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Abstract: Alzheimer’s disease (AD), a progressive neurodegenerative disease, affects approximately
50 million people worldwide, which warrants the search for reliable new biomarkers for early
diagnosis of AD. Brain-derived exosomal (BDE) proteins, which are extracellular nanovesicles
released by all cell lineages of the central nervous system, have been focused as biomarkers for
diagnosis, screening, prognosis prediction, and monitoring in AD. This review focused on the
possibility of BDE proteins as AD biomarkers. The articles published prior to 26 January 2021
were searched in PubMed, EMBASE, Web of Science, and Cochrane Library to identify all relevant
studies that reported exosome biomarkers in blood samples of patients with AD. From 342 articles,
20 studies were selected for analysis. We conducted a meta-analysis of six BDE proteins and found
that levels of amyloid-β42 (standardized mean difference (SMD) = 1.534, 95% confidence interval
[CI]: 0.595–2.474), total-tau (SMD = 1.224, 95% CI: 0.534–1.915), tau phosphorylated at threonine 181
(SMD = 4.038, 95% CI: 2.312-5.764), and tau phosphorylated at serine 396 (SMD = 2.511, 95% CI:
0.795–4.227) were significantly different in patients with AD compared to those in control. Whereas,
those of p-tyrosine-insulin receptor substrate-1 and heat shock protein 70 did not show significant
differences. This review suggested that Aβ42, t-tau, p-T181-tau, and p-S396-tau could be effective
in diagnosing AD as blood biomarkers, despite the limitation in the meta-analysis based on the
availability of data. Therefore, certain BDE proteins could be used as effective biomarkers for AD.

Keywords: Alzheimer’s disease; biomarker; extracellular vesicle; exosome; brain-derived exosomal
protein

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder [1]. The preva-
lence of AD in people over the age of 65 years is approximately 10%, and increases to
32% in people aged 85 years, showing increasing prevalence with age [2]. The estimated
number of individuals with AD dementia is 5.8 million in the US, 9.1 million in the EU
member states, and 50 million worldwide [1].

The clinical diagnosis of AD is conventionally done after neuropsychological tests
and exclusion of other age-related types of dementia. Although cardinal progressive
symptoms can support the clinical diagnosis, a definitive diagnosis can be made only
on the postmortem examination of the brain, wherein the brain must contain sufficient
amyloid plaques and neurofibrillary tangles indicative of the disease [3,4]. Therefore, the
current major challenge in early AD diagnosis is the lack of reliable biomarkers, which serve
as measurable indicators of the biological state or pathological condition [5]. The search for
AD diagnostic targets in patients is increasing in parallel to the increasing understanding
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of the molecular pathogenesis of AD [5,6]. Despite substantial investments in research
on AD biomarkers by governments, pharmaceutical industries, and private donors, an
accurate biomarker for AD remains elusive [3].

An ideal AD biomarker should meet the following criteria: (i) The ability to detect
fundamental features of AD neuropathology that can be validated on autopsy; (ii) the
ability to differentiate AD from other types of dementia; (iii) the ability to detect early
stages of AD and differentiate the stages of AD progression to guide therapy; (iv) should
be highly reliable and the methods involved in its detection must be easy to perform and
inexpensive; and (v) should have a minimally invasive sample collection method [7].

Generally, fluids [8], such as blood [9], saliva [9], urine [10], and cerebrospinal fluid
(CSF) [11] and brain imaging techniques, such as structural MRI [12] and PET [13] have
been used to establish a disease diagnosis and predict disease outcomes. Although CSF
analysis is key in AD diagnosis, the moderately invasive nature of CSF collection limits
its widespread use in routine primary clinical care practice, as the procedure is rarely
performed by general practitioners [14]. Moreover, a lumbar puncture is not preferred as a
routine test because it can be unpleasant and cause anxiety in patients [6,15].

Blood analysis has been promising in the diagnosis, screening, prognosis prediction,
and disease monitoring for AD, and blood collection is minimally invasive, allows facile
sampling, and is cost- and time-efficient [8,15]. Therefore, blood biomarkers would present
a significant breakthrough in the routine screening of incipient dementia in community-
based clinics if they are developed and refined based on strong concordance with CSF and
brain imaging diagnostic parameters [16].

It was recently reported that brain-derived exosomes are extracellular nanovesicles
released by all cell lineages of the central nervous system (CNS), and they can cross the
blood-brain barrier (BBB) and be detected in the peripheral blood [17]. Glial and neuronal
cell populations both release extracellular vesicles (EVs) that contain cargos of proteins such
as transmembrane proteins, and lipids, RNAs, mitochondrial DNA, and single-stranded
and double-stranded DNA [18]. The EVs mainly comprise exosomes ranging from a diam-
eter of 30–140 nm, microvesicles (MVs) ranging from 100–1000 nm, and apoptotic bodies
ranging from 100–5000 nm [19–21]. Although MVs are generated from budding of the cell
membrane, they might be potential diagnostic biomarkers as they can be distinguished
from other exosomes by their size and the mechanisms involved in their generation [22,23].
Due to the brain-derived exosomes contain cargo from their original cells and can be
isolated from the blood, recent studies have focused the potential of brain-derived exo-
somal (BDE) proteins as biomarkers for diagnosis, screening, prognosis3 prediction, and
monitoring in AD. However, BDE and most BDE proteins isolated from BDE are typically
present in relatively low concentrations in the blood. Therefore, highly sensitive meth-
ods such as single-molecule array (SIMOA, Quanterix, USA), electrochemiluminescence
enzyme-linked immunosorbent assay (Meso Scale Discovery, USA), or immunomagnetic
reduction (MagQu, Taiwan) should be used [6,24]. In addition, the methods of BDE protein
isolation require a high level of expertise and precision, and it is necessary to establish
standardized protocols for isolation and subsequent analysis of biomarkers to address
reproducibility issues [24]. Although the suitability of BDE proteins as an AD biomark-
ers has been controversial, the utilization of BDE proteins in the peripheral blood as AD
biomarkers is promising because BDE proteins have certain advantages such as reflecting
physiological changes in nervous system disorders [25]. For example, neuron-derived
exosomes containing specific proteins implicated in neurodegenerative diseases can be
secreted from the affected neurons [26]. In particular, BDEs from Alzheimer’s patients
contain Aβ and hyperphosphorylated tau, two hallmarks of AD brains [27].

Therefore, we aimed to evaluate BDE proteins in the peripheral blood as biomarkers
for AD by conducting systematic reviews with meta-analyses and discuss the possibility of
BDE proteins as AD biomarkers.
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2. Materials and Methods
2.1. Search Strategy

This study was performed according to the guidelines provided by the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis. Articles published prior to
January 26, 2021 were searched in PubMed, EMBASE, Web of Science, and Cochrane
Library. For a comprehensive search strategy, relevant articles written in English were
retrieved using the following keywords: (exosome OR exosomal) AND (Alzheimer OR
AD) AND (blood OR plasma OR serum) AND (biomarker OR “bio-marker” OR “biological
marker”). The reference lists of the identified articles and relevant review articles were
manually searched for additional studies.

2.2. Study Selection

All references obtained from the PubMed, EMBASE, Web of Science, and Cochrane
Library databases were imported into the EndNote X9 reference database. Duplicate
articles were automatically excluded from EndNote and the studies were selected manually
again. The articles were then analyzed to check their relevance in the context of our
study. The abstracts of the relevant articles were then reviewed to identify eligible papers.
Articles including commentaries, letters, editorials, conference abstracts, and reviews were
excluded from this study. Full-text articles were then obtained and reviewed thoroughly
to identify studies reporting exosomal biomarkers in the blood samples of patients with
AD. The inclusion criteria for the studies were as follows: (1) Articles that compared
patients with AD and healthy controls; (2) articles that identified plasma or serum vesicles;
(3) articles assessing protein biomarkers in exosomes. The exclusion criteria were as follows:
(1) Articles that used animal models; (2) articles that included a control group with other
diseases, such as Down’s Syndrome, HIV/AIDS, and Parkinson’s disease; (3) articles
not related to blood exosomes; (4) articles not related to protein biological biomarkers;
(5) articles in the form of a commentary, letter, editorial, conference abstract, and review.

2.3. Data Extraction

Two authors (K.Y. Kim and K. Chang) independently screened and selected relevant
studies according to the inclusion and exclusion criteria. All authors (K.Y. Kim, K.Y. Shin,
and K. Chang) constantly discussed the articles to resolve any disagreements. The relevant
data, including the first author, publication year, study country, number of participants
in the control and patient groups, sex of the participants, age of the participants, and
Mini-Mental State Examination (MMSE) scores were extracted from the selected studies.
We classified the identified BDE proteins into related categories. Furthermore, the levels of
BDE proteins in AD were analyzed.

2.4. Statistical Analysis

For the meta-analysis, the standardized mean difference of BDE proteins between the
AD and control groups was analyzed using the Comprehensive Meta-Analysis software
version 3 (Biostats Inc., Englewood, NJ, USA). Moreover, we used the Q statistic and I2

method to analyze the heterogeneity. A random-effects model was used to account for
heterogeneity. Publication bias was assessed using funnel plots and Egger’s intercept test.
A p-value of <0.05 was considered statistically significant.

3. Results
3.1. Characteristics of the Eligible Studies

Figure 1 presents the flow chart of the study selection. From the 342 articles, 20 were
selected after a detailed review of the full texts of all eligible studies.

Table 1 presents the general characteristics of the 20 studies included. All the studies
were published between 2015 and 2021. These studies were conducted in regions including
the USA, Italy, Spain, Sweden, China, Korea, and Canada. The specimens used in the
studies were plasma or serum. The samples were grouped into cases, including AD that



Biomolecules 2021, 11, 980 4 of 16

presented original articles and controls and cases including normal or healthy individuals,
with the sample size ranging from 8 to 350. The MMSE scores were presented in the AD,
and control groups, respectively.
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Figure 1. Flow chart of study selection.

Furthermore, Table 1 shows the BDE proteins for AD used in the selected studies.
The identified Aβ-targeted biomarkers were amyloid-β42 (Aβ42), amyloid precursor pro-
tein (APP), soluble APP alpha (sAPPα), sAPPβ, Aβ42/tau phosphorylated at threonine
181 (p-T181-tau), BACE-1, and γ-secretase. Tau-targeted biomarkers were total-tau (t-
tau), p-T181-tau, p-T231-tau, p-S202-tau, tau phosphorylated at serine 396 (p-S396-tau),
N-224 tau, N-123 tau, MR tau, FL tau, p-tau/t-tau, p-T181-tau/t-tau, and t-tau/Aβ42.
The extracted synaptic protein biomarkers were synaptophysin, synaptotagmin, synap-
topodin, neurogranin (NRGN), synaptosomal-associated-protein-25 (SNAP-25), GluA4-
containing glutamate (AMPA4) receptor, pentraxin 2 (NPTX2), neuroligin 1 (NLGN1),
neurexin 2 (NRXN2), P-S9-synapsin 1, growth-associated protein 43 (GAP43), synapsin 1,
and myelin-oligodendrocyte glycoprotein (MOG). Autolysosomal proteins were cathepsin
D and lysosome-associated membrane protein 1 (LAMP-1). Growth or trophic factors
were fibroblast growth factors (FGF)-2, FGF-13, glial-derived neurotrophic factor (GDNF),
hepatocyte growth factor (HGF), and type 1 insulin-like growth factor (IGF-1). Brain in-
sulin resistance-related exosomal protein biomarkers were total insulin receptor substrate-1
(t-IRS-1), P-serine 312-IRS-1 (p-S312-IRS-1), P-tyrosine-IRS-1 (p-Y-IRS-1), and p-S312-IRS-
1/p-Y-IRS-1. Inflammation-related exosomal protein biomarkers included interleukin 6
(IL-6), matrix metalloproteinase-9 (MMP-9), and translocator protein (TSPO). Heat-shock
protein 70 (HSP70) and ubiquitinylated protein were the exosomal protein biomarkers
related to molecular chaperons. Repressor element 1-silencing transcription factor (REST)
was a transcriptional repressor biomarker. The cluster of differentiation 81 (CD81) and
TSG101 were the cell-type marker-related BDE proteins, and exosome marker-related
BDE proteins were glial fibrillary acidic protein (GFAP), glutamine synthetase (GluSyn),
neurofilament light chain (NF-Lch), and neuron-specific enolase (NS-enolase). Other BDE
proteins were growth-associated protein 43 (GAP43), ganglioside M1 (GM1), and Septin-8.
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Table 1. Characteristics of the eligible studies.

Study Location Specimen Method Patients
Sample (M/F) Age (y) (M ± SD) MMSE (M ± SD)

BDE Proteins
Case Control Case Control Case Control

Fiandaca et al.
2015 [28] USA Plasma ExoQuick/ELISA AD 30/27 30/27 79.5 ± 6.1 79.6 ± 6.0 Aβ42, t-tau, p-T181-tau, p-S396-tau

Goetzl et al.
2015 [29] USA Plasma ExoQuick/ELISA AD (include MCI) 13/13 13/13 75.4 ± 7.9 75.8 ± 7.9 22.5 ± 1.5 cathepsin D, LAMP-1, HSP70,

ubiquitinylated protein
Kapogiannis et al.

2015 [30]
USA Plasma ExoQuick/ELISA AD 13/13 13/13 74.3 ± 7.5 74.3 ± 7.5 t-IRS-1, p-S312-IRS-1, p-Y-IRS-1,

p-S312-IRS-1/p-Y-IRS-1Dementia 10 20.5 ± 2.2
Abner et al.

2016 [31] USA Plasma ExoQuick/ELISA AD 5/5 10/10 77.6 77.6 29.4 ± 0.8 Aβ42, p-T181-tau, NRGN,
cathepsin D, REST

Goetzl et al.
2016a [32]

USA Plasma ExoQuick/ELISA AD 6/6 6/6 74.4 ± 2.0 74.4 ± 2.0 26.3 ± 1.0 29.8 ± 0.1
Synaptophysin, synaptotagmin,

synaptopodin, NRGN,
p-S9-synapsin 1, GAP43, synapsin

1, MOG, GAP43
AD2 (after diagnosis

of dementia) 2/7 2/7 87.8 ± 2.5 82.2 ± 2.3 21.4 ± 1.6 28.3 ± 1.0

Goetzl et al.
2016b [33] USA Plasma ExoQuick/ELISA

AD (include amnestic mild
cognitive impairment and

early dementia)
12 10

Aβ42, sAPPα, sAPPβ, BACE-1,
γ-secretase, p-T181-tau, p-S396-tau,

GDNF, GFAP, GluSyn, NF-Lch,
NS-enolase, CD81, Septin-8

Winston et al.
2016 [34] USA Plasma ExoQuick/ELISA AD 11/9 10 75.4 ± 6.8 17.7 ± 0.7 Aβ42, p-T181-tau, p-S396-tau,

NRGN, REST
Guix et al.
2018 [35] USA Plasma ExoQuick/ELISA AD (mild) 3/7 3/7 75.6 ± 12.9 75.9 ± 8.7 75.6 ± 12.9 29.7 ± 0.5 Aβ42, p-T181-tau, MR tau, FL tau

AD (moderate) 4/6 75.6 ± 12.9 75.6 ± 12.9
Goetzl et al.

2018 [36]
USA Plasma ExoQuick/ELISA AD 12/16 12/16 73.1 ± 1.4 73.2 ± 1.5 25.6 ± 0.8 29.7 ± 0.1 AMPA4 receptor, NPTX2, NLGN1,

AD2 (after diagnosis
of dementia) 10/8 10/8 78.2 ± 1.8 70.1 ± 1.7 20.2 ± 1.5 28.3 ± 1.0 NRXN2

Jia et al. 2019 [37] China Plasma ExoQuick/ELISA AD 39/42 35/37 65 ± 6 64 ± 5 19.6 ± 3.1 29.3 ± 1.2 Aβ42, p-T181-tau
Agliardi et al.

2019 [38] Italy Serum ExoQuick/ELISA AD 8/16 4/13 77.7 ± 1.4 76.5 ± 1.5 21.9 ± 0.9 28.7 ± 0.4 SNAP-25

Chanteloup et al.
2019 [39] Spain Plasma ExoQuick/ELISA AD 21 13 77.1 ± 8.2 75.2 ± 6.7 HSP70

Cicognola et al.
2019 [40] Sweden Serum ExoQuick/SIMOA AD 4 4 79.5 67 >15 N-224 tau, N-123 tau

Goetzl et al.
2019 [41]

USA Plasma ExoQuick/ELISA AD 9/15 9/15 73.1 ± 1.6 73.1 ± 1.8 26.1 ± 0.9 29.3 ± 0.2 AMPA4 receptor, FGF-2, FGF-13,
HGF, IGF-1, GluSyn, CD81AD2 (after conversion to

moderate dementia) 7/8 7/8 84.5 ± 1.7 80.2 ± 1.8 24.3 ± 0.9 29.4 ± 0.6

Kapogiannis et al.
2019 [42]

USA Plasma ExoQuick/ELISA,
SIMOA AD (future) 60/68 112/110 79.1 ± 7.0 76.2 ± 7.4 27.5 ± 1.8 28.4 ± 1.8 t-tau, p-T181-tau, p-T231-tau,

p-S312-IRS-1, p-Y-IRS-1, TSG101
Serum AD 17/18 6/23 74.0 ± 8.7 72.1 ± 7.9 23.9 ± 3.0 29.8 ± 0.6

Gu et al. 2020 [43] China Plasma ExoQuick/ELISA AD 8/23 5/10 68.6 ± 8.0 64.8 ± 6.0 15.9 ± 6.6 27.7 ± 1.7 Aβ42, p-T181-tau, p-S396-tau, IL-6,
MMP-9, CD81
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Table 1. Cont.

Study Location Specimen Method Patients
Sample (M/F) Age (y) (M ± SD) MMSE (M ± SD)

BDE Proteins
Case Control Case Control Case Control

Jia et al. 2020 [44] China Plasma ExoQuick/ELISA AD 59/62 74/86 66 ± 5 54 ± 6 20.7 ± 2.9 29.1 ± 1.1 Synaptotagmin, NRGN,
SNAP-25, GAP43

Nam et al.
2020 [45] Korea Serum ExoQuick/ELISA AD 3/17 17/9 76.6 ± 1.3 73.9 ± 0.9 16.6 ± 0.5 27.7 ± 0.2 Aβ42, t-tau, p-T181-tau, p-S202-tau,

p-tau/t-tau
Perrotte et al.

2020 [46]
Canada Plasma Exosome

isolation
kit/Luminex

AD (mild) 1/11 3/9 75.6 ± 1.3 68.8 ± 1.5 24.0 ± 0.5 29.4 ± 0.3 Aβ42, APP, Aβ42/p-T181-tau, t-tau,
p-T181-tau, p- T181-tau/t-tau,

t-tau/Aβ42
AD (moderate) 4/8 79.1 ± 1.1 19.9 ± 1.4

AD (severe) 2/10 83.0 ± 1.6

Picciolini et al.
2021 [47] Italy Plasma

Chromatography
using qEV

columns/ELISA
AD 4/6 5/5 73.9 ± 3.0 62.6 ± 2.0 TSPO, GM1

AD: Alzheimer’s disease, ELISA: enzyme-linked immunosorbent assay, MCI: mild cognitive impairment, MMSE: mini-mental state examination, SIMOA: single molecule array.
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3.2. BDE Protein Changes in AD

Table 2 shows the BDE protein changes in AD. Of the identified BDE proteins, the
increased level in AD were Aβ42, APP, sAPPβ, BACE-1, t-tau, p-T181-tau, p-T231-tau,
p-S202-tau, p-S396-tau, p-tau/t-tau, p-T181-tau/t-tau, t-tau/Aβ42, cathepsin D, LAMP-1,
GDNF, p-Y-IRS-1, p-S312-IRS-1, p-S312-IRS-1/p-Y-IRS-1, MMP-9, TSPO, ubiquitinylated
protein, GFAP, NF-Lch, NS-enolase, and GM1. BDE proteins that decreased in AD were
Aβ42, APP, t-tau, NRGN, synaptophysin, synaptotagmin, synaptopodin, SNAP-25, AMPA4
receptor, NPTX2, NLGN1, NRXN2, P-S9-synapsin 1, synapsin 1, MOG, GDNF, FGF-2, FGF-
13, HGF, IGF-1, p-Y-IRS-1, HSP70, REST, GFAP, GluSyn, CD81, GAP43, and Septin-8.
The extracted BDE proteins that have no change in AD were Aβ42, APP, sAPPα, sAPPβ,
BACE-1, Aβ42/p-T181-tau, γ-secretase, t-tau, p-T181-tau, p-S396-tau, p-T181-tau/t-tau,
t-tau/Aβ42, N-224 tau, N-123 tau, MR tau, FL tau, cathepsin D, LAMP-1, t-IRS-1, p-Y-IRS-
1, p-S312-IRS-1, p-S312-IRS-1/p-Y-IRS-1, IL-6, HSP70, ubiquitinylated protein, GluSyn,
NF-Lch, NS-enolase, CD81, TSG101, and Septin-8.

Table 2. Changes of exosomal proteins in AD.

Category Level Exosomal Proteins

Aβ targeted Increase Aβ42, APP, sAPPβ, BACE-1
Decrease Aβ42, APP

No change Aβ42, APP, sAPPα, sAPPβ, BACE-1, Aβ42/p-T181-tau, γ-secretase
Tau targeted Increase t-tau, p-T181-tau, p-T231-tau, p-S202-tau, p-S396-tau, p-tau/t-tau, p-T181-tau/t-tau,-tau/Aβ42

Decrease t-tau
No change t-tau, p-T181-tau, p-S396-tau, p-T181-tau/t-tau, t-tau/Aβ42, N-224 tau, N-123 tau, MR tau, FL tau

Synaptic protein Decrease NRGN, synaptophysin, synaptotagmin, synaptopodin, SNAP-25, AMPA4 receptor, NPTX2, NLGN1,
NRXN2, p-S9-synapsin 1, synapsin 1, MOG

Autolysosomal Increase cathepsin D, LAMP-1
No change cathepsin D, LAMP-1

Growth/trophic Increase GDNF
Decrease GDNF, FGF-2, FGF-13, HGF, IGF-1

Brain insulin resistance Increase p-Y-IRS-1, p-S312-IRS-1, p-S312-IRS-1/p-Y-IRS-1
Decrease p-Y-IRS-1

No change t-IRS-1, p-Y-IRS-1, p-S312-IRS-1, p-S312-IRS-1/p-Y-IRS-1
Inflammatory related Increase MMP-9, TSPO

No change IL-6
Molecular chaperone Increase ubiquitinylated protein

Decrease HSP70
No change HSP70, ubiquitinylated protein

Transcriptional repressor Decrease REST
Cell type marker Increase GFAP, NF-Lch, NS-enolase

Decrease GFAP, GluSyn
No change GluSyn, NF-Lch, NS-enolase

Exosome marker Decrease CD81
No change CD81, TSG101

Other Increase GM1
Decrease GAP43, Septin-8

No change Septin-8

The BDE proteins that were identified in two or more articles are shown in Figure 2.
Aβ42, t-tau, and p-Y-IRS-1 were the BDE proteins whose levels increased or decreased or
had no change in AD. The levels of BDE proteins that increased or had no change in AD
were p-T181-tau, p-S396-tau, cathepsin D, and p-S312-IRS-1. CD81, GluSyn, and HSP70
were the BDE proteins whose levels decreased or had no change in AD.

3.3. Meta-Analysis Results of Aβ42, t-tau, p-Y-IRS-1, p-T181-tau, p-S396-tau, and HSP70

Figure 3 shows the results of the meta-analysis of duplicated BDE proteins in AD
from two or more articles. As shown in Figure 3A, the meta-analysis of Aβ42 showed that
patients with AD had significantly high levels of this protein than the controls (standardized
mean difference [SMD] = 1.534, 95% confidence interval [CI]: 0.595 to 2.474, p = 0.001). The
total tau protein levels showed a significant increase in patients with AD (SMD = 1.224,
95% CI: 0.534 to 1.915, p = 0.001) (Figure 3B). The meta-analysis results of p-Y-IRS-1 showed
that patients with AD had no significant differences in the protein levels compared with
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the controls (SMD = −2.397, 95% CI: −5.258 to 0.463, p = 0.101) (Figure 3C). Furthermore,
the p-T-181-tau protein levels showed that patients with AD had significantly high protein
levels (SMD = 4.038, 95% CI: 2.312 to 5.764, p < 0.001) (Figure 3D). As shown in Figure 3E,
p-S396-tau protein levels had a significant increase in patients with AD (SMD = 2.511, 95%
CI: 0.795 to 4.227, p = 0.004). Furthermore, HSP70 protein levels (SMD = -0.254, 95% CI:
−3.199 to 2.691, p = 0.866) (Figure 3F) showed that there was no significant difference in
the levels in patients with AD compared with that in the controls.
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Figure 3. Forest plots of Aβ42, t-tau, p-Y-IRS-1, p-T181-tau, p-S396-tau, and HSP70. Effects sizes
were measured as the standardized mean difference in AD sample compared to controls. (A) Aβ42,
(B) t-tau, (C) p-Y-IRS-1, (D) p-T181-tau, (E) p-S396-tau, and (F) HSP70. Std diff, standard difference;
CI, confidence interval.

We used the random effect model in this study because the heterogeneity was sig-
nificant (Figure 3A: I2 = 94%, p < 0.001; 3B: I2 = 88%, p < 0.001; 3C: I2 = 98%, p < 0.001;
3D: I2 = 97%, p < 0.001; 3E: I2 = 93%, p < 0.001; 3F: I2 = 97%, p < 0.001). Publication bias
was evaluated using Egger’s regression test. None of the data showed an obvious risk of
publication bias (Figure 3A: p = 0.77; 3B: p = 0.95; 3D: p = 0.10; 3E: p = 0.61), except for that
of p-Y-IRS-1 (p = 0.04).

4. Discussion

Biomarkers for AD are of great importance since the cognitive symptoms of AD are
often diffuse, and overlap with those of other disorders and the clinical progression of AD
is variable even among patients with the same disease. Alzheimer’s disease is still poorly
diagnosed despite the availability of numerous theoretical and clinical diagnostic tools as
these tools lack specific biomarkers, have procedural and methodological inconsistencies,
and insufficient standardization assays [48].

Cargos of cell-specific exosomes indicate pathological conditions and are closely
associated with the stages of AD [49]. In particular, BDE proteins with enriched levels
of exosomes secreted from the nervous system during AD could contribute to a more
accurate AD diagnosis, and could help further discover close connections between the
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markers and mechanisms of the early stage of the disease [17,24]. Additionally, these BDE
proteins can simultaneously reflect the pathology of the brain of patients. The relatively
poor performance of blood-based biomarkers reflects the disconnection between brain
biochemistry and blood composition, which is maintained by the BBB to protect the
brain [24]. For example, plasma Aβ and tau levels have not mirrored the sensitivity and
specificity of their CSF counterparts [16]. However, BDE proteins can cross the BBB to get
into the blood and can be isolated by immunoprecipitation using antibodies specific for
brain protein markers such as neural cell adhesion molecule L1 (L1CAM) and cell adhesion
molecules [24]. Recent reports have shown that the levels of Aβ and tau as BDE proteins
are higher in the blood of patients with AD compared with the controls and are significantly
correlated with those in the CSF [37,49,50]. Therefore, the development of BDE proteins in
peripheral blood as a diagnostic biomarker of AD has a great potential as they can indicate
brain biochemistry in detail and mirror their CSF counterparts [28]. Therefore, we focused
on BDE proteins as potential biomarkers for AD in this review because of their advantages.

We selected six BDE proteins that have inconsistent results from different experiments
and analyzed whether they could be effective in AD diagnosis. As shown in Figure 3, the
levels of Aβ42, t-tau, p-T181-tau, and p-S396-tau were higher in patients with AD than
in the controls. Unfortunately, there were no differences between the levels of p-Y-IRS-1
and HSP70 in patients with AD and the controls. Our results suggest that Aβ42, t-tau,
p-T181-tau, and p-S396-tau in BDE may be effective biomarkers, as detection strategies
based on novel biomarkers, like Aβ and tau proteins could represent a promising solution
for the early diagnosis of AD [8].

The two core neuropathological hallmarks of AD are Aβ and tau protein aggregates.
The first hallmark is the presence of Aβ deposits in the brain parenchyma as neuritic
plaques and around cerebral blood vessels as cerebral amyloid angiopathy [51–53]. The Aβ

peptide present in amyloid plaques is approximately 36–43 amino acids in length, and is
generated from APP by a series of proteolytic cleavages followed by a broad range of post-
translational modifications [54]. Aβ plays a major role in neurotoxicity and neural function;
therefore, accumulation of dense plaques in the hippocampus, amygdala, and cerebral
cortex can cause stimulation of astrocytes and microglia, damage to the axons and dendrites,
loss of synapses, and cognitive impairments [55–58]. The second hallmark is neurofibrillary
tangles (NFTs) and hyperphosphorylated tau, which accumulate intracellularly and are
typically accompanied by neuronal loss [51]. The tau protein is hyperphosphorylated in AD,
which leads to compromised microtubules, thereby disrupting several cellular processes,
such as proliferation, differentiation, protein trafficking, and cellular morphology [59,60].
NFTs are abnormal filaments of hyperphosphorylated tau proteins that can be twisted
around each other in some stages to form paired helical filaments and accumulate in the
neural perikaryal cytoplasm, axons, and dendrites, which causes a loss of cytoskeletal
microtubules and tubulin-associated proteins [55]. However, inconsistencies between
results have been reported in many studies and a lack of correlation between CSF and
blood Aβ has been observed. These results were probably due to low Aβ concentrations
in the blood [8,25,61,62]. Plasma t-tau concentrations also correlate poorly with that in
the CSF. Assays for the quantification of tau have been hampered by a lack of analytical
sensitivity and accurate measurements [6,25,63]. Our analysis also included inconsistent
results (Figure 2). Both the Aβ42 and t-tau protein levels showed an increase, decrease,
or no change between the control and AD groups. Hence, the levels of p-T181-tau and
p-S396-tau both showed an increase or no change between the two groups. However, our
meta-analysis indicated that the concentrations of Aβ42, t-tau, p-T181-tau, and p-S396-
tau were higher in patients with AD than in the controls. A recent study comparing the
diagnostic value of total plasma exosomes and plasma-derived BDEs showed that plasma
BDEs had a more promising potential diagnostic value than plasma exosomes [64]. Our
results showed that the concentrations of Aβ42, t-tau, and P-T181-tau in the AD group
were higher than those in the amnestic mild cognitively impaired (aMCI) and control
groups. The level of each BDE biomarker in the blood was highly correlated with that
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in the CSF. Therefore, this study verified the association between CSF and blood BDE
biomarkers [37]. Another study showed that the levels of soluble Aβ42 and other proteins
involved in the Aβ42 generating pathway are higher in astrocytic-derived exosomes than
that in neuronal exosomes [33,65]. Additionally, patients with AD showed a 3–20-fold
increase in p-T181-tau and p-S396-tau levels among other BDE proteins [17,66]. Moreover,
the p-T181-tau levels were significantly higher in BDE proteins isolated from the plasma
of patients with late-stage AD than patients with AD who had only been diagnosed with
mild cognitive impairment [34]. This demonstrate a dysfunction of the clearance ability
or an increase in the pathogenicity of exosomes in later stages of AD [48]. Additionally,
the use of highly sensitive methods, such as SIMOA, electrochemiluminescence enzyme-
linked immunosorbent assay, or immunomagnetic reduction could help detect commonly
occurring low concentrations of exosomes [6,24].

Although our results of p-Y-IRS-1 and HSP70 were not significant, it is necessary that
the two proteins be consider after the future research is conducted. The aforementioned
proteins have the following characteristics: First, IRS-1 serves as the effector molecule of the
insulin receptor [67]. Normal tissue responses to insulin include enhanced glucose uptake,
altered metabolism, and changes in cellular function. A diverse range of reduced responses
to insulin in the brain and peripheral tissues is designated as insulin resistance [30,68].
Brain insulin resistance is dependent on IRS-1 phosphorylation, and is important in AD
pathogenesis as it may potentially be linked to amyloid and tau pathologies [67,69]. It
was reported that the brain volume of patients with AD was positively associated with
p-Y-IRS-1 in the exosomes isolated from plasma [67]. Interestingly, the importance of
IRS-1 phosphotypes including p-Y-IRS-1 as predictive biomarkers for AD has been sug-
gested [42]. The negative association of p-S312-IRS-1 and p-Y-IRS-1 with cognition was
replicated in an in vivo study between these markers in autopsied brains of AD partici-
pants and antemortem cognition [70]. Additionally, tau hyperphosphorylation induces
brain insulin resistance, and this induction may be reflected in the strong associations
between p-T231-tau and p-T181-tau with p-S312-IRS-1 and p-Y-IRS-1 [42]. Second, HSPs
constitute a group of highly conserved ubiquitous chaperones, which are expressed in
response to several conditions. The HSP70 protein is a universal stress-inducible chaperone,
and is a key regulator of proteostasis that interacts with misfolded proteins present in
neurodegenerative disorders regulating aggregation or refolding and amending those that
are incorrectly folded [71]. HSP70 was identified in AD as a protector against intracellular
Aβ accumulation, as its overexpression rescued neurons from Aβ-mediated toxicity [72,73].
To explain this phenomenon, it has been proposed that HSP70 attenuates the cytotoxicity
of Aβ by binding amyloidogenic peptides and restoring the balance between aggregation,
folding, and degradation [72]. Additionally, the correlation with FDG-PET suggested that
exosomal HSP70 may be a marker of the degree of synaptic failure or neurodegenera-
tion [39]. Moreover, the levels of HSP70 were significantly lower in neural-derived plasma
exosomes of patients with AD than in control plasmas [29].

In addition to the six proteins selected in our study, many proteins have been demon-
strated as possible biomarkers, but we could not meta-analyze these proteins because of in-
sufficient results. As shown in Table 2, the levels of synaptic proteins such as NRGN, synap-
tophysin, synaptotagmin, synaptopodin, SNAP-25, AMPA4 receptor, NPTX2, NLGN1,
NRXN2, p-S9-synapsin 1, synapsin 1, and MOG were lower in patients with AD. The levels
of growth factors such as FGF-2, FGF-13, HGF, and IGF-1 were also reduced in patients
with AD. Additionally, the levels of REST and GAP43 decreased in patients with AD. In
contrast, the levels of tau-related proteins, such as p-T231-tau, p-S202-tau, and p-tau/t-tau
ratio increased in patients with AD. The levels of MMP-9, TSPO, and GM1 also increased
in patients with AD. If the results for the aforementioned proteins are further collected in
relevant studies, it might be certain to obtain possible biomarkers for AD.

There is an additional merit in finding specific BDE proteins that represent a novel
class of therapeutic targets besides their use as biomarkers. For example, exosomes injected
into the brain of transgenic mouse models of AD helped decrease toxic oligomers and fibrils
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in a microglial-dependent manner following intracerebral administration, contributing to
the clearance of Aβ in vivo [17,74–76]. Exosomes derived from neurons, astrocytes, oligo-
dendroglia, and microglia have different functions [76] such as: (i) The role of the exosomes
released from neurons may be related to synaptic plasticity, neurovascular communication,
neuroprotection, and neuroregeneration [77–81]; (ii) the role of astrocyte-derived exosomes
may be associated with neuronal survival, synaptic transmission, neuroinflammation, and
neurogenesis [82–85]; (iii) the role of oligodendroglia-secreted exosomes may be linked to
axon development, neuronal integrity, and enhanced neuronal stress tolerance [86,87]; and
(ix) the role of exosomes sourced from microglia may be correlated with neuronal survival,
neurite outgrowth, and neuroinflammatory response [88–90]. Therefore, if cell-specific
damage using BDE proteins could be detected accurately, it could provide therapeutic
targets and novel drug delivery vehicles, as well as help in the diagnosis and prognosis
prediction for AD. Interestingly, Yin et al. reported that exosomes have a therapeutic
potential in treating AD by enhancing neuroprotection mechanisms and acting as ther-
apeutic vehicles, and they may play a vital role in AD preclinical and clinical studies
as biomarkers [91].

However, this study had certain limitations. First, we had limited results because
we used data only from the papers included/selected in this study. Second, our results
included the control and AD groups regardless of the stage of AD. Therefore, further
research is needed to analyze the stages of AD, as well as mild cognitive impairment.
Nevertheless, levels of BDE proteins including Aβ, total tau, or p-tau in patients with AD
exhibit a remarkable change. Therefore, we demonstrated that BDE proteins, such as Aβ,
total tau, or p-tau could be potential biomarkers for the diagnosis, prognosis prediction,
and progression of AD.
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