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Abstract: Epidemiological studies on micronutrient consumption have reported protective
associations in the incidence and/or progression of various cancer types. Supplementation with some
of these micronutrients has been analyzed, showing chemoprotection, low toxicity, antiproliferation,
and the ability to modify epigenetic signatures in various cancer models. This review investigates the
reported effects of micronutrient intake or supplementation in breast cancer progression. A PubMed
search was conducted with the keywords “micronutrients breast cancer progression”, and the results
were analyzed. The selected micronutrients were vitamins (C, D, and E), folic acid, metals (Cu, Fe, Se,
and Zn), fatty acids, polyphenols, and iodine. The majority of in vitro models showed antiproliferative,
cell-cycle arrest, and antimetastatic effects for almost all the micronutrients analyzed, but these effects
do not reflect animal or human studies. Only one clinical trial with vitamin D and one pilot study
with molecular iodine showed favorable overall survival and disease-free interval.
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1. Introduction

Since the 1980s, there has been increasing epidemiological evidence of the relationship between
inadequate intake of micronutrients and the appearance of tumor processes [1]. However, the heterogeneity
of compounds, models, and types of malignancy makes it impossible to assign general effects. Breast
cancer is the most common cancer in women, affecting more than two million each year. In 2018,
more than 600,000 women died from breast cancer, representing approximately 15% of all cancer
deaths among women worldwide [2]. There is extensive literature on nutrition and the risk of breast
cancer [3–6]; however, because some nutrients and hormones play a dual role in tumor initiation and
progression, these processes need to be analyzed separately [7,8]. In this review, we focus on the effects
of micronutrients once the breast tumor process has been established. Given our group’s interest
in molecular iodine (I2), we compared the effects and mechanisms proposed for supplementing this
halogen with those of the other micronutrients. All nutrients have antitumor properties in cellular
cultures; however, when scaling to in vivo models, most of the micronutrients lose these properties.
Only vitamin D (Vit D) and I2 supplements showed associations with improved overall survival (OS)
and disease-free interval (DFI) in clinical trials [9,10].

Regarding the mechanisms, most of the micronutrients analyzed in this review work as antioxidants,
reducing the aberrant redox environment characteristic of tumor processes. Other actions have also
been described in some components. Vit D acts as a genomic regulator and folates are involved in
purine/pyrimidine synthesis and methylation reactions. I2 appears to act as a genetic modulator by
joining lipids and activating nuclear receptors. Its ability to modify DNA methylation processes has
also been proposed. In the progression of breast cancer, I2 seems to be the best micronutrient for
adjuvant therapy with different antitumor mechanisms, but more extensive clinical trials are needed.
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2. Materials and Methods

A search of the scientific literature was carried out in PubMed on August 28, 2019, with the terms
“micronutrients breast cancer progression”, which yielded 425 results. All 425 papers were screened
with the following inclusion criteria: original articles written in English, analyzing one or more
micronutrient supplement effects in breast cancer progression. A total of 352 articles were excluded:
articles published in languages other than English (15 articles), reviews (65), papers about synthetic
micronutrient analogs or without micronutrients (204), articles concerning other cancers (39), articles
in which there was no cancer progression (15), and methodology-aimed articles (14). Finally, 76 articles
were assessed for eligibility, and 73 were included in this review. Metabolites such as carotenoids,
Vit A, or coenzyme Q10 were less represented in the articles and are not analyzed.

3. Results

If we consider the percentage of papers on each nutrient, 37% were about Vit D or its natural
metabolites, 27% were about metals such as copper (Cu), iron, selenium (Se), and zinc (Zn), 9% and 7%
were about folates and vitamin C (Vit C), respectively, and 5% of articles analyzed in this review were
on polyphenols, fatty acids, vitamin E (Vit E), and iodine. These data provide an overview of current
research interest in nutrient supplementation and breast cancer progression. Next, the main results of
our analysis are detailed.

3.1. Vitamin D

Vit D is characterized as a vitamin (i.e., a compound with the catalytic activity of biological
processes); however, due to its metabolism and action mechanisms, it is considered as a pro-hormone.
Reviews of Vit D’s physiological actions suggest that its active form, calcitriol, regulates calcium and
phosphate homeostasis and plays a key role in the physiology of various organs and systems. Calcitriol
was mostly studied in the immune system as an immunomodulator targeting various immune cells,
including monocytes, macrophages, dendritic cells, T-lymphocytes, and B-lymphocytes (B) [11,12].
Calcitriol’s mechanisms of action start when it binds to the Vit D receptor (VDR). This nuclear receptor
can form homodimers (VDR–VDR) or heterodimers (with the X retinoid receptor: CDR–RXR) that bind
to specific genome responsive elements (VD-REs or VD/RXREs) to activate the transcription of their
target genes [13]. Vit D is not the only micronutrient capable of activating these transcription factors;
low-affinity nutritional ligands for VDR, such as curcumin, unsaturated fatty acids, and anthocyanins,
have been described with the ability to activate this route. Others, such as resveratrol, have been
described as VDR signaling enhancers [14]. The activity of VDR can be modulated epigenetically
by histone acetylation. It cooperates with other nuclear receptors that are influenced by histone
acetyltransferases (HATs) and several types of histone deacetylases (HDACs). HDAC inhibitors
(HDACi) and demethylating drugs may contribute to Vit D metabolism [15].

Concerning cancer, studies (most of them in vitro) demonstrated antineoplastic effects of calcitriol.
The molecular mechanisms include inhibition of thekinase-interacting serine/threonine-protein kinases
MAPK–ERK pathway, suppression of Epidermal Growth Factor (EGFR) and Insulin-like growth factor
1 (IGF1), and inhibition of telomerase, Bcl-2, and Myc expression [16]. Specifically, in breast cancer,
the maximum dose of supplementation was 100 nM, which seems sufficient to inhibit cell proliferation,
increase apoptosis markers, and modify intracellular glucose metabolism parameters [17–20].
These studies showed, regardless of the cell type used, antiproliferative effects, increased redox
potential, and cell-cycle arrest in G1. Most of these studies were performed on MCF-7 cells (estrogen
receptor-positive: ER+), and the supplement of this micronutrient was accompanied by significant
decreases in the expression of the aromatase enzyme, estrogen receptor (ER), cyclooxygenase type 2
(Cox-2), prostaglandin E2 (PGE2), and the antiapoptotic protein Bcl-2. These prostaglandins are also
associated with increases in the number of apoptotic cells [20–26]. Furthermore, studies that used breast
cell lines of normal origin with the mutated Ras oncogene (MCF10A-ras) found a pro-oxidant effect
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(via inhibition of the enzyme Pyr carboxylase) and a decrease in the flow of glutamine (Gln) inside the
cell, generating a significant decrease in proliferation [27–29]. In general, calcitriol restores reactive oxygen
species (ROS) equilibrium in tumor cells, reduces cancer proliferation, and has a relevant role in apoptosis
and autophagy [30–32]. In preclinical studies, the findings are more complex and dependent on breast
cancer type and doses. The differentiated cancer model (estrogen+), with a moderate concentration of Vit
D supplement, did not exhibit any effects [25,28], exhibited inhibition of tumoral growth accompanied
by decreases in the expression of Bcl-2, aromatase, estradiol, and Cox-2 [20], or presented an increase
in apoptosis cell content with augmented p53 expression [21]. In contrast, in the triple-negative breast
cancer model (immunosuppressed mice AT1+ cells), Vit D supplementation increased the tumors’
metastatic potential [33]. Finally, studies in cancer patients described that high doses (250 µg/day)
did not affect tumor progression, while low supplementation (10 µg/day) reduced mortality by at least
20% [9,34]. It also has been described that Vit D deficiency or the inability to synthesize its active
compound (calcitriol) accelerates tumor growth [35,36]. However, some studies showed that Vit D
supplementation to restore plasma levels (time and doses) stops the tumoral growth [34], whereas,
in other studies using high concentrations (1250 µg/week) sufficient to revert these deficiencies, it could
not decrease cancer progression [37]. In general, calcitriol alters ROS equilibrium in cancer, reduces
cancer proliferation, and has a relevant role in apoptosis and autophagy [38–40]. It appears that high
serum levels are associated with better survival and DFI [41–45]. In 2010, the Institute of Medicine
of the US National Academy of Sciences recommended an intake of 600 IU/day of Vit D (15 µg)
to maintain adequate serum 25(OH)D for normal bone mineralization. However, the recommendation
does not include the extra-skeletal effects of Vit D. On the other hand, the Endocrine Society committee
suggests higher doses (1000–2000 UI equivalent to 25–50 µg) to correct deficiencies and prevent
fractures and does not consider this supplementation to prevent cancer or cardiovascular diseases [46].
These descriptions agree with Goulao et al.’s recent review, which included 30 clinical studies with
more than 18,000 participants, finding no evidence that Vit D supplementation alone reduces the
incidence of cancer or mortality in established cancer processes [47].

3.2. Metals

3.2.1. Copper

Cu is a transition metal that the body requires as a catalytic cofactor or a structural protein
component involved in redox reactions. It participates in the adequate synthesis of some metabolites,
such as hemoglobin, elastin, and collagen, as well as in transporting oxygen to the mitochondrial
respiratory chain. The immune system also requires Cu to perform several functions; animal models
and cell cultures have been used to assess the role of Cu in the immune response. Some research showed
that Cu deficiency is accompanied by a reduction in T-cell proliferation and interleukin production [48].
Lowering Cu levels in the diet increases protein oxidation and DNA methylation [49]. There are
numerous Cu-dependent enzymes whose activity diminished with Cu deficiency: ceruloplasmin,
superoxide dismutase (SOD), cytochrome C oxidase (COX), and ascorbic acid oxidase, among others [50].
At the molecular pathway level, Cu directly affects the phosphorylation of extracellular signal-regulated
kinase (Erk) by meiotic chromosome axis-associated kinase 1 (Mek1). Mek1, a MAPK pathway kinase,
has two binding sites for Cu, and its presence increases Erk phosphorylation in a dose-dependent
manner [51]. For this micronutrient, the recommended daily intake is 900 µg, while the maximum
tolerable level is 10 mg/day [52]. Many types of cancer have elevated intracellular Cu levels or exhibit
alterations in this metal’s systemic distribution [53]. In breast cancer, elevated serum Cu levels correlate
with the stage and progression of the disease [54], and tumor cells have four times more Cu than
healthy breast cells [55]. The addition of Cu to breast cancer cells showed opposite results depending
on the cell type. In triple-negative MDA-MB-231 cells with mutated p53, the Cu supplement increased
proliferation and survival and Akt phosphorylation [56].
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In contrast, in MCF-7 cells positive for ER, this micronutrient increased p53 phosphorylation and
the expression of p21, resulting in cell-cycle arrest in G1 and apoptosis [56]. Four articles on clinical
studies exploring the relationship of Cu to breast cancer progression were analyzed for this review
(see Table S4 Supplementary Materials). Serum and hair Cu levels were higher in patients than in
healthy people [57,58]. Angiogenic and metastatic properties are attributed to this metal. In breast
tumors, a Cu-dependent RedOx protein Memo has been reported to play an essential role in migration
and metastasis (increasing intracellular ROS levels) [59]. Furthermore, a clinical study evaluating a Cu
chelator effect showed a reduction in angiogenic markers [60].

3.2.2. Iron

Iron, another transition metal, acts in mammals as a cofactor of hemoproteins (hemoglobin,
catalase, peroxidases, cytochromes) involved in oxygen binding, transport, and metabolism. It is also a
cofactor of other proteins (without a heme group) with functions in DNA synthesis, cell proliferation and
differentiation (ribonucleotide reductase), gene regulation, drug metabolism, and steroid synthesis [61].
The peptide hormone hepcidin is the primary regulator of iron metabolism in the body. This enzyme
increases its expression with high hepatic iron levels, with increased levels of iron in the plasma,
and during inflammation (by Interleukin 6 (IL-6) in a mechanism that involves the activation of Signal
transducer and activator of transcription 3 (STAT3) [62]. In contrast, its expression is suppressed
under hypoxic conditions [63]. Overall, in tumors, elevated intracellular iron levels are reported
compared to their healthy cellular counterpart. Excess iron favors tumor growth [64]; thus, depleting
this metal, either by reducing dietary intake or by chelating, shows inhibition of tumor growth [65].
Specifically, epidemiological studies show positive associations between dietary iron consumption and
breast cancer incidence [66]. The studies analyzed in this review (Table S4, Supplementary Materials)
show results consistent with those reported in the literature. Both tumor tissue and trace element
quantification showed higher iron levels than healthy tissue or patients [60,67]. At the mechanistic
level, in silico models suggest oncogenic Ras pathways in altered iron homeostasis in tumors [68].
Studies with cell cultures show that the most aggressive lines accumulate a more significant amount
of iron [69]. The use of chelators inhibits breast carcinoma growth and causes cell-cycle arrest in the
S phase accompanied by apoptosis [70].

3.2.3. Selenium

Se is a metalloid with both nutritional and toxic properties. In humans, Se’s nutritional functions are
carried out through 25 enzyme proteins with selenocysteine in its active center [71]. These selenoproteins have
a wide range of pleiotropic effects, from antioxidant (such as glutathione peroxidases) to anti-inflammatory
effects (selenoproteins) to the activate/deactivate thyroid hormones (deiodinases) [72]. The epigenetic
evidence indicates that high Se exposure leads to DNA methyltransferase expression/activity [73].
The daily intake recommendation is set at 60 µg for men and 53 µg for women [74]. In cancer,
Vinceti et al. [75] analyzed in a recent review 55 prospective observational studies and concluded that
there is a lower incidence and mortality associated with high exposure to Se. However, in an analysis
of eight clinical trials, no clear evidence was found that supplementation with Se reduced the risk
of any cancer [76]. In the present review, we found five articles on Se and breast cancer (Table S4,
Supplementary Materials). Three of these articles were on prospective studies [57,70,77], and the
serum of Se showed lower levels in all patients than in their healthy counterparts. On the contrary,
in tumors, the Se levels were higher than in the adjacent tissues. Another finding in various studies
is that the decreases in circulating levels of Se correlate with the stages of disease progression [75].
The analyzed preclinical studies showed an inverse relationship between circulating levels of Se and
vascular epithelial growth factor (VEGF) [78]. Se supplementation seemed to inhibit tumor progression
in preclinical studies and cell cultures [79]. A decrease in Se levels appears to be widespread in cancer
progression, but there is no evidence of its benefits as an adjuvant in tumor progression.
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3.2.4. Zinc

Zn is an omnipresent trace element. It is found in all tissues of the body, where its most significant
role is in stabilizing the structure of many proteins. This element has three main functions in the
organism: catalytic (DNA synthesis, brain development, and wound healing), structural (DNA
replication), and regulatory (enzymatic activity and protein stabilization). Among its many functions
in the body, Zn is involved in immune response, oxidative stress, apoptosis, and aging [80]. At the
regulatory level, Uciechowski and his group described epigenetic and redox-dependent mechanisms
as responsible for Zn effects in the immune system [81]. Various studies established an association
between Zn deficiency and cancer (in cell cultures, preclinical models, and human studies) [82,83].
In our review (Table S4, Supplementary Materials), two studies examined the amount of systemic Zn
in patients with breast cancer. Measurements in serum and hair indicated a decrease in Zn compared
to their healthy counterparts [57,84].

Regarding intratumor Zn levels, the results vary depending on the technique used for metal
detection [85,86]. Our analysis showed that the overexpression of the Zn transporter ZIP10 in tumor
cells [87] and the chelation of this metal inhibit the invasiveness of several metastatic tumor cell
lines [56,87]. Like Se, systemic Zn levels decrease with the disease; however, high intratumoral
concentrations occur, which is explained by the overexpression of its ZIP10 transporter. A therapeutic
approach used in recent years involves Zn chelators because Zn is required for tumor cell adaptation
to hypoxic conditions [88].

3.3. Folates

Folates are micronutrients of the vitamin B complex. They are acceptors/receptors of 1-carbon
units and function as coenzymes involved in purine/pyrimidine synthesis and various methylation
reactions [89,90]. Associations have been reported between the nutritional status of folate and chronic
diseases such as cardiovascular disease, cancer, and cognitive dysfunction [91]. In cancer, depending on
the time of supplementing with folate, the results could be the opposite. Thus, supplementation before
the existence of preneoplastic lesions can prevent tumor development, whereas supplementation in the
presence of established lesions increases tumorigenesis [92–94]. This dual role of folate in carcinogenesis
has been explained as an adequate intake of folates prevents DNA damage [95], while excess folate
during an established tumor process decreases the expression of tumor suppressor genes [96,97]. In this
review (Table S5, Supplementary Materials), studies in preclinical models showed that high-folate
diets increase tumor volume and the number of tumors, while deficiency of this nutrient significantly
inhibits breast cancer [98–100]. The mechanisms via which these results have been explained are
inferred from in vitro studies where folic acid supplementation increased the expression of enzymes
responsible for DNA methylation and the decrease in tumor suppressor genes [Phosphatase and tensin
homolog;(PTEN) and adenomatous polyposis coli (APC)] associated with increased methylation of
its promoters [101]. However, studies in human patients showed conflicting results. Two studies
analyzed folate consumption using a dietary questionnaire; one found an inverse association between
folate consumption and mortality [102] and the other did not find any association [103]. Another study
analyzing different subtypes of breast cancer found that plasma folate levels are lower in patients
with human epidermal growth factor receptor 2 (HER2+) and triple-negative cancer [104]; however,
more in-depth studies are needed in this area.

3.4. Vitamin C

Vit C (or ascorbic acid) is an essential micronutrient present in citrus and other vegetables.
Its biological functions are extensive, as they contribute to the synthesis of metabolites (carnitine,
catecholamine, norepinephrine, etc.) and collaborate in the metabolism of tyrosine, tryptophan,
folic acid, and cholesterol. They also participate in collagen formation and maintenance and thyroid
hormone (TH) synthesis [105–108]. On the other hand, ascorbic acid supplementation strengthens the
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immune system, increasing neutrophil motility, leukocyte transformation, and phagocytosis [108]. It is
also a potent antioxidant [109]; this capacity makes it a supplier of reduced iron, necessary for epigenetic
regulation of DNA and histone demethylation [110]. In cancer patients, Vit C deficiency is common.
It has been reported that pharmacologic doses of ascorbate act as a pro-oxidant ascorbate radical,
decreasing the growth and aggressiveness of ovarian, pancreatic, and glioblastoma xenografts in
mice [111]. In the articles about this micronutrient in breast cancer (Table S6, Supplementary Materials),
culture and preclinical models indicated that Vit C deficiency facilitates tumor growth and expansion,
while supplementation reduces cell proliferation [112,113]. In studies in human patients, consumption
before malignancy appeared to be associated with survival; however, once the tumor process was
established, this protective effect seemed to disappear [114]. The progression of malignancy is related
to decreased serum ascorbic acid, which is exacerbated if the patients have been smokers (exposed
to a more significant amount of oxidants) [115,116]. A single clinical study evaluated the effect of
intravenous injections of Vit C in breast cancer patients. The maximum dose they supplemented was
50 g, where plasma ascorbate concentrations averaged 18 mM. Under these conditions, they observed
a reduction in serum inflammatory markers such as IL-1α, IL-2, IL-8, and tumor necrosis factor alpha
(TNF-α) and a reduction in C-reactive protein levels associated with poor prognosis and worse survival
rates [117]. Systemic Vit C levels are inversely related to exposure to oxidants (such as tobacco).
This decrease is also observed during disease progression, which could be explained, in part, by the
increase in ROS activity characteristic of tumor progression [115,116]. These effects, such as the redox
pair of Vit C, depend on its concentration. An antioxidant effect is observed at a physiological range of
serum Vit C between 26 and 84 µM (equivalent to an intake of 75–90 mg/day). To achieve an oxidizing
effect, at least >100 µM in plasma is required, which is only achieved with intravenous injections of
ascorbic acid (117). The results analyzed in this review point to a possible benefit of ascorbic acid
supplementation, although clinical studies are needed to verify the effects observed in other models.

3.5. Polyphenols

Polyphenols are a group of natural compounds with phenolic structural characteristics. More than
8000 structures have been identified and are present in fruits and grains [118]. High consumption has
been linked to a lower risk of cancer, cardiovascular diseases, chronic inflammation, and degenerative
diseases [119,120]. The primary biological role of polyphenols is associated with their antioxidant
properties; however, they have also been described as metal chelators (such as Fe2+), anti-inflammatories,
and promoters of probiotic actions [121–123]. In cancer, the protective effect of polyphenols is debated
due to the discrepancy between study models and the use of non-physiological concentrations [124].
Although numerous possible mechanisms have been elucidated, most of the results obtained show
different effects at low or high supplement concentrations [125]. These biphasic effects could be
explained by their ability to modulate hormonal receptors; the chemical structure of polyphenols
defines their affinity for binding to ERs. This affinity is lower than that of estradiol and allows
agonist or antagonist reactions depending on the bound polyphenol (e.g., genistein is an ERα and ERβ
agonist; resveratrol is an ERα antagonist and ERβ agonist) [126–128]. All the studies analyzed in this
review on the effects of polyphenols on breast cancer progression (Table S7, Supplementary Materials)
were conducted in cell cultures and reflect the discordant results indicated in the literature. In the
MCF-7 cell model (ER+), supplementation with small amounts of isoflavones showed increased cell
proliferation [128]. At the same time, high doses inhibited growth in a dose-dependent manner and
stopped the cell cycle in G1 [129]. In MDA-MB-231 cells (triple-negative model), small amounts of
luteolin did not affect invasive and cell migration capabilities [130], while small quantities of naringin
(0.1 µM) showed significant inhibitory competences [131]. The studies analyzed in this review do not
offer a clear direction on the use of polyphenols to treat breast cancer, which is consistent with what
has been published for other types of malignancies.



Nutrients 2020, 12, 3613 7 of 18

3.6. Fatty Acids

The fatty acids analyzed in this review are α-lipoic acid and α-linolenic acid. α-Lipoic acid is found
in high concentrations in spinach, broccoli, liver, and kidney and participates in the energy metabolism
of carbohydrates, proteins, and fats [132]. It is also a cofactor for mitochondrial enzymes and a potent
antioxidant [133]. As a structural component of cell membranes, the location and organization of
α-lipoic acid and α-linolenic acid within cellular lipids directly influence the behavior of several
proteins involved in immune cell activation [134]; in fact, Jacobsen et al. associated a lower level
of DNA methylation in inflammatory disease and inflammatory response with a high-fat diet [135].
The effects of dietary fatty acids have been described in numerous signaling pathways in tumorigenesis,
inhibiting tumor growth and proliferation and inducing apoptosis [136]. a-Linolenic acid is present in
walnuts, canola, many legumes, and green leafy vegetables [137]. It is a precursor of omega-3 fatty
acids and is essential for brain development and functions, cardiovascular health, and inflammatory
response [138,139]. In tumor cell cultures, antitumor properties are attributed to α-linolenic acid, due to
the decrease in VEGF and metalloprotease expression and the restoration of tumor suppressor gene
expression (e.g., Rb and p. 53) [140]. The same is observed with lipoic acid (Table S8, Supplementary
Materials), which exhibited antitumor effects such as decreased ROS, cell-cycle arrest followed by
apoptosis, and decreased proliferation [141,142]; however, when scaled in preclinical models, similar
doses generated contradictory responses. In mice with HER2 overexpression, supplementation with
lipoic acid increased tumor growth [143], whereas, in nude mice xenografts, the treatment significantly
retarded tumor growth [144]. Very few studies were found on fatty acids in breast cancer progression
and none in patients. The results of these studies show antitumor effects in cell lines; further studies in
preclinical models are necessary to establish possible benefits.

3.7. Vitamin E

Vitamin E (Vit E) is a group of eight fat-soluble compounds: four tocopherols (α, β, γ, and δ)
and four tocotrienols (α, β, γ, and δ). Tocopherols predominate in olive, sunflower, corn, and soybean
oils, while tocotrienols are found in palm oil or rice bran [145,146]. These compounds exert antioxidant,
neuroprotective, and cholesterol-lowering activities [147]. Vit E is found in higher concentrations in
immune cells than in other blood cells, and it is among the best nutrients modulating the immune
system [148]. This is due to its antioxidant effect in polyunsaturated fatty acids (enhanced in membranes
of immune cells), subject to oxidative damage because of their high metabolic activity and defense
against pathogens [149,150]. In cancer, antitumor properties have been attributed to this group of
compounds, especially γ- and δ-tocotrienols, because of their effect on molecular pathways involved
in inhibition, apoptosis, and autophagy [151]. In our review (Table S9, Supplementary Materials),
we analyzed two studies with tocotrienols and two with tocopherols. Both tocotrienol studies showed
antitumor properties due to inhibition in growth, invasiveness, and migration [115,152]. Furthermore,
plasma levels of tocopherols appeared to decrease with the progression of the disease [151]. In the
cell culture model, supplementation with α- and γ-tocopherol showed VEGF inhibition [152]. Vit E
compounds show antitumor properties in cell cultures such as the inhibition of proliferation, migration,
and invasiveness and a decrease in apoptosis markers. However, the lack of studies in preclinical
and clinical models does not allow us to conclude that these compounds are effective in breast
cancer progression.

3.8. Iodine

Iodine is an essential micronutrient for the development of vertebrate organisms. It is a structural
constituent of THs and a regulator of thyroid gland function [153]. Thyroid hormones play an essential
role in the differentiation, growth, and energy metabolism of virtually all cells in the organism [154].
Furthermore, recent studies described that iodine, in its molecular form (I2), is a cellular modulator of
organs capable of internalizing it, such as the breast, prostate, and pancreas, as well as the immune
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and nervous systems [155–158]. This chemical form of iodine has antioxidant [159], antineoplastic,
and apoptotic effects in several cancer cells [160,161] and exhibits modulatory properties in the immune
system [10]. Fresh seaweed is an important component of the Asian diet and is the only natural I2

source. Regular consumption of these algae is associated with a low incidence of breast diseases,
such as fibrocystic disease or mastalgia and cancer, in these populations [156].

Various groups have shown the antineoplastic and immunomodulatory effects of I2 and proposed at
least two mechanisms: (1) a direct action involving its antioxidant/oxidant properties and (2) an indirect
effect through iodolipid formation. In the case of direct effects, two datasets were obtained showing
that (a) at low or moderate concentrations, I2 significantly reduces lipid oxidation by competing
with ROS for various cellular components or directly neutralizing HO radicals through coupling and
generating iodinated species without oxidative activity i.e., hypoiodous acid (HOI) or hydrogen iodide
(HI) [156,162], and (b) at high concentrations acting as a direct oxidant, I2 dissipates the mitochondrial
membrane potential, inducing mitochondria-mediated apoptosis [163]. The indirect action involves the
formation of iodolipids such as 6-iodo-5-hydroxy-8,11,14-eicosatrienoic acid (also called 6-iodolactone;
6-IL) derived from arachidonic acid (AA) iodination [164]. Concerning the mammary gland, it has been
described that tumors induced by methyl nitrosourea (MNU) contain AA concentrations four times
higher than normal tissue and that after chronic treatment (1 week) with oral I2 supplements, and 6-IL
15 times higher than in normal mammary tissue, suggesting that 6-IL plays a role in the antiproliferative
effect of I2 [160]. These findings have also been corroborated in the human tumor cell line MCF-7
where lipids similar to 6-IL are detected after treatment with I2 [158] or apoptosis is triggered by I2 or
6-IL [165,166]. In this sense, our group described that the median lethal dose (LD50) of I2 for tumor
cells is four times lower than that required for cells of normal origin, which suggests that the high
availability of AA in tumor cells favors their iodination, generating 6-IL and triggering apoptosis [158].

Furthermore, we showed that 6-IL is a specific ligand and a potent promoter of peroxisome
proliferator-activated receptor gamma (PPARγ) expression [167]. These receptors are ligand-activated
transcription factors. In addition to regulating the expression of genes involved in lipid metabolism,
their activation is associated with differentiation mechanisms, generating antiproliferative and drug
resistance inhibition effects in various types of cancers [168]. Only three papers were yielded from
the research carried out in PubMed (Table S10, Supplementary Materials). In preclinical models
(MNU-induced mammary tumors in rats, in xenografts of various cancer cells in immunosuppressed mice,
or canines with spontaneous breast cancer), the continuous oral supplement of I2 sensitized tumor cells,
allowing a better antineoplastic response, decreasing tumor size, and avoiding chemoresistance [169–171].
In fact, in a murine model, the I2 supplement allowed reducing the doses of doxorubicin (DOX)
up to fourfold, maintaining the antineoplastic effect and exerting protective effects on the heart and
on health in general [169]. In a canine study, I2 supplementation, together with DOX neoadjuvant
therapy, reduced the severity of side effects and improved tumor response. The tumor decline (18%)
was accompanied by inhibition in the expression of resistance/invasion genes such as Survivin,
drug resistance protein 1 (MDR1), and plasminogen activating urokinase (uPA). The 10-month survival
analysis showed that I2 supplementation allowed a significant increase in disease-free time (73%)
and survival (90%) [171]. In clinical studies in breast cancer patients, our group showed that the
coadministration of I2 with FEC (5′-fluorouracil, epirubicin, cyclophosphamide) chemotherapy was
accompanied by a greater antineoplastic response (25% decrease in tumor size) and the absence of
chemoresistance processes observed in 30% of patients treated only with FEC. This effect correlated
with the activation of Th1 antitumor immune signaling pathways and with overexpression of PPARγ
receptors in FEC+I2 tumor samples. We also corroborated, as in the canine protocol, that the I2

supplement significantly attenuates intestinal, cardiac, and general health side effects [10].
In relation to the immune system’s modulatory mechanisms, it has been shown that various types

of immune cells can internalize I2 and, depending on the cellular context, this element can act as an
anti-inflammatory or proinflammatory agent. In vitro, I2 has also been shown to induce the release of
antitumor cytokines, such as IL-6, IL-10, and IL-8 in normal leukocytes [172,173]. Another possibility



Nutrients 2020, 12, 3613 9 of 18

currently explored in our laboratory is that I2 as an oxidized agent can exert epigenetic modifications
associated with the activation of essential demethylase enzymes such as DNA methyltransferase 3
(DNMT3) ([174], unpublished data).

4. Discussion

Antineoplastic properties have been described in several micronutrients for decades, but none
have shown solid evidence in vivo. One of the main pitfalls for any micronutrient is its bioavailability,
which is usually low when supplementation is oral. For example, the average bioavailability is 33%
for Vit D, 50% for Zn, 18% for iron, 15% for α-tocopherol, and 0.006% for Vit C [175–177]. All the
micronutrients analyzed in this review have antiproliferative, apoptotic, and antimetastatic properties
in vitro; however, in studies in vivo, the beneficial effects diminish or disappear. This can be explained
because matching the dosages from in vitro to in vivo models orally and safely is difficult and often
speculative. Another problem is the effectiveness; the heterogeneity of tumors and their differential
response to treatments make it necessary to evaluate each nutrient for each type of malignancy.
The third stumbling block is establishing the therapeutic dose/supplementation time. Not only have
contrary effects been described depending on the timing of nutrient administration (as in the case of
folates and Vit C), but numerous nutrients show different results depending on the dosage.

From the various mechanisms proposed to explain the antineoplastic effects of micronutrients,
the most common is related to the antioxidant capability and includes Vit C and E, metals such as Zn,
iron, and Se, and I2. In the case of Vit D, its effects are explained by the ability of its key molecule,
calcitriol, to bind nuclear receptors and regulate gene expression. During tumor progression, folate
treatments increase expression in DNA methylation enzymes (DNMT1), decreasing tumor suppression
genes. Studies on I2 show that, in addition to its antioxidant actions in its 6-IL form, it is a genomic
modulator as an agonist of PPARγ [160]. It has also been proposed as an epigenetic modifier due
to its ability to regenerate DNA demethylating enzymes, which results in increased expression of
tumor suppressor genes and genes of the cytotoxic immune system [178]. In this review, we analyzed
the work of the main micronutrients in breast cancer progression. Only Vit D and I2 showed clear
antitumor effects in clinical studies, and both nutrients possess the capacity for gene regulation. In their
study, Madden et al. [9] administered chronically with low doses of Vit D (10 µg/day) and observed a
20% reduction in mortality (49%). The work of Moreno-Vega et al., where they showed the efficacy of
I2 supplementation (alone or combined with chemotherapy) in a 5-year pilot study, showed a 63%
increase in disease-free time, a reduction in tumor size, and cytotoxic immune system activation [10].
In this direction, there are many works analyzing the combination of nutrients and chemotherapeutic
therapies evidencing synergic interactions which can lead to better outcomes [179,180]. Moreover,
guidelines with combinations of different nutrients for cancer patients were commissioned by ESPEN
(European Society for Clinical Nutrition and Metabolism) and by the European Partnership for Action
Against Cancer (EPAAC) [181]. However, for now, more clinical studies are needed to establish their
antitumor properties in vivo.

5. Patents
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