
R E S E A R CH AR T I C L E

Biological and functional relevance of CASP predictions

Tianyun Liu1 | Shirbi Ish-Shalom2 | Wen Torng1 | Aleix Lafita3,4 |

Christian Bock5,6 | Matthew Mort7 | David N Cooper7 | Spencer Bliven3,8 |

Guido Capitani3,9 | Sean D. Mooney5 | Russ B. Altman1

1Department of Bioengineering, Stanford

University, Stanford, California

2Biomedical Informatics Training Program,

Stanford University, Stanford, California

3Laboratory of Biomolecular Research, Paul

Scherrer Institute, Villigen, Switzerland

4Department of Biosystems Science and

Engineering, ETH Zurich, 4058 Basel,

Switzerland

5Department of Biomedical Informatics and

Medical Education, University of

Washington, Seattle, Washington

6Heidelberg University, Heidelberg,

Germany

7Institute of Medical Genetics, Cardiff

University, United Kingdom

8National Center for Biotechnology

Information, National Library of Medicine,

National Institutes of Health, Bethesda,

Maryland

9Department of Biology, ETH Zurich, Zurich,

Switzerland

Correspondence

Russ B. Altman, Stanford University,

Shriram Center Room 209443 Via Ortega

MC 4245, Stanford, CA 94305.

Email: russ.altman@stanford.edu

Abstract
Our goal is to answer the question: compared with experimental structures, how useful are pre-

dicted models for functional annotation? We assessed the functional utility of predicted models by

comparing the performances of a suite of methods for functional characterization on the predic-

tions and the experimental structures. We identified 28 sites in 25 protein targets to perform

functional assessment. These 28 sites included nine sites with known ligand binding (holo-sites),

nine sites that are expected or suggested by experimental authors for small molecule binding (apo-

sites), and Ten sites containing important motifs, loops, or key residues with important disease-

associated mutations. We evaluated the utility of the predictions by comparing their microenviron-

ments to the experimental structures. Overall structural quality correlates with functional utility.

However, the best-ranked predictions (global) may not have the best functional quality (local). Our

assessment provides an ability to discriminate between predictions with high structural quality.

When assessing ligand-binding sites, most prediction methods have higher performance on apo-

sites than holo-sites. Some servers show consistently high performance for certain types of func-

tional sites. Finally, many functional sites are associated with protein-protein interaction. We also

analyzed biologically relevant features from the protein assemblies of two targets where the active

site spanned the protein-protein interface. For the assembly targets, we find that the features in

the models are mainly determined by the choice of template.
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1 | INTRODUCTION

The ultimate goal of structure prediction is to provide insights into bio-

logical functions. However, it is difficult to quantify and benchmark the

utility of protein structure prediction for functional inference.1 The bio-

logical function of a protein may have several different meanings; it can

include catalyzing chemical reactions, transporting materials across the

cell, receiving and sending chemical signals, or responding to stimuli

and providing structural support. Most of these functions are realized

by interacting with other proteins or small molecules. Therefore,
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interfaces between proteins, or interfaces between a protein and small

molecules are critical to understanding function.

Official CASP structural assessments include global and local met-

rics that evaluate atomic level similarity of the structural features of

proteins.2–4 The root mean square deviation (RMSD) was the first met-

ric used in the CASP evaluations and it is still reported in the automatic

evaluation system. The global distance test (GDT) score is effective for

the automatic evaluation of predictions as it reflects absolute and rela-

tive accuracy of models for a wide range of target difficulty. In addition

to GDT, several other similarity measures are used. Structural quality

often tracks with functional quality, but the details of this correlation

needs to be further explored.

The physicochemical environments within functional sites in

experimentally solved structures are strongly associated with the func-

tional properties of proteins. Therefore, a predicted structure that con-

tains a similar physicochemical environment to an experimentally

solved structure may be the most useful one for functional annotation.

Previous studies have used a structural prediction protocol on a set of

proteins and then compared the results of functional predictions with

those from experimental structures.5–8 In this work, we perform a sys-

tematic assessment that compares the ensembles of predictions of a

target protein from different modeling algorithms to quantify the utility

of predictions for inferring or recognizing function.

We address one simple question: to what extent do the CASP pre-

dictions accurately provide protein function information (compared to

experimental structures)? To help define the term “protein function”,

we asked the experimentalists why they were motivated to solve the

structures. Based on the experimentalists’ stated motivations, we

defined regions or sites for assessment, including nine sites with known

ligand binding (holo-sites), nine sites that were expected or suggested

by experimental authors to have small molecule binding (apo-sites), and

10 sites containing motifs, loops, or key residues with important

disease-associated mutations. We evaluated the physical features of

the predicted structure sites and the degree to which they shared simi-

larity with the experimental structure sites. We previously developed

PocketFEATURE (PF), an algorithm that evaluates similarity between

two functional sites in terms of their physicochemical features.9–12 As

part of this work, we applied the PF algorithm to assess the extent to

which physicochemical features that are observed in experimental

structures can be replicated by predicted structures. We also analyzed

features of quaternary structure assemblies in two oligomeric proteins

and disease-causing variants, which often play an important role in pro-

tein function.

2 | RESULTS

2.1 | Define sites

The biological rationale for determining a protein’s structure provides a

key perspective from which we evaluate the utility of predicted mod-

els. That is, what functional information should be provided by predic-

tions from the viewpoint of the experimental authors? The answers we

obtained from experimental authors varied in detail. Example include:

� “First structure <in this family>. . .might help identify its function”;

� “Putative peptide-binding site: D1154, F1147, I1162, M1163. . .”;

� “Interface: 46–48, 76–82, 104–120, 218–224”;

� “His204 of T0894 (CdiA-CT) is involved in catalysis”;

� “Cys:His dyad as per other LD-TP enzymes”;

� “It binds ADP”.

Based on the answers, we defined three categories of functional sites

by manually curating these answers and inspecting experimentally

solved structures. The three categories are: (1) nine holo sites: pockets

based on observed ligand binding in experimental structures, (2) nine

apo sites: sites based on (a) critical residues provided by experimental

authors, or (b) known motifs relevant to ligand or substrate binding,

and/or (c) site finding algorithms, and (3) ten critical patches: patches

centered at the key residues provided by experimental authors, includ-

ing functionally critical residues, loops and mutations (Table 1 and Sup-

porting Information Table S1). We evaluated the similarity of the three

categories of pockets to the experimental sites.

2.2 | Overall assessments

We compared our assessment (using PF) on functional environment to

the CASP assessments on overall structure quality (Figure 1). We aim

to provide two references for users who are considering structural

models for functional annotation: (1) Can model-1 (the best in terms of

their structure feature) provide robust functional insights? (2) Can the

server (the average of all models) provide models with good functional

features? PF measures the similarity between two sites in terms of

their physicochemical features. The chosen official CASP assessments

include the CASP ranking (see Methods), the global distance test

(GDT), the template modeling score (TM), and root mean square devia-

tion (RMSD). Figure 1 shows the correlation between PF and official

CASP assessments (Analysis for individual target are available at

https://simtk.org/projects/casp12funassess/.). In general, the correla-

tion between PF and TM is lower than that between PF and GDT or

PF and RMSD. This corresponds with the fact that TM is often consid-

ered as a more accurate measure of the quality of full-length protein

structures (compared with RMSD and GDT),13 while PF assess local

characterization and may not reflect the quality of full structures.

CASP predictor teams could submit up to five models, ranked by

their predicted quality. For each site, we either averaged scores over all

submitted models (“all-models”; Figure 1 top panel) or considered only

the first model (“model-1”; Figure 1 bottom panel). When we focus on

the correlation between PF ranking and CASP ranking, the correlation

coefficients for model-1 are consistently higher than the all-models

average, indicating that predictions with higher overall structure quality

often have good functional features (Supporting Information Table S2).

For example, the correlation between PF-ranking and CASP ranking for

T0911 all-models is about 0.4423 and that for model-1 is 0.8878 (Pre-

dictor teams know which of their structures are likely the best.). It is

interesting to note that the assessments on holo sites generally have

lower correlation coefficients than those on apo sites and critical

patches.
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The correlation between our functional assessments and the struc-

tural assessments has two modes: (1) High correlation: predictions with

high overall structure quality often have good local structure quality at

their functional sites. This is reflected in the higher correlation on

model-1 assessments. (2) Low correlation: some predictions with excel-

lent structure quality at local functional sites may not have good overall

structure quality. For some targets, we found that PF-scores do not

track with the structural assessment, resulting in low correlation coeffi-

cients (Supporting Information Table S2).

Two servers (server-220 GOAL14 and server-005 Baker-

ROSETTASERVER15) made predictions on all 28 sites; this provides

enough data to allow a comparison between servers (Supporting

Information Table S3). Both servers showed fairly good perform-

ance in structural assessments. Table 2 shows our functional assess-

ments and CASP assessments on model-1 only. Using the CASP

ranking, 12 of 28 model-1 sites predicted by ROSETTASERVER

were ranked in the top 30 models; whereas, 11 of 28 model-1 sites

predicted by GOAL were ranked in the top 30 models. Using

TABLE 1 Twenty-eight sites include nine known ligand binding site (holo, yellow), nine putative ligand binding site (apo, blue) and 10 critical
patches surrounding key residues, motifs, or mutations (purple)a

Target ID # points Type RMSD range (Å) # servers Classification

T0861 28 Holo/LLP (0.945, 26.170) 42 TBM

T0863 8 Holo/CLR (4.686, 284.38) 90 FM

T0873 24 Holo/FMN (2.656, 109.89) 41 TBM

T0879 7 Holo/ZN/B (4.213, 40.255) 39 TBM

T0889 21 Holo/SOR (2.591, 44.685) 38 TBM

T0891 11 Holo/HEM (2.314, 29.119 40 TBM

T0893 22 Holo/ADP (9.251, 51.388) 43 TBM

T0910 27 Holo/ANP (2.540, 45.013) 40 TBM

T0911 10 Holo/GCO (4.377, 193.48) 105 TBM

T0880-0 14 Apo (8.492, 59.427) 108 FM

T0880-1 13 Apo (8.492, 59.427) 108 FM

T0894 19 Apo (5.064, 68.908) 98 TBM

T0895 21 Apo (4.353, 24.348) 110 TBM

T0896 23 Apo (5.030, 150.96) 98 TBM

T0913 13 Apo (3.955, 42.81) 108 TBM

T0917 73 Apo (2.564, 44.06) 43 TBM

T0942 10 Apo (2.992, 72.043) 92 TBM

T0947 25 Apo (5.292, 33.782) 97 TBM

T0860 17 Motif (2.654, 54.506) 42 TBM

T0864 11 Key residues (10.34, 139.28) 101 FM

T0882 11 Key residues (2.306, 25.381) 116 TBM

T0914 26 Key residues (13.53, 127.45) 97 FM

T0915 14 Key residues (5.42, 40.854) 108 FM

T0920-0 31 Key residues (3.213, 180.13) 39 TBM

T0920-1 14 Key residues (3.213, 180.13) 39 TBM

T0943-1 9 Motif (6.497, 77.188) 40 TBM

T0943-2 10 Motif (6.497, 77.188) 40 TBM

T0948 15–19 Mutation (3.092, 36.111) 95 TBM

aThe number of functional centers are in column 2. The types of sites are also noted in column 3, ligand IDs are marked when they are applicable. The
RMSD ranges of all predicted structures are in column 4. The number of servers that made predictions on each target (site) is in column 5. Column 6
shows the target classification. Of the 28 sites, six sites are FM (free modeling) and 22 sites are TBM (template based modeling). The number of func-
tional centers in each site is listed in column 2 (Specific resiude indexes are in Supporting Information Table S1). Note that we identified four critical
patches surrounding four different mutations for T0948.
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functional assessments, 12 of 28 model-1 sites predicted by

ROSETTASERVER were ranked in the top 30 models; whereas,

seven of 28 model-1 sites predicted by GOAL were ranked in the

top 30. Notably, for the site in T0920, PF ranked model-1 from

server 220 within the top 30 for its high similarity, even though its

overall structure rank was 108.

2.3 | Assessments on three types of sites

2.3.1 | Holo sites

The nine holo-sites were defined based on the observed ligands in

the experimental structures. The assessments compared the sites

in predicted structures where the sites were not bound with

ligands (apo) with the experimental structures where the sites

were bound with ligands. The correlation coefficients between

CASP rank and our functional assessments ranged from 0.44 to

0.71 (with four sites above 0.5) (Table 3). When comparing only

model-1, the correlation coefficients improved with averages of

0.49-0.89 (with eight sites above 0.5). For all nine sites, the corre-

lation coefficients between functional and structural assessments

for model-1 were higher than those for all-models taken together.

That is, for holo sites, the first ranked model (the best predicted

model in terms of structure quality) contained better functional

characterization.

We evaluated six sites that had more than 10 predictions that

were within 5 Å RMSD compared to the experimental structures

(T0861, T0873, T0889, T0891, T0910, and T0911). For these six sites

we selected the top 30 predictions based on functional assessments

(Table 4 and Supporting Information section 2). We highlight one

example to show how local functional environments can have charac-

teristics that an overall structural assessment may not recognize. One

example, T0891, is a heme binding protein. More than 70% of predic-

tions have a GDT score better than 80. The experimental structure was

solved with a heme-binding molecule.

For T0891, we compared the local features in the best PF ranked

model with those observed in the best structure model (best GDT

model) in Figure 2. The model-2 from server GOAL (220–2) has the

best GDT score (91.74) among all the predictions, while its PF-zscore is

21.466. PF estimates similarities by matching similar microenviron-

ments between two sites. Microenvironment refers to the local, spheri-

cal region in the protein structure that may encompass residues

discontinuous in sequence and structure (See method). A higher num-

ber of matched microenvironments and a more negative PF-zscore sug-

gest better similarity. The model-1 from HHPred (349–1) was ranked

best by our functional assessment with a PF-zscore of 22.035, but its

GDT score was 86.61. When aligning microenvironments surrounding

the heme-binding site, the best structural model (220–2) shared five

similar microenvironments with the experimental structure. We noticed

that the secondary structures near the binding site were slightly differ-

ent from those in the experimental structure. The top PF ranked model

matched an additional two microenvironments to the experimental

structure due to better positioning of the heme-binding motifs.

2.3.2 | Apo sites

The nine apo-sites were defined based on the information provided by

experimental authors combined with a ligand-binding site searching

FIGURE 1 Correlation between functional assessments and CASP assessments are shown in box plots. All-models are in top panel and model-1
are at the bottom. The correlation coefficients for model-1 are consistently higher than all-models, suggesting that predictions with higher overall
structure quality often have good functional features. The performance on holo sites is different from those on apo sites and critical patches (key
residues): the overall (all-models) correlation coefficients for holo sites are lower than that of apo sites or critical patches

LIU ET AL. | 377



program (Fpocket16). The assessments compared sites in predicted

structures (apo) to the corresponding sites in experimental structures

(apo). The correlation coefficients between CASP rank and our func-

tional assessments ranged from 0.28 to 0.75 (with five sites above 0.5)

(Table 3). When comparing only model-1, the correlation coefficients

improved with averages of 0.63-0.87 (with all nine sites above 0.5). For

eight of the nine sites, the correlation coefficients between functional

and structural assessments for model-1 were higher than those for

all-models. Notably, the average correlation between functional assess-

ments and CASP assessments was higher than that for holo sites (Fig-

ure 1 and Table 3).

TABLE 2 Comparison of GOAL (server 220) and Baker-
ROSETTASERVER (server 005)a

Baker-ROSETTASERVER GOAL

Target ID PF-zscore CASP rank PF-zscore CASP rank

T0861 –0.8359* 64 20.3765 29

T0863 –2.5319* 4 20.0974 15

T0873 20.5657 4 20.5067 32

T0879 20.7310 28 20.3296 49

T0889 –1.2986* 31 –1.1214* 36

T0891 20.5022 82 20.8670 6

T0893 20.1618 2 21.5486 73

T0910 21.1330 9 20.6228 31

T0911 20.3728 130 20.2285 60

T0880-0 20.5053 144 21.2300 267

T0880-1 0.3658 144 20.1219 267

T0894 –2.2214* 28 20.5339 204

T0895 21.3542 136 21.0160 15

T0896 20.0480 6 20.1733 98

T0913 20.5680 23 21.0342 100

T0917 –1.4857* 5 –1.4278* 9

T0942 0.8853 138 20.3964 72

T0947 20.7237 46 –1.4655* 11

T0860 –2.0525* 1 –1.9922* 5

T0864 21.2324 26 20.8253 300

T0882 –1.3716* 31 21.2500 68

T0914 21.0421 12 –1.9742* 230

T0915 –1.5203* 17 20.8576 29

T0920-0 –1.0713* 44 20.5544 108

T0920-1 21.0446 44 –1.5482* 108

T0943-1 0.0212 2 –2.1188* 13

T0943-2 –1.7469* 2 20.5068 13

T0948 –1.2990* 102 20.5110 25

aThese two servers made predictions on all 28 sites. We compared our
functional assessments and CASP assessments on model-1 generated by
the two servers. Predictions that are selected as top 30 models by CASP
structure assessment are highlighted in red (column 3 and column 5): 12
from Baker-ROSETTASERVER and 11 from GOAL. Predictions that are
selected as top 30 models (ranking of all-models) by functional assess-
ment are marked with * (column 2 and column 4): tweleve from Baker-
ROSETTASERVER and seven from GOAL. Note that the PF-zscores for
T0948 are the average of the four critical patches surrounding four dif-
ferent mutations (see Table 1).

TABLE 3 Correlation coefficient between functional assessment
and CASP assessment (Rank)

Target

Rank

All-models

Rank

Model-1

T0861 0.7103 0.7182

T0863 0.5294 0.5518

T0873 0.4768 0.4861

T0879 0.5019 0.8785

T0889 0.4878 0.5269

T0891 0.4388 0.5297

T0893 0.4489 0.7801

T0910 0.6979 0.8240

T0911 0.4423 0.8878

Average 0.5260 0.6870

T0880-0 0.5841 0.8242

T0880-1 0.2886 0.8361

T0894 0.7466 0.7377

T0895 0.5451 0.6312

T0896 0.4436 0.8253

T0913 0.4835 0.8712

T0917 0.6812 0.7346

T0942 0.4067 0.9276

T0947 0.7191 0.7203

Average 0.5442 0.7898

T0860 0.4027 0.6878

T0864 0.6049 0.6229

T0882 0.7321 0.8510

T0914 0.9567 0.8503

T0915 0.4736 0.4125

T0920-0 0.7562 0.7499

T0920-1 0.4436 0.6219

T0943-1 0.5040 0.7917

T0943-2 0.8797 0.8388

T0948 0.6249 0.7380

Average 0.6392 0.7141
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We evaluated six sites that had >10 predictions were within 5 Å

RMSD compared to the experimental structures (T0942, T0894,

T0895, T0896, T0913, and T0917). For the six sites, we selected the

top 30 predictions based on functional assessments (See Supporting

Information section 2). Using T0942 as an example, we demonstrated

how functional assessments capture local physicochemical properties

(Figure 3). T0942 has an HEXXH motif of metalloproteinase, identified

by sequence analysis. The motif forms a histidine-enriched site (residue

145 H, 140 H, 136 H, 246 H) that may bind zinc. Other residues near

this motif include 137E, 139 S, 196 F, 200 N, 201E. We compared

these side-chains from experimental structures, including the best GDT

ranked model-1 (004–1, GDT 46.3, PF-zscore 20.93), the best GDT

ranked all-models (060–2, GDT 54.5, PF-zscore 21.01), the best PF

ranked model-1 (016–1, GDT 38.6, PF-zscore 21.50), and the best PF

ranked all-models (303–4, GDT 39.8, PF-zscore 21.79). The top PF-

ranked models share similar side-chain arrangements with the experi-

mental structures whereas, the best GDT-ranked models did not. We

compared the microenvironment alignments between the experimental

structures, the best GDT ranked model-1 (004–1, GDT 46.3, PF-zscore

20.93), and the best PF ranked model-1 (016–1, GDT 38.6, PF-zscore

21.50). The best GDT model-1 had seven aligned microenvironments.

The best PF model-1 had 10 aligned microenvironments. The three

additional aligned microenvironments observed in the best PF model-1

are colored in grey: H246, H140, and H145, which are the key ele-

ments of metalloproteinase motifs (Figure 4 and Table 5).

2.3.3 | Critical patches

The 10 critical patches were defined based on the information provided

by experimental authors and resources, such as sequence analysis and a

literature review. We compared the microenvironments surrounding

the patches in predicted structures with those in experimental struc-

tures. Table 3 shows the correlation coefficients between CASP rank

and our functional assessments ranging from 0.40 to 0.96 (with seven

sites above 0.5). When comparing only model-1, the correlation coeffi-

cients ranged from 0.41 to 0.85 (with eight sites above 0.5). In this cate-

gory, model-1 (the best predicted model in terms of structure quality)

and other models have similar levels of functional characterizations.

We evaluated four sites that had >10 predictions that were within

5 Å RMSD compared to the experimental structures (T0860, T0882,

T0920-0, T0920-1). For these four sites we selected the top 30 predic-

tions based on functional assessments (Supporting Information section

2). In this category, functional information is often not available to pre-

dictors (in contrast to ligand binding sites); hence, we observe greater

deviation between structural quality and functional quality. For exam-

ple, when we ranked model-1 for the critical patch T0920-1, the best

functionally characterized prediction was 220–1 (GOAL), whose official

CASP rank was 108 in terms of its overall structural quality (Table 2

and Supporting Information section 2).

We applied PocketFEATURE to analyze patches surrounding

mutations in two targets: T0948 (four patches) and T0945 (20 patches).

The four patches in T0948 cluster together and were treated as one

functional site for overall assessment on critical patches, as discussed

above (Tables 1–3). We analyzed the 20 mutation patches and found

that the functional ranking tracks with the overall structure quality, but

with great deviations (Supporting Information Table S11). Figure 5

shows one patch surrounding a single nucleotide polymorphism (SNP)

376 H. The patch included residues: 245, 308, 312, 313, 314, 315,

374, 375, 376, 377, 378, 379, 380, 381, and 83, all of which form a

tight cluster near 376 H (left, experimental structure). The 15 residues

surrounding this SNP are the microenvironments associated with the

functional effects of mutations. However, in the best GDT model (best

GDT 220–1, GDT 59.27, PF-zscore 21.32) these microenvironments

TABLE 4 Thirty predictions of T0891 selected by functional assess-
ment (PF-Zscores)a

Server ID and name
Model
ID PF-Zscore GDT

CASP
rank

349 HHPred1 1 22.0351 86.61 85

405 IntFOLD4 1 21.7400 88.62 50

405 IntFOLD4 2 21.7400 88.62 50

405 IntFOLD4 3 21.7400 88.62 50

405 IntFOLD4 4 21.7400 88.62 50

405 IntFOLD4 5 21.7400 88.62 50

180 PhyreTopoAlpha 2 21.7263 82.59 118

236 MULTICOM-CONSTRUCT 3 21.6528 89.73 28

425 FALCON_TOPOX 3 21.6366 89.29 37

313 HHGG 1 21.6080 87.28 74

220 GOAL 2 21.4660 91.74 1

287 MULTICOM-CLUSTER 1 21.3041 90.18 17

446 YASARA 5 21.2917 91.07 4

345 MULTICOM-NOVEL 4 21.2332 89.51 31

275 slbio 4 21.2120 87.72 66

313 HHGG 5 21.2095 86.38 89

236 MULTICOM-CONSTRUCT 1 21.1696 90.18 17

236 MULTICOM-CONSTRUCT 5 21.1472 87.5 72

425 FALCON_TOPOX 5 21.1472 89.06 41

446 YASARA 1 21.0962 88.62 50

236 MULTICOM-CONSTRUCT 4 21.0937 90.62 9

382 RBO_Aleph 5 21.0750 86.16 95

026 chuo-u2 5 21.0501 79.02 129

380 chuo-u-server 5 21.0501 79.02 129

258 MUfold1 4 21.0389 89.51 31

077 FALCON_TOPO 2 21.0376 88.17 62

382 RBO_Aleph 1 21.0065 86.61 85

250 Seok-server 2 20.9667 90.18 17

077 FALCON_TOPO 3 20.9542 88.39 58

166 FFAS03 1 20.9156 81.03 122

aModel ID was from lables by the predictors. CASP official assessments
are in column 4 and column 5.
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are not clustered near 376 H because one of the key loops was not

predicted near the functional center. In the top PF ranked model (best

PF model, 324–1, GDT 54.07, PF-zscore 21.55), the corresponding

microenvironments form one cluster with the functional loops pre-

dicted in the correct position, even though the secondary structures in

the neighboring domain are not correctly predicted.

2.4 | Assessments from other research groups

2.4.1 | Functional prediction in dimeric targets (Capitani

research group)

Two target assemblies contained a pocket at the protein interface:

CckA histidine kinase (T0893), and STRA6 receptor (T0930). CckA is a

histidine kinase, a dimeric bifunctional enzyme mediating both phos-

phorylation and dephosphorylation of downstream targets.17 The most

important features of the quaternary structure are (1) the conserved,

exposed histidine residue, which acts as a phosphate acceptor during

autophosphorylation, (2) the connectivity of the four helices of the

dimerization and histidine phosphotransfer (DHp) domain and (3) the

relative position of the catalytically active (CA) domain to the DHp

domain.18 A total of eight groups submitted dimeric models with

acceptable oligomeric quality for T0893 (Supporting Information Figure

S2 and Table S9). These were manually inspected for the presence of

the three features. All the models exposed the phosphate acceptor his-

tidine, four models correctly reproduced the connectivity of the four

helices of the DHp domain, and two models predicted the correct posi-

tion of the CA domain for cis autophosphorylation. However, no model

included all three features.

STRA6 is a dimeric integral membrane receptor for retinol uptake

that associates with the retinol binding protein (RBP) and translocates

the retinol molecule into the lipid bilayer.19 The two features of the

STRA6 receptor dimer important for its function are the geometry of

the cleft in the dimeric interface, which bends the outer membrane

outwards, and the coordination of residues from both subunits to cre-

ate the RBP-binding motif.

Unfortunately, STRA6 had no sequence similarity to any known

membrane transporter, channel, or receptor at the time of the CASP12

experiment, and the prediction of its tertiary structure and assembly

was unsuccessful. Therefore, no predictions were of sufficient quality

to provide biologically relevant information about the function.

2.4.2 | Predictions at missense mutation sites (Mooney

research group)

To evaluate whether structure predictions can be interpreted as an

indicator of the pathogenicity status of missense mutations, we

FIGURE 2 The experimental structure of T0891 has a heme binding site. Local features in the best PF ranked model with those observed
in the best structure model (best GDT model). The model-2 from server GOAL (220–2) has the best GDT score (91.74) among all the pre-
dictions, while its PF-zscore is 21.466 (A more negative PF-zscore suggests better similarity.) The model-1 from HHPred (349–1) was
ranked best by our functional assessment with a PF-zscore of 22.035, but its GDT score is 86.61. When aligning microenvironments sur-
rounding the heme-binding site, the best structural model (220–2) shares five similar microenvironments with the experimental structure.
The best PF ranked model shares seven similar microenvironments with the experimental structure
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assessed secondary structure and solvent accessibility predictions.

The mutation databases ClinVar20 and HGMD21 were utilized to

obtain a total of 20 unique, non-synonymous pathogenic variants

and 64 variants of unknown clinical significance (VUS) for the target

region T0945 of the DPAGT1 protein. Being an essential part of N-

glycosylation, the observed DPAGT1 mutations are linked to myas-

thenia and myopathy [Selcen 2014] and limb-girdle congenital myas-

thenic syndrome with tubular aggregates.22 In addition, DPAGT1 is

involved in disturbing intercellular adhesion in oral cancer.23 To mea-

sure prediction accuracy at pathogenic variants and VUS, we ana-

lyzed the following five metrics for variant-affected residues: (1) The

standard deviation of predicted relative (RelAcc) and absolute sol-

vent accessibility. (2) The RMSD between predicted and correct rela-

tive and absolute solvent accessibility (AccErr). (3) The fraction of

correctly and incorrectly predicted secondary structure as reported

by DSSP [Kabsch and Sander 1983]. (4) The fraction of correctly

and incorrectly predicted exposure statuses. Based on its relative

solvent accessibility a residue is considered buried (RelAcc<0.09),

intermediate (0.09�RelAcc<0.36), or exposed (RelAcc�0.36).24 (5)

The distribution of pathogenic variants in highly conserved residues

as reported through ConSurf.25

For residues affected by pathogenic variants the average RMSD

and standard deviation of relative solvent accessibility is 0.14 and 0.20,

respectively (Supporting Information Figure S3). We did not find a sig-

nificant difference between these values and the according metrics for

residues affected by VUS. Hence, a suspected correlation between pre-

diction accuracy of an ensemble of structure predictors and a variant’s

pathogenicity could not be established.

Comparing the 20 identified pathogenic variants in T0945 with all

488 VUS, the absolute solvent accessibility values for both groups

FIGURE 3 T0942 has an HEXXH motif of metalloproteinase, identified by sequence analysis. The motif forms a histine enriched pocket
that may bind Zinc (residue index 145 H, 140 H, 136 H, 246 H). Other residues near this motif include 137E, 139 S, 196 F, 200 N, 201E.
We compare the side-chains near these four residues between experimental structures, the best GDT ranked model-1 (004–1, GDT 46.3,
PF-zscore 20.93), the best GDT ranked all-models (060–2, GDT 54.5, PF-zscore 21.01), the best PF ranked model-1 (016–1, GDT 38.6,
PF-zscore 21.50) and the best PF ranked all-models (303–4, GDT 39.8, PF-zscore 21.79). The best PF-ranked models share similar side-
chain arrangements with the experimental structures, while the best GDT-ranked models do not
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distribute similarly (Median: 0.16 and 0.19, STD: 37.76 and 34.20).

After categorizing residues in buried, intermediate, or exposed, the

exposure status of 34.0% of all buried, 30.4% of all exposed, and

58.0% of all intermediate variants are incorrectly predicted. Wrongly

predicted exposure states for pathogenic variants/VUS in DPAGT1 are

distributed as follows: 31.17/26.40% (buried), 45.48/64.71% (interme-

diate), and 33.45/42.64% (exposed). In general, the AccError does not

correlate with GDT. This suggests that the prediction quality of a single

missense mutation is not reflected in the overall quality of the

structures.

3 | DISCUSSION

3.1 | Physicochemical properties in microenvironments
carry functional critical information

We have previously reported a system, FEATURE,12 for representing

protein “microenvironments”, as statistical descriptions of physico-

chemical and structural features in a sphere volume of 7.5 Å radius.

A single ligand site is often comprised of between 10 to 20 micro-

environments, each centering on one of the key residues. Pocket-

FEATURE employs a matching system that aligns similar

microenvironments, or physicochemical properties, between sites or

even entire proteins (instead of sequence alignments). PocketFEA-

TURE can distinguish statically and dynamically between similar sites,

between homologs,26 and even between unrelated proteins.9 Pock-

etFEATURE is able to distinguish aspects of the drug-binding pocket

in FtsZ structures from different species that are not evident with

other comparison methods such as RMSD. PocketFEATURE can also

detect the effects of mutations in protein pockets.26 In addition, it

can detect key functional changes driving molecular dynamic trajec-

tories. Our analysis is based on the evidence that PocketFEATURE

can distinguish more finely grained physicochemical differences asso-

ciated with protein function—including ligand binding or mutation

effects between sites with very similar structure properties. Of

course other methods (SiteCompare27 and SMAP28) that share simi-

lar characteristics could also be used.

FIGURE 4 We compare the microenvironment alignments between experimental structures, the best GDT ranked model-1 (004–1, GDT
46.3, PF-zscore 20.93), and the best PF ranked model-1 (016–1, GDT 38.6, PF-zscore 21.50). The best GDT model-1 has seven aligned
microenvironments. The best PF-scored model 016–1 has 10 microenvironments aligned. The three additional aligned microenvironments
observed in the best PF model-1 are colored in grey: H246, H140, and H145, which are the key element of metaloproteinase motifs
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3.2 | Differential performance on holo and apo sites

We observed that predictions using holo sites differ in quality from

those using apo sites and critical patches. In all-models assessments,

the correlation coefficients for holo sites are lower than the other

two categories. Given a sequence with templates that have bound

ligand(s), predictors generate “apo models” that do not take the

ligand information into account (They may consider ligand

information implicitly if they use templates that contain a bound

ligand). Experimental structures solved with a bound ligand often

have different physicochemical characterizations (to form non-

covalent contacts for ligand binding). Therefore, when comparing

apo predictions with experimental holo structures, we expect lower

similarities at these sites. Our results confirm that the quality of

local sites (as measured by the similarity to experimental sites) may

not be reflected in the overall structure quality. However, local simi-

larity to the experimental sites is useful in deriving biological and

functional information from predicted models. Therefore, we looked

for methods and servers that could predict holo sites well (Support-

ing Information section 2 Tables S4 and S7). Predictions from serv-

ers Multicom-construct29 and IntFOLD430 performed well for all six

holo sites. These methods likely employed algorithms that benefited

from ligand-binding template information and for modeling.

3.3 | Predicting function in protein assemblies

This iteration of CASP received an encouraging number of oligomeric

predictions. Correctly predicting the stoichiometry and protein-protein

interfaces for a protein complex can be extremely important for under-

standing the biological function of a protein. The two cases presented

here represent the particularly difficult task of predicting functions that

arise through the interaction of multiple subunits. In this context, the

failure of any groups to adequately model the STRA6 translocation

path is unsurprising.

The lack of CckA models containing both the correct 4-helical bun-

dle topology and the cis binding affinity can be explained by consider-

ing the available templates. The structure of CckA has a unique DHp

and CA domain arrangement that was not shared by any of the avail-

able templates. Thus, models were biased by the choice of template

toward incorrect domain orientations.

3.4 | Method limitations

In general, functional utility correlates with the quality of structure pre-

dictions, but there are interesting deviations. Predictions with higher

overall structural quality (model-1) often have good functional utility.

However, some predictions with good structural quality may not have

the best local functional sites, and sometimes these are significantly

worse. Using PocketFEATURE to evaluate physicochemical properties

at local functional sites provides reasonably good discrimination

between predictions with similar structural quality.

The major uncertainty of our assessment originates from the ill-

defined nature of functional sites and functional centers. Even with

communication with the experimentalists, it was difficult for us to

achieve an undisputed functional site definition. In future CASPs, it

would be useful to have a more structured and systematic procedure

to retrieve biological relevance from the experimental contributors.

Nonetheless, our evaluations still suggest substantial biological utility

despite some partial site definitions. We found that scoring a SNP

alone (very local) does not track with the overall structure quality, but

scoring patches surrounding a SNP provide more insights into

TABLE 5 Thirty predictions of T0942 selected by functional
assessmenta

Server ID and name
Model
ID PF—Zscore GDT

CASP
rank

303 wfMESHI-TIGRESS 4 21.7898 39.79 85

382 RBO_Aleph 5 21.7473 34.17 243

405 IntFOLD4 3 21.7212 41.73 54

320 raghavagps 3 21.7212 41.73 54

411 Pcomb-domain 4 21.6958 39.79 85

042 Elofsson 3 21.6280 38.11 151

016 FFAS-3D 1 21.4968 38.57 133

073 Wallner 1 21.4431 43.28 41

236 MULTICOM-CONSTRUCT 1 21.4416 38.05 155

067 wfRstta-PQ2-Seder 1 21.4386 38.7 127

028 M4T-SmotifTF 1 21.4386 38.7 127

079 iFold_1 1 21.4386 38.7 127

382 RBO_Aleph 1 21.4140 34.62 238

464 tsspred2 1 21.3879 39.99 79

486 TASSER 5 21.3879 39.99 79

464 tsspred2 4 21.3857 39.86 83

239 wfAll-Cheng 5 21.3782 39.41 103

303 wfMESHI-TIGRESS 2 21.3782 39.41 103

464 tsspred2 3 21.3395 37.92 165

243 Seok-refine 4 21.3245 39.53 99

411 Pcomb-domain 5 21.3163 39.79 85

405 IntFOLD4 4 21.2977 38.18 144

382 RBO_Aleph 3 21.2940 34.88 235

396 PML 1 21.2820 39.73 91

079 iFold_1 3 21.2791 38.11 151

166 FFAS03 1 21.2791 38.11 151

243 Seok-refine 2 21.2761 39.15 109

102 Kiharalab 4 21.2560 39.6 97

479 Zhang-Server 1 21.2560 39.6 97

067 wfRstta-PQ2-Seder 2 21.2351 39.73 91

a(PF-Zscores). Model ID was from lables by the predictors. CASP official
assessments are in column 4 and column 5.
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functional relevance (Figure 5). We also compared defined site resi-

dues’ PF assessments with local RMSD measurements (Supporting

Information Figure S1). The local RMSD correlate well with overall

RMSD, but not PF-scores, suggesting that PF evaluates physicochemi-

cal properties beyond structure features. In addition, the local estima-

tion also depends on the site definition, which is one of the key

limitations of functional assessment methods.

4 | METHODS

4.1 | Define and describe sites for evaluation

We emailed to ask experimental authors: (1) Why did you decide to

solve the structure of this target? (2) Can you briefly describe the func-

tion of the target? (3) Are there any of these types of sites: enzymatic

active sites, small molecule binding pockets, protein interaction sites,

nucleic acid interaction sites, mutated sites, critical loops, domain boun-

daries, other critical areas.

Based on their answers (on 43 targets), we selected 25 targets for

which sufficient information was provided. We assigned targets to

three groups to assess their utility in functional annotation. (1) Holo

sites: defined sites based on observed ligand binding in experimental

structures. (2) Apo sites: defined sites based on critical residues pro-

vided by experimental authors or known motifs relevant to active sites.

We employed a patch-searching algorithm F-Pocket for initial screening

and then manually selected sites based on experimental authors’

answers. (3) Critical patches: defined patches centered at the critical

residues (including SNPs) provided by experimental authors.

Our previous work demonstrates that functional properties of a

critical region can be extracted by describing their physicochemical

environments.12 We have developed the FEATURE system that com-

putes a set of 80 physicochemical properties collected over six concen-

tric spherical shells (total 480 properties580 properties 3 6 shells)

centered on a predefined functional center.

4.2 | Compare sites in predictions and experimental

structures

PocketFEATURE contains two essential modules to evaluate and com-

pare physicochemical properties of a single or a cluster of functional

centers.9 The two modules are:

1. Given two centers (can be an atom, or average coordinates of mul-

tiple atoms) from two structures, we use the term “microenviron-

ment”to refer to the local, spherical region in the protein structure

that may encompass residues discontinuous in sequence and

structure. We then measure the similarity between the two micro-

environments by a Tanimoto-based approach (see Supporting

Information: method description).

2. Given two binding sites (or two clusters of functional centers), we

exhaustively calculate the similarities between all permissible

microenvironment-pairs. We then search for the mutual most sim-

ilar microenvironment-pairs between two binding sites and assign

alignments and similarity scores between the two binding sites

(see Supporting Information Section 4: method description).

We applied the two modules of PocketFEATURE to assess the

physicochemical environments of a single or cluster of functional resi-

due centers.

For apo and holo sites, the challenge was to evaluate how well the

binding sites are predicted, in terms of the pocket’s physicochemical

environments, given the quality similarities of the overall predicted

structures. We applied PocketFEATURE to compare experimental sites

to the corresponding microenvironment centers in the predicted struc-

tures. The similarity between the two sites provides an estimate of the

probability of a ligand binding to the predicted site, which is the biolog-

ical relevance of apo and holo sites.

For critical patches, the challenge is to evaluate how well the criti-

cal regions associated with the functions of interest are predicted

(compared with the experimental structures), in terms of the overall

FIGURE 5 Analysis on the critical patch on T0945 (center at SNP 376 H, colored in black). The patch include residues: 245, 308, 312, 313,
314, 315, 374, 375, 376, 377, 378, 379, 380, 381, and 83, which form a tight cluster near 376 H (left). The 15 residues surrounding this SNP are
the microenvironments associated with the functional effects of the SNP. However, in the best GDT model (best GDT 220–1, GDT 59.27, PF-

zscore 21.32) these microenvironments are not clustered near 376 H. This is because one of the key loops was predicted away from the func-
tional center. In the best PF ranked model (best PF model, 324–1, GDT 54.07, PF-zscore 21.55), the corresponding microenvironments form
one cluster, with the functional loops predicted in the right position
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physicochemical environments of the critical regions. We adopted the

procedure above with modifications based on the shape and the size of

the critical regions.

4.3 | Compare functional assessments and CASP

structure assessments

CASP predictions were downloaded from assessors’ section of the

CASP website. In the assessors’ section, under the predictions folder,

there was a gziped folder for each target containing all predictions

from all servers. CASP rankings and other measurements, including

GDT, TM, and RMSD (official assessments), were obtained from the

CASP website (CASP12 result section).

We performed two assessments: “all-models” and “model-1”. For

each target, each prediction server may generate one to five models,

with their best model labeled as model-1 before submitting to CASP

assessment committee. For “all-models”, we calculated PocketFEA-

TURE zscores (PF-zscore) of all server models for each of the 28 sites.

Specifically, scores of all predictions of a given target from each server

were treated as independent predictions. PocketFEATURE scores

across these models for each site were then normalized to obtain the

zscores using the scipy.stats.zscore package. For “model-1”, we apply

the same procedure to models labeled with model-1 by the predictors.
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