transgenic mice and that tau interactions other than micro-
tubule binding may also be involved.44 Furthermore, several
in vitro and in vivo studies support abnormal gain of toxic
function for tau caused by hyperphosphorylation.2,23,33,36,45

Together, both phosphorylation-independent physiological
tau functions as well as hyperphosphorylation-induced gain
of toxic function may not be mutually exclusive and jointly
contribute to neuronal dysfunction in disease.

NMDARs are potential targets of Ab as soluble Ab can bind
to or near NMDARs.6,7 Some studies showed NR2A-subunit-
containing NMDARs incorporated into the synapse whereas
NR2B-containing NMDARs were found predominantly at
extrasynaptic locations.14–16 However, others reported
NR2A- and NR2B-containing NMDARs at both locations.17,18

Signaling via NR2A- or NR2B-containing NMDARs causes
different or even opposing effects.46–49 The same applies for
synaptic or extrasynaptic NMDAR activity.12,29,30,50–52 Thus,
specific NMDAR function may depend on both subunit
composition and spatial distribution suggesting that NR2A-
and NR2B-containing NMDARs at both locations are each
coupled to different cascades.

We analyzed the involvement of different NMDAR subtypes
and locations for spine loss and tau toxicity in arcAb tg
cultures. Knockout and inhibition of NR2A-containing
NMDARs but not of NR2B-containing NMDARs prevented
spine loss in arcAb cultures. In agreement, Ab has been
shown to influence NR2A-containing NMDARs although the

Figure 2 NR2B-containing NMDAR inhibition prevents Ab-induced hTau-dependent toxicity whereas NR2A knockout or inhibition abolishes dendritic spine loss.
(a) Cytotoxicity of hTau in NR2AKO � arcAb tg and NR2AKO cultures measured by Cytotox-Glo assay. (b) Western blot showing AT8 phosphorylation of hTau in NR2AKO
� arcAb tg and NR2AKO cultures. (c) Cytotoxicity of hTau in arcAb tg and non-tg control cultures treated with 50 nM PEAQX. (d) Western blot showing expression of hTau
and phosphorylation at AT8 epitope after PEAQX treatment. (e) Cytotoxicity of hTau in arcAb tg and non-tg control cultures treated with 3 mM Ifenprodil. (f) Western blot
showing phosphorylation of hTau at AT8 epitope after Ifenprodil treatment. (g) Representative confocal images of apical dendritic segments from NR2AKO and NR2AKO �
arcAb tg cultures. (h) Spine density in NR2AKO and NR2AKO � arcAb tg cultures. (i) Apical dendritic segments from CA1 neurons of arcAb tg and non-tg slices in the
presence or absence of 50 nM PEAQX. (j) Quantification of spine density after treatment with PEAQX. (k) Apical dendritic segments from CA1 neurons of arcAb tg and non-tg
slices in the presence or absence of 3 mM Ifenprodil. (l) Quantification of spine density after treatment with Ifenprodil. Ifen, Ifenprodil; NR2AKO, NR2A-containing NMDAR
knockout; values are shown as mean±S.E.M. with *Po0.05, **Po0.01 and ***Po0.001; Mann–Whitney-U-test; n¼ 6–8 (a, c, e), n¼ 5 (b), n¼ 4 (d), n¼ 6 (f), n¼ 10–13
(h, j, l); scale bar: 5mm
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results are controversial: in Xenopus oocytes, Ab directly
activated NR2A-containing NMDARs21 whereas Ab blocked
NR2A-containing NMDARs in primary rat neurons leading to
loss of PSD-95 and synaptophysin signals.20

We now show for the first time that Ab-induced hTau
phosphorylation and toxicity was mediated by NR2B- but not
NR2A-containing NMDAR-dependent signaling and involved
NR2B-dependent activation of tau kinase GSK-3b.
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An involvement of NR2B-containing NMDARs for tau
toxicity was also reported previously53 where Ifenprodil
blocked toxicity after tau overexpression in dissociated
primary neurons. However, no increased tau phosphorylation
was found and tau toxicity was analyzed in the absence of Ab
implying different mechanisms of toxicity in both studies.

In agreement with our data, soluble Ab oligomers have
been shown to excessively activate extrasynaptic NR2B-
containing NMDARs in acute slice cultures,19 and activation of
NR2B-containing NMDARs by Ab in primary neurons resulted
in a loss of synaptophysin- and PSD-95 signals.20 We show
that Ab increased proteolytic caspase-3 activation via NR2A-
but not NR2B-mediated signaling. Further, pharmacological
caspase-3 inhibition abolished Ab-induced dendritic spine
loss but not hTau-dependent toxicity indicating that
Ab-induced synaptic loss is mediated by NR2A signaling
followed by caspase-3 activation. Caspase-3 activation has
been shown to be required for long-term depression (LTD)54

and is also involved in Ab-induced loss of PSD-95 and
synaptophysin signals20 and inhibition of LTP.55 We and
others have shown that the calcium-dependent phosphatase
calcineurin, a key enzyme in LTD, can trigger Ab-induced
changes and loss of dendritic spines2,10,56,57 via an LTD-like
cascade. Calcineurin can be activated by caspase-3 in
dendritic spines32 thus linking NR2A-mediated activation of
caspase-3 to dendritic spine loss.

In conclusion, our data uncover two independent pathways
for neuronal and synaptic loss, both triggered by Ab, which
already differ in their requirement for distinct types of
NMDARs. This may explain the difficulty and the big challenge
to find appropriate drug targets downstream of Ab in order to
prevent synaptic loss and neuronal cell death in AD.

Materials and Methods
Animals. ArcAb mice and NR2A–NMDA receptor-knockout mice were obtained
as described.58,59 Tau-deficient B6.129-Mapttm1Hnd/J mice39 were purchased from
Jackson Laboratories (Bar Harbor, ME, USA). All animal experiments were
performed in accordance with the guidelines of the Swiss veterinary cantonal
office.

Organotypic hippocampal slice culture and viral infection.
Organotypic hippocampal slice cultures were prepared and cultured as previously
described.2 On DIV 12, slice cultures were infected with Sindbis virus using the
droplet method. For assessment of dendritic spine density, cultures were infected
with Sindbis virus expressing EGFP and were fixed at DIV 15 with
4% paraformaldehyde in PBS containing 4% sucrose for 2 h at 4 1C. After
washing with PBS, cultures were mounted with Hydromount (National diagnostics,
Atlanta, GA, USA) and coverslipped. For analysis of hTau-dependent toxicity,
slices were infected at DIV 12 with Sindbis virus expressing EGFP-coupled human
441 wt tau. At DIV 16, culture medium was harvested for cytotoxicity assays and
lysates were prepared for western blot analyses.

Drug treatments. NR2A-subunit-selective NMDAR antagonist PEAQX
([[[(1S)-1-(4-Bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]

phosphonic acid tetrasodium hydrate, 50 nM) was purchased from Sigma
(Schnelldorf, Germany); NR2B–NMDAR antagonist Ifenprodil ((1S,2S)-threo-2-
(4-benzylpiperidino)-1-(4-hydroxyphenyl)-1-propanol hemitartrate, 3 mM), NMDAR
antagonist MK801 ((5S,10R)-(þ )-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-
hepten-5,10-imine maleate, 5 mM), GABAA antagonist bicuculline ([R-(R*,S*)]-6-
(5,6,7,8-tetrahydro-6-methyl-1,3-dioxolo[4,5-g]isoquinolin-5-yl)furo[3,4-e]-1,3-benzodioxol-
8(6H)-one), 25mm), potassium channel blocker 4-aminopyridine (1 mM) and
caspase-3 inhibitor Z-DEVD-FMK (benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-
Asp(OMe)-fluoromethylketone, 10mM) were purchased from Tocris (Bristol, UK).
We used two antibodies against Ab, targeting either the N terminus (6E10) or the
Ab mid-domain. The mid-domain antibody binds to both monomeric and
aggregated Ab but not full-length APP. The control antibody was directed against
bovine herpes virus. All antibodies were applied at concentrations of 1 mg/ml.

To determine the effect on dendritic spine density, cultures were treated for
7 days with the respective substance. For cell survival analysis, cultures were
treated for 4 days.

Preparation of primary neuronal cultures. Neuronal cultures were
prepared as described previously.60 On DIV 12, cultures were infected with
Sindbis virus expressing EGFP or EGFP-hTau. At 16 h after infection, synaptic/
extrasynaptic activation protocols were performed followed by fixation 24 h after
activation.

Immunblot analysis. On DIV 16, hippocampal slices were harvested in
RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.5%
deoxycholate and 0.1% SDS, pH 8.0) containing phosphatase inhibitor cocktails
1 and 2 (Sigma) and protease inhibitor cocktail (Roche, Basel, Switzerland) and
centrifuged at 5000� g for 10 min at 4 1C. The supernatant was collected, frozen
in liquid nitrogen and stored at � 80 1C.

Samples were resolved by 10–20% SDS-PAGE and transferred to nitrocellulose
membranes (Millipore, Billerica, MA, USA). Immunoblotting was performed using
primary antibodies anti-GFP (1:1000, Roche) to detect total GFP-coupled hTau, anti
phospho-Tau AT8 (1:200, Thermo Fisher, Rockford, IL USA), Tau-5 (1:500, Neo
Markers, Fremont, CA, USA), GSK-3b and phospho-GSK-3b (1:1000, Cell
Signaling, Danvers, MA, USA), GAPDH (1:5000, Biodesign, Saco, ME, USA) and
HRP-conjugated secondary antibody (1:2000, GE Healthcare, Glattbrugg, Switzer-
land). Immunoreactive bands were detected using the ECL Reagent (Thermo
Fisher) or Supersignal Femto Maximum Sensitivity Substrate (Thermo, Rockford, IL,
USA) according to the manufacturer’s instructions and imaged with Fujifilm Las-
3000 (Fujifilm, Dielsdorf, Switzerland). It was verified by software tools that no pixels
were saturated. Band intensities were quantified with ImageJ (NIH, Bethesda, MD,
USA) corrected by background.

Assessment of cell death. To measure dead cell protease activity in slice
cultures, culture medium was harvested at DIV 16, directly frozen in liquid nitrogen
and stored at � 80 1C for further analysis with CytoTox-Glo assay according to
the manufacturer’s recommendations. In the case of EGFP-tau overexpression,
luminescence signals were normalized to EGFP fluorescence using microplate
reader Synergy HT (BioTek, Bad Friedrichshall, Germany).

Cell viability and cytotoxicity were further determined using LIVE/DEAD Viability/
Cytotoxicity assay (Molecular Probes, Grand Island, NY, USA) according to the
manufacturer’s recommendations. EtHD-1-stained slices were imaged using Leica
DMIRE2 fluorescence microscope (Leica, Heerbrugg, Switzerland) with excitation
filters 470/40 and 545/30, respectively. Images were acquired using identical
microscope settings for all conditions devoid of saturation. Integrated fluorescence
intensities relative to background fluorescence were determined by ImageJ
program.

To analyze the effects of extrasynaptic activation in primary neuronal cultures,
EGFP- or EGFP-hTau-expressing neurons were imaged using confocal micro-
scopy. The ratio of non-degenerated infected neurons to total infected neurons was

Figure 3 Extrasynaptic NMDAR activation induces hTau-dependent toxicity in primary neuronal cultures and hippocampal slice cultures. (a) Representative confocal images of primary
neurons expressing EGFP or EGFP-hTau after synaptic or extrasynaptic activation. (b) Confocal images of EGFP-hTau-expressing neurons after extrasynaptic activation and
immunostaining against bIII tubulin. Arrows mark non-infected neurons. (c) Quantification of hTau-dependent toxicity. Shown is the ratio of non-degenerated infected primary neurons
(neurons without fragmented or beaded neurites or ballooned morphology) to total infected neurons. (d) Representative western blot with phospho-ERK 1/2 (pERK) and ERK 1/2 antibodies
of lysates from primary neurons after synaptic or extrasynaptic activation. (e) Cytotoxicity of hTau in wt hippocampal slice cultures after extrasynaptic activation measured by Cytotox-Glo
assay. (f) Western blot showing AT8 phosphorylation of hTau after extrasynaptic activation in slice cultures. (g) Representative dendritic segments from CA1 neurons of wt slice cultures after
extrasynaptic activation. (h) Quantification of spine density in wt slices analyzed 1 day after extrasynaptic activation. eSyn, extrasynaptic; Syn, synaptic activation; veh, vehicle; values
are shown as mean±S.E.M. with **Po0.01 and ***Po0.001; Mann–Whitney-U-test; n¼ 10–13 (c), n¼ 3 (d); n¼ 8 (e), n¼ 4 (f); n¼ 10 (h) scale bars: 50mm (a, b), 5mm (g)
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determined by dividing the number of neurons without fragmented or beaded
neurites or ballooned morphology by the total number of infected cells.

Dendritic spine analysis. For analysis of dendritic spine density, virus
solution was diluted to achieve 1–10 infected neurons per slice. This allowed
imaging of single dendritic fragments. Analysis of dendritic spine density was

performed using Leica SP2 CLSM equipped with � 63 objective (NA: 1.2) and
488-nm Argon laser. Apical dendritic segments in CA1 and CA3 stratum
radiatum were imaged with image size of 30� 30 mm (512� 512 pixel, voxel
size: 0.05813� 0.05813� 0.25 mm). Image stacks were processed to
maximum projections, and dendritic spine density was determined as spine
counts per mm dendrite using ImageJ.

Figure 4 NR2B-containing NMDAR inhibition but not NR2A-containing NMDAR knockout abolishes hTau-dependent toxicity after activation of extrasynaptic NMDARs.
(a) Representative confocal images of primary neurons expressing EGFP-hTau after extrasynaptic activation in the presence and absence of 3mM Ifenprodil. (b) Representative
confocal images of primary neurons from NR2AKO mice expressing EGFP-hTau after extrasynaptic activation. (c) Confocal images of EGFP-hTau-expressing primary neurons from
NR2AKO mice after extrasynaptic activation and immunostaining against bIII tubulin. (d) Quantification of hTau-dependent toxicity in the presence and absence of Ifenprodil. Shown is
the ratio of non-degenerated infected neurons (neurons without fragmented or beaded neurites or ballooned morphology) to total infected neurons. (e) Quantification of
hTau-dependent toxicity in primary neurons of NR2AKO mice. eSyn act, activated eSyn NMDARs; values are shown as mean±S.E.M. with ***Po0.001; Mann–Whitney-U-test;
n¼ 10–14; scale bar: 50mm
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Activation of synaptic/extrasynaptic NMDARs. For extrasynaptic
activation, cultures were exposed to fresh neurobasal medium containing 1 mM 4-
AP, 25mM bicuculline and 5mM MK801 for 5 min to activate and block synaptic
NMDARs. Then, cultures were washed several times with neurobasal medium to
remove unbound MK801, followed by incubation in Nb-N1 medium containing 50mM
NMDA for 15 min. Control cultures were treated with Nb-N1 medium containing water
and DMSO vehicle.

To stimulate synaptic activation, cultures were exposed to neurobasal medium
containing 1 mM 4-AP and 25mM bicuculline for 15 min.

These protocols have been shown to selectively activate synaptic versus
extrasynaptic NMDARs.12,29,30

To determine the effect of extrasynaptic NMDAR activation on dendritic spine
density in slice cultures, slices were infected with EGFP-expressing virus on DIV 12,
activation was carried out on DIV14 as described above and slices were fixed on
DIV 15 for analysis of dendritic spine density.

Statistical analysis. Data are presented as mean±S.E.M. Statistical
analysis was performed with Statview 5.0 (SAS Institute Inc., Cary, NC, USA)
using Mann–Whitney-U-tests. Values of Po0.05 were considered statistically
significant.
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