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Neutrophils play a vital role in the formation of arterial, venous and cancer-related

thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils

release proteins and enzymes complexed to DNA fibers, collectively called neutrophil

extracellular traps (NETs). Although NETs were originally described as a way for the

host to capture and kill bacteria, current knowledge indicates that NETs also play an

important role in thrombosis. According to recent studies, the destruction of vascular

microenvironmental homeostasis and excessive NET formation lead to pathological

thrombosis. In vitro experiments have found that NETs provide skeletal support for

platelets, red blood cells and procoagulant molecules to promote thrombosis. The

protein components contained in NETs activate the endogenous coagulation pathway

to promote thrombosis. Therefore, NETs play an important role in the formation of

arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review

will systematically summarize and explain the study of NETs in thrombosis in animal

models and in vivo experiments to provide new targets for thrombosis prevention

and treatment.
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INTRODUCTION

The role of neutrophil extracellular traps (NETs) in inflammation and thrombosis has been
controversial for decades (1, 2). Traditionally, thrombosis is considered only a blood vessel or
blood disease (2). Inflammation and thrombosis are two independent pathological processes (3).
However, with the progress of immunology research, researchers have discovered that thrombosis
is an inflammatory process (4). A previous study observed neutrophil exudation in the blood vessel
wall at the early stage of thrombosis induction, followed by monocytes and lymphocytes (5). Based
on accumulating evidence, neutrophils play a key role in the process of thrombosis (5–8). The
depletion of neutrophils has been shown to reverse experimental thrombosis (9, 10). Another study
reported that neutrophils produce tissue factor (TF) and contribute to the formation of thrombosis
in vivo and in vitro (11).

In 2004, Brinkmann et al. found that neutrophils form a structure that separates from the cell
itself after stimulation called neutrophil extracellular traps (NETs), which provided new ideas for
studies of the interaction between neutrophils in the pathway of inflammation and thrombosis (12).
NETs were discovered as extracellular strands of decondensed DNA in complex with histones and
granule proteins, which were expelled from dying neutrophils. NETs are composed of circulating
markers (myeloperoxidase, neutrophil elastase, etc.) and kill bacteria during general inflammation.
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FIGURE 1 | The emerging role of neutrophil extracellular traps (NETs) in arterial thrombosis, venous thrombosis and cancer-related thrombosis. Immunofluorescence

of NETs. Red: MPO, Green: CitH3, Blue: DAPI.

Additionally, NETs play vital roles in arterial, venous and
cancer-related thrombosis formation. For arterial and venous
thrombosis, activated components are composed of DNA and
histones, which provide a structure for red cells and platelets
and contribute to the formation of thrombosis. For cancer-
related thrombosis, tumor cells can stimulate the formation of
NETs and then promote the metastasis of cancer. Therefore,
understanding the different mechanisms of thrombosis has
become an important direction for the study of thrombotic
diseases (Figure 1). The relevant research progress in recent years
is summarized below.

THE ROLE OF NETs IN
ATHEROSCLEROSIS AND ARTERIAL
THROMBOSIS

Chronic inflammation plays an important role in the occurrence
and development of atherosclerosis and thrombosis, during
which the status of neutrophils has received increasing attention
(13). Many studies have confirmed an important role for NETs in
the processes of atherosclerosis, coronary artery disease (CAD)
and ischemic stroke (14–16). However, most of these studies are
based on in vitro and animal experiments (Table 1). Few studies
have assessed the clinical value of NETs in arterial thrombosis.

NETs in Atherosclerosis
NETs have been detected in patients with atherosclerosis and in
animal models, and NETs are related to various pathogeneses of

atherosclerosis. NETs play a role in all stages of atherosclerosis,
from early endothelial dysfunction to atherosclerotic plaque
rupture and atherosclerotic thrombosis (25, 26). As a scaffold
for cells and various coagulation factors, NETs not only exist
in plaques and thrombi but also induce oxidative stress, induce
the activation of endothelial cells, antigen-presenting cells and
platelets, increase the expression of coagulation factors, and lead
to proinflammatory reactions (Figure 2A). These structures play
a role in the pathogenesis of atherosclerotic plaque formation
and thrombosis (3, 4, 27). Compared to the network structures
produced by other cells, NETs are mainly produced in the
early stage of thrombosis, and most of them are formed in
the acute stage of the disease (17, 28). NETs also induce the
death of smooth muscle cells, leading to reduced plaque stability
(22). At the same time, NETs also promote the abnormal
activation of macrophages and upregulate the levels of IL-8 and
inflammasomes, thereby further amplifying the role of NETs
and accelerating the progression of atherosclerosis (23, 29–31).
Macrophages are more common in the types of lesions that are
prone to rupture, but studies have shown that the infiltration of
neutrophils is more important for these erosion-prone lesions
(32). Oxidized low-density lipoprotein (oxLDL), which easily
accumulates in macrophages, is used as an atherosclerosis-
inducing molecule. Many studies have shown that it stimulates
neutrophils to form NETs (33). The specific deletion of peptidyl
arginine deiminase-4 (PAD4) reduces the formation of NETs
and significantly alleviates atherosclerosis, complications, and
inflammation caused by macrophages (34, 35).
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TABLE 1 | NETs in atherosclerosis and arterial thrombosis.

Objects Main findings References

Patients with STEMI NETs were dominated in early thrombosis (17)

Patients with AMI or AIS The formation and abundance of NETs

were associated with prognosis

(18)

Patients with STEMI Plasma levels of NETs markers increased

and were positively correlated with infarct

size and left ventricular dysfunction

(19)

Patients with COVID-19 NETs were present in coronary thrombus

of patients with COVID-19 and myocardial

infarction

(20)

Patients with diabetes Elevated levels of NETs markers (e.g.,

citH3) were associated with severe

coronary atherosclerosis in patients with

diabetes

(21)

Patients with CAD or AIS citH3 was observed in almost all thrombi (2)

Mouse/atherosclerosis NETs lysed smooth muscle cells, leading

to the destabilization of plaques.

(22)

Mouse/diabetes NETs promoted macrophage inflammation

and inhibited atherosclerosis resolution

(23)

Integrin 1α−/− mouse Decreased levels of NETs resulted in

decreased platelet aggregation,

cathepsin-G secretion, and arterial

thrombosis

(24)

NETs, neutrophil extracellular traps; STEMI, ST-elevation myocardial infarction; AMI, acute

myocardial infarction; AIS, acute ischemic stroke; CAD, coronary artery disease.

NETs in Coronary Thrombosis
NETs promote coronary microvascular thrombosis and affect
heart function (36). The content of NETs in cardiogenic
thrombosis is higher than that in thrombosis with other causes
(37). NETs carrying tissue factor are often observed at the site
of coronary thrombosis, and studies have shown that NETs are a
potential marker of arterial thrombosis in clinical specimens and
animal models (38). The structure of NETs has been detected in
thrombi of ST-segment elevation myocardial infarction (STEMI)
and non-ST-segment elevation myocardial infarction (NSTEMI)
(39), and the myocardial infarction score (18) and circulating
markers (citrullinated histone 3; myeloperoxidase, neutrophil
elastase, etc.) of NETs are significantly reduced after treatment
(40). The activation of platelets and neutrophils increases the
risk of major adverse cardiovascular events (MACEs) after acute
myocardial infarction (41). Moreover, NETs stimulate fibroblasts,
affect heart remodeling after STEMI and are important mediators
of fiber remodeling (19). Recent studies have also shown a major
role for NETs in the onset of STEMI in patients with COVID-
19, and NETs have been detected in thrombus samples from all
patients with COVID-19 (20).

NETs in Cerebral Thrombosis
NETs are also an important component of cerebral thrombosis,
are cytotoxic to endothelial cells, and together with von
Willebrand factor (VWF), promote the hypercoagulable state
(42, 43). Abundant NET structures have been observed in
almost all thrombi removed from patients with ischemic stroke
(37, 44), and patients with cardiogenic embolism have higher
levels of NETs (45). In cerebral ischemia, neutrophils are

the first type of cells that migrate to damaged brain tissue.
They produce NETs in the brain parenchyma and cerebral
blood vessels, thereby aggravating inflammation and brain
tissue damage (46). Accumulating evidence indicates that NETs
may fight against tissue-type plasminogen activator (t-PA) by
promoting coagulation and stabilizing clot-induced thrombosis,
which is a problem often encountered in the treatment of
patients with stroke (47–49). NETs may be potential biomarkers
and therapeutic targets for recurrent stroke in patients with
severe carotid artery stenosis (50). Deoxyribonuclease (DNase)
degradation of NETs or treatment with PAD4 inhibitors to
prevent NET formation significantly inhibits arterial thrombosis
in the brains of ischemic mice and improves stroke prognosis,
such as by reducing the site of infarction involvement and
maintaining basic blood flow levels (51).

NETs as Circulating Markers of Arterial
Thrombotic Diseases
The components of various NETs in plasma have been suggested
to be used to predict the severity of diseases such as CAD
and ischemic stroke. For example, PAD4 levels are very high
in carotid plaques (52), and citrullinated histone H3 (CitH3),
double-stranded DNA (dsDNA), neutrophil elastase (NE) levels,
the myocardial infarction area, and left ventricular dysfunction
are related to the poor prognosis of patients with coronary
atherosclerosis and myocardial infarction (19, 21, 41). The
plasma levels of the MPO-DNA complex and cell-free DNA
(cfDNA) are directly proportional to immune thrombosis in
patients with COVID-19 complicated with acute respiratory
distress syndrome (6, 53). NET-related tissue factors may also be
used as markers (54). In patients with type 2 diabetes, circulating
markers of NETs are related to thrombosis and a low fibrinolytic
status and can be used as biomarkers for the stratification of
patients with diabetes who present a higher risk of vascular
complications (55, 56). Immunofluorescence staining showed the
presence of NETs in thrombus samples from animal models.
In integrin1α−/− mice, the proportion of neutrophils releasing
NETs is reduced, and arterial thrombosis is significantly reduced
(24). In the mouse myocardial infarction model, the inhibition
of PAD4 activity by an intraperitoneal injection of a specific
drug reduces the infarct size and improves the prognosis of
cardiac ischemia (57).

The Therapeutic Potential of DNase in
Patients With Arterial Thrombosis
Lower DNase activity is related to infarct size (58), and
increased DNase activity reduces the risk of host tissue damage
and thrombosis induced by NETs (59). DNase treatment
reduces the content of NETs in plaques and the level of
macrophage inflammation, promotes disease remission and
improves prognosis (23). The use of t-PA for thrombolytic
therapy is the basis for the treatment of thrombotic diseases. The
addition of DNase targeting NETs to the standard t-PA treatment
regimen increases the therapeutic effect of thrombolytic therapy
and improves the prognosis of the disease (37, 51). Taken
together, these data indicate that DNase improves the prognosis
of subjects with cardiac and cerebral ischemia (37, 51). The
role of NETs in arterial thrombosis indicates that DNase
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FIGURE 2 | The mechanism of thrombosis formation in arterial thrombosis (A), venous thrombosis (B), and cancer-related thrombosis (C).

degradation of NETs may become a new treatment direction
and improve the effectiveness of thrombolytic therapy. In
the future, large-scale research should use NETs and their
components as disease markers and potential therapeutic
targets to reduce atherosclerosis and prevent thrombosis. At
the same time, further research is needed to explore the
effectiveness and safety of DNase in the treatment of arterial
thrombotic diseases.

THE ROLE OF NETs IN VENOUS
THROMBOSIS

Unlike arterial thrombosis, venous thrombosis is not caused by
endothelial rupture and is mostly due to slow venous blood
flow (Figure 2B), a hypercoagulable blood state and venous
intima injury (60, 61). Prolonged lack of exercise, pregnancy, and
chronic venous blood supply are the main causes of impaired
venous blood flow and are associated with an increased risk of
DVT development (62). Venous thrombosis is rich in fibrin and
red blood cells, and a large amount of white blood cell infiltration
is observed (63).

NETs in Deep Vein Thrombosis
The annual incidence of venous thromboembolism (VTE) in the
United States is ∼1/1000 (64). Stasis of blood flow in the veins
is one of the main causes of DVT, and this process often leads
to immune thrombosis. A study compared 150 symptomatic
patients with DVT with a control group that was clinically
suspected of having DVT but had a negative objective test and

found that compared with the control group, patients with
DVT had higher levels of circulating nucleosomes and activated
neutrophils. The increase in the levels of the two parameters
indicates that the risk of DVT is increased approximately 3
times (65). Deep vein thrombosis (DVT) is the most common
complication in patients with traumatic fractures. In patients
with traumatic fractures, the levels of citrullinated histone H3
(H3Cit), cfDNA and nucleosome NET biomarkers in plasma
were detected, and H3Cit and cfDNA assisted in the diagnosis
of DVT in patients with traumatic fractures (66). The thrombus
in a patient with microscopic polyangiitis (MPA) complicated
with deep vein thrombosis (DVT) was confirmed to be rich in
neutrophils (67). Furthermore, NETs exist in the thrombus tissue
of patients with venous thromboembolism, which is related to
the maturation of human thrombi (61). The formation of NETs
may be short-lived, occurring when neutrophils are recruited
into the thrombus, and as the thrombus matures, extracellular
NETs are degraded. Therefore, NETs are rarely found in a
mature thrombus. NETs have been used as human DVT
biomarkers (68).

Both NETs and inflammasome activation play a role in the
development of DVT. The stimulation of neutrophils induces
the formation of NETs and activates Caspase-1. Active Caspase-1
requires NETs as an adhesion surface. NETs and their component
histones promote the activation of Caspase-1 in platelets.
Colocalized NETs and Caspase-1 and platelet recruitment were
observed at the site of thrombosis. Pharmacological inhibition of
Caspase-1 substantially reduces DVT in mice, and thrombi are
still formed without citrulline histone 3. These data indicate an
interaction between NETs and inflammasomes in vitro and in the
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environment of deep vein thrombosis. This interactionmay be an
important mechanism supporting venous thrombosis (69). IL-1β
regulates the recruitment of neutrophils, and the inflammasome
mediates the activation and secretion of IL-1β. The NLRP-3
inflammasomemainly acts on Caspase-1 and Caspase-11, leading
to the cleavage and activation of IL-1β and IL-18.

The venous endothelium plays an important role in the
formation of DVT. Marie-Luise von Brühl et al. confirmed
that blood monocytes and neutrophils adhere to the venous
endothelium, providing an initial stimulus for the development
of DVT (62). This study confirmed that neutrophils are a
key trigger for the formation of DVT. Neutrophils form
NETs, which induce FXII-dependent coagulation. In addition,
platelets can also promote leukocyte accumulation and fibrin
formation by enhancing neutrophil-dependent coagulation.
Vascular endothelial activation or damage locally activates
complement to release allergens and chemokines C3a and
C5a. These pathways synergistically trigger the recruitment and
activation of platelets, neutrophils, and monocytes.

The role of platelets in venous thrombosis is not as obvious
as that in arterial thrombosis. However, thrombocytosis is
considered a risk factor for VTE (70). Pathogens and DAMPs
stimulate neutrophils to activate the coagulation system, and this
interaction mediates immune thrombosis. Platelets release high
mobility histone B1 (HMGB1), which triggers the formation of
NETs (71, 72).

Mixed lineage kinase-like (MLKL)-driven neutrophil necrosis
is related to venous thromboembolism (73). Human inferior
vena cava thrombosis is positive for phosphorylated MLKL, and
phosphorylated MLKL induces cell necrosis. In mice, MLKL
colocalizes with citrulline histone H3, and a genetic defect in
MLKL partially prevents clot formation during inferior vena cava
ligation in mice. Platelets activated by VTE induce NETosis,
resulting in the release of chromatin and DAMPs, which
contribute to the formation of clots (74).

Heparin-induced thrombocytopenia (HIT) is an immune-
mediated thrombocytopenia associated with a severe
prethrombotic state. HIT induction leads to increased neutrophil
adhesion to the venous endothelium. In HIT mice, neutrophils
migrate in a retrograde manner through a CXCR2-dependent
mechanism and accumulate in the thrombus. After PF4 binds to
NETs, it compresses itself and resists degradation by DNase. The
PF4-NET complex selectively binds to HIT antibodies, further
protecting them from nuclease digestion. In HITmice, inhibition
of NET formation by Padi4 gene disruption or DNase treatment
limits the size of venous thrombosis. Neutrophil activation
promotes HIT venous thrombosis by enhancing neutrophil-
endothelial cell adhesion and neutrophil clot infiltration, in
which the PF4-NET-HIT antibody complex causes thrombosis to
spread (75). Therefore, strategies to prevent venous thrombosis
may be to inhibit the adhesion of neutrophil endothelial cells,
prevent the recruitment of neutrophil chemokine-dependent
neutrophils to thrombi, or inhibit the release of NETs.

Many substances in plasma induce DVT. IFNγ promotes
venous thrombosis through the formation of NETs, and NK cells
play an important role in this process. The specific consumption
of natural killer cells (NK) leads to reduced NET formation

and reduced thrombus formation (76). C5a, the most effective
chemotactic complement activating fragment, is released after
C5 protein lysis and is considered a key determinant of
neutrophil recruitment and the activation of thrombosis. In the
mouse venous thrombosis model, the weight of the thrombin-
antithrombin complex is closely related to C5a, which indicates
that the process triggered during thrombosis promotes C5a
production. In vitro, the catalytic efficiency of plasmin-mediated
C5a production far exceeds that of thrombin or factor Xa and
is similar to the recognized complement C5 convertase. C5
activated by plasmin mediates the production of the membrane
attack complex (MAC) (77). Antiphospholipid antibodies (aPLs)
activate neutrophils to release NETs, thereby inducing arterial
and venous thrombosis inherent in antiphospholipid syndrome
(APS). Compared with healthy volunteers, patients with primary
antiphospholipid syndrome (APS) have higher levels of cell-free
DNA and NETs in serum and plasma. Freshly isolated
neutrophils from patients with APS tend to release high levels of
spontaneous NETs. In addition, the serum of patients with APS,
as well as IgG purified from patients with APS, stimulates the
release of NETs from controlled neutrophils. Humanmonoclonal
aPLs, particularly those targeting β2GPI, also enhance the
release of NETs. The APS induction of NET production can
be eliminated by the formation of reactive oxygen species and
TLR4 inhibitors (78).

In addition to classic thrombosis-related substances, other
molecules are also involved in the formation of DVT. Resolvin
D4 (RvD4) is an SPM (specialized proresolving mediator) that
is enriched at the natural beginning of thrombolysis. After
administration, the burden of thrombi is significantly reduced,
the infiltration of neutrophils in the thrombus is reduced, the
number of monocytes increases, and these cells are in the
early stage of apoptosis. The number of cells in the apoptotic
state increases. Neutrophils of mice treated with RvD4 are less
sensitive to the release of NETs (79). Slc44a2 is a ubiquitous
transmembrane protein that has been identified as a receptor
for a vascular hematoma factor (VWF). The expression of the
human neutrophil antigen 3b (HNA-3b) epitope on the Slc44a2
protein is related to the risk of human venous thrombosis
(VT). Mice lacking Slc44a2 showed a substantial reduction
in neutrophil recruitment in the inflamed mesenteric venules.
Slc44a2/HNA-3a plays an important role in the adhesion and
activation of neutrophils in veins under inflammation and
specific shearing (80).

NETs in Pulmonary Embolism
Acute pulmonary embolism (PE), isolated or combined
with deep vein thrombosis (DVT), is the main cause of
death or hospitalization due to venous thromboembolism
(VTE) (81), accounting for 5–10% of deaths in hospitalized
patients. The acute all-cause mortality of patients with venous
thromboembolism is 6.6% (82). The risk of death after
pulmonary embolism is particularly high, 2.1 times higher than
that of deep vein thrombosis (DVT) (83).

VTE is related to the release of NETs. Extracellular chromatin
and citrulline histone H3 (citH3) have been observed in
deep vein thrombosis in patients with VTE (61). Compared
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with those in healthy controls, NET formation markers in
symptomatic patients with VTE were significantly increased (84).
The increased formation of NETs reflected by the level of citH3
is positively correlated with impaired fibrinolytic function and
may be related to the severity of the disease by enhancing
inflammation and the prethrombotic state. A high endogenous
thrombin potential (ETP) combined with elevated citH3 levels
and prolonged clot lysis time (CLT) are associated with an eight-
fold increase in the risk of PE-related death (85, 86). Thrombotic
fibrillin clot characteristics and enhanced neutrophil extracellular
trap formation are associated with a higher risk of early death
in patients with acute PE, which suggests the role of these
biomarkers in determining prognosis.

Extracellular DNA in human plasma is also called cell-
free DNA (cfDNA) (87–91). The accumulation of cfDNA in
the circulation is thought to result from increased cell death
and/or activation, impaired cfDNA clearance, and/or decreased
endogenous DNase enzyme levels (92). DNA is mainly released
by neutrophils through NETosis (93). Circulating cfDNA and
nucleosomes are considered surrogate markers of NETs in
patients with venous thromboembolism. Elevated levels of
circulating nucleosomes and neutrophil elastase/a1-antitrypsin
complexes are associated with a threefold higher risk of DVT
(65). The plasma cfDNA level is positively correlated with
d-dimer and von Willebrand factor levels, as well as with MPO
activity, suggesting that neutrophils are the main source of
plasma cfDNA in patients with venous thrombosis. Nucleic acid-
binding polymers have been shown to prevent thrombosis in
mice without increasing the risk of bleeding. These polymers
bind to DNA, RNA and inorganic polyphosphate molecules with
high affinity and inhibit the activation of the intrinsic coagulation
pathway induced by nucleic acids and polyphosphates (94).
The complex of extracellular DNA, histones and neutrophil-
derived peptides stimulates the inflammatory response by
activating pattern recognition receptors on immune cells (95, 96).
Circulating extracellular DNA is an independent predictor of
mortality in elderly patients with venous thromboembolism (97).

Many substances are currently confirmed to be related to
the treatment of thrombosis. DNase I pretreatment degrades
NETs and reduces the incidence of thrombosis in wild-type
(WT) mice (62, 98). The addition of deoxyribonuclease I
to tissue plasminogen activator (tPA) significantly accelerates
the dissolution of thrombi and human lung thrombi (99).
Glucocorticoids exert important anti-inflammatory effects and
regulate the inflammatory immune response in the body. In an
infected state, glucocorticoids inhibit the formation of NETs,
and as the concentration of glucocorticoid treatment increases,
the inhibitory effect becomes more obvious (99). Because NETs
are positively charged, unfractionated heparin (UFH) may be a
more effective anticoagulant in patients with acute PE. Patients
with acute PE presenting lactic acid concentrations >2mM have
a higher possibility of suppressing strong NETosis, and thus
UFH may be the first choice (97). Heparin has been shown to
bind to histones and prevent histone-mediated cytotoxicity of
endothelial cells. In vivo, heparin reduced the mortality of aseptic
inflammation and sepsis in a mouse model. The protective effect
of heparin is not related to its anticoagulant properties (100).

Heparin also replaces histones from the chromatin backbone of
NETs, thereby destroying the stability of NETs (87). However,
recent studies have shown that heparin stimulates NET formation
in vitro, and the ability of enoxaparin to induce NET production
is much lower than that of heparin, while pentosan sodium
(fondaparinux) does not induce the formation of NETs (101).
The hypothesis of the potential benefits of heparin therapy for
patients with PE in real life requires further verification.

NETs AND CANCER-RELATED
THROMBOSIS

In current research on thrombosis, an increasing number of
people are paying attention to the effect of the formation of
neutrophil extracellular traps (NETs) on thrombosis, including
thrombosis from the automatic venous system and acquired
thrombosis (102, 103), such as tumor-related thrombosis and
other diseases. The formation of tumor-associated thrombosis
may be related to thrombosis derived from the arteriovenous
system, but the specific mechanism is not yet fully understood.
This may result from the interaction of several mechanisms
(104). The risk of deep vein thrombosis (DVT) in patients with
cancer is 5–7 times higher than that in healthy people. Tumor-
related thrombosis increases the risk of death by 47 times and
seriously affects the survival and prognosis of patients with
cancer (105). The cause may be a source of cytokines, and
tissue damage caused by radiotherapy and chemotherapy causes
patients with tumors to usually be in a hypercoagulable state or
a prethrombotic state (106). The mechanism of VTE formation
(Virchow’s triad) is composed of three components: blood flow
stagnation, endothelial injury, and a hypercoagulable state. The
latter includes abnormalities in the coagulation and fibrinolytic
pathways and platelet activation. Tumor-related thrombosis
has been roughly divided into direct mechanisms and indirect
mechanisms, which are described below (Figure 2C).

Direct Mechanism
Tumor cells directly induce platelet activation. Activated
platelets stimulate tumor cells or normal cells in the tumor
microenvironment (TME) to secrete a large amount of thrombo-
activating factors, including tissue factor (TF) and collagen
exposure. These factors increase vascular permeability and then
start the coagulation cascade (107). The expression of podoplanin
(PDPN) directly causes platelet activation and aggregation
through calcium-dependent lectin-like receptor 2 (CLEC-2)
on platelets (108). Tumor cells also secrete platelet agonists,
such as ADP and thrombin, which further promote platelet
activation through P2Y12 and protease-activated receptor 1/4
(PAR1/4), respectively (109). Phosphatidylserine (PS) on tumor
cells also promotes blood coagulation, and PS also serves as
a key surface component of the coagulation complex (110).
The coagulant secreted by tumor cells has been shown to
directly activate the coagulation pathway by activating factor X,
stimulating the local TME and even systemic platelet activation
and thrombosis. In addition, plasminogen activation inhibitor-1
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(PAI-1) is expressed at high levels in tumor cells, inhibiting the
process of fibrinolysis (111).

Indirect Mechanism
Inflammatory cytokines secreted by tumor cells cause platelet
activation and promote the procoagulant phenotype of
endothelial cells. Platelets also promote tumor metastasis
through different mechanisms. Activated platelets protect
tumor cells from immune recognition in the circulation,
promote tumor cell adhesion, and help tumor cells
pass through the blood vessel wall. Platelet α-granules
released after platelet activation carry a large amount
of growth factors, such as PDGF, VEGF and TGF-β. In
the TME, these growth factors are conducive to tumor
proliferation, angiogenesis and invasiveness, thereby promoting
tumor progression (112). At the same time, these factors
cooperate with heparanase and matrix metalloproteinases
(MMPs) in the TME to further promote tumor-related
thrombosis (113).

Previously, researchers postulated that the blood coagulation
process and the immune regulation of neutrophils are two
processes that do not interfere with each other, but the latest
research shows that they are closely related. Neutrophils
infiltrating the TME release cytokines and enzymes, which
promote immune thrombosis (114). Studies have shown
that NETs cause a prethrombotic state and thrombosis
through various mechanisms. NETs cause the release of a
large number of histones and proteasomes from neutrophils
into the blood. NETs serve as mesh scaffolds to physically
capture platelets or interact with NETs. Histones increasingly
activate platelets and enhance the adhesion, aggregation
and release functions of platelets. These changes ultimately
lead to fibrin deposition and red blood cell capture, thereby
accelerating the clotting process (115). In addition, growth
factors secreted by tumor cells also stimulate neutrophils
to release NETs (114). The interaction of NETs and
platelets provides a new target for the clinical evaluation
and treatment of thrombosis, and effective intervention in
the formation of tumor-related thrombosis has important
clinical significance.

Research on NETs and Tumor-Related
Thrombi in Animal Models
NETs are present at high levels in a variety of malignant
tumors, and the close relationship between NETs and tumor-
related thrombosis was first confirmed in animal models (116).
In mouse models of breast cancer, non-small cell lung cancer
and chronic myelogenous leukemia, neutrophils are more likely
to induce the formation of NETs (117). In many different
types of malignant tumors, increases in plasma free DNA and
circulating NET levels are observed, which are closely related
to spontaneous thrombosis (118). Compared with tumor-free
mice, tumor-bearing mice had increased venous and arterial
thrombosis, and citrulline histone H3 (8) was directly detected
in the thrombus. Neutrophils isolated from tumor-bearing mice
showed higher H3Cit levels upon in vitro stimulation, and
NETs formed more readily than normal neutrophils (119).

An endotoxin injection into the abdominal cavity of tumor-
bearing mice induces the formation of NETs, which in turn
induces a prethrombotic state and coagulation dysfunction
(47). The accumulation and activation of neutrophils at the
site of endothelial injury is considered to be the cause of
thrombosis. NETs cause endothelial cell damage. Studies have
found that phenyl iodide significantly inhibits this damage,
indirectly indicating that endothelial cell damage leads to the
formation of thrombi.

Spontaneous DNA-rich thrombi were observed in the lungs
of tumor-bearing mice, consistent with the increase in plasma
H3Cit and extracellular DNA levels (120). Notably, DNase I
pretreatment or depletion of neutrophils completely eliminates
arterial thrombosis in tumor-bearing mice and control mice
and reduces the size of venous thrombosis in tumor-bearing
mice but does not affect venous thrombosis in control mice
(8). Based on these studies, DNase I inhibits the formation of
NETs or promotes the degradation of NETs, thereby reducing
tumor-related thrombosis. Tumor-related neutrophils alter the
function and status of host immune cells by producing various
chemokines, inflammatory factors and reactive oxygen species.
Increased formation and release of NETs were observed when
neutrophils were stimulated with tumor-derived granulocyte
colony-stimulating factor (G-CSF) (121). Another mechanism by
which platelets activate tumor cells to promote the formation
of NETs has recently been proposed. Platelets are carriers
of tumor-derived exosomes (EVs), which in turn promote
the formation of NETs (122). Coincubation of tumor-derived
EVs with neutrophils enhanced the formation of NETs, and
EVs adhered to the NET complex. The interaction between
tumor-derived EVs and neutrophils may lead to tumor-related
thrombosis in breast cancer. Similarly, the increase in TF
levels in pancreatic tumors accelerates the adhesion of EVs to
NETs (118).

Clinical Research and Application of NETs
and Cancer-Related Thrombi
Clinical data have shown that patients with tumors are more
susceptible to the formation of NETs, and NETs play a very
important role in the process of tumor-related thrombosis.
NETs released from neutrophils isolated from patients with
tumors exhibit increased thrombin and fibrin production in
the plasma of healthy patients (123). Therefore, NETs are
observed in the thrombi of patients with tumors. Pancreatic
cancer is one of the tumors most prone to thrombosis. Recently,
human-derived pancreatic cancer cells (AsPC-1) were shown
to induce rapid NET formation and release when cocultured
with neutrophils from healthy humans (124). Similarly, the
NET release capacity of neutrophils from patients with gastric
cancer is also increased compared to that of neutrophils
from patients without tumors (125). Both human lung cancer
tissues and osteosarcoma tissues display neutrophil necrosis
and NETs, which are closely related to the therapeutic effect
and prognosis (126). Interestingly, in a clinical study involving
936 patients with newly diagnosed tumors or progression after
remission, plasma H3Cit levels were related to the occurrence
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FIGURE 3 | Interaction between NETs and other blood cells in thrombosis formation.

of VTE in patients with lung cancer and pancreatic cancer
but not in patients with other tumors, such as breast cancer
and brain cancer. Plasma H3Cit levels were unrelated to
VTE in patients with colorectal cancer and prostate cancer
(127). We documented the colocalization of H3Cit-positive
cells and extracellular H3Cit with extracellular DNA, indicating
the presence of NETs in the brain, coronary arteries, and
lung microthrombi of patients with stroke presenting with
potential tumors. The positive correlation between circulating
H3Cit levels and the thrombin-antithrombin complex indicates
that NETs may promote the activation of coagulation in
patients with cancer. This finding suggests the existence and
importance of applying NETs as a predictor of the risk
of thromboembolism in patients with lung and pancreatic
malignant tumors (128). Peptidylarginine deiminase 4 (PAD4)
is expressed at high levels in neutrophils that release NETs.
The levels of PAD4 and citrullinated histones reflect the
level of NETs in the body (129) and evaluate the tendency
of patients with cancer to spontaneously form a thrombus.
Tumor-related thrombosis is usually accompanied by an
increase in circulating hypercitrullinated neutrophil counts and
plasma histone hypercitrullination, but this phenomenon does
not occur in healthy patients (8). Histone-DNA complexes
are abundant in tumor-associated thrombi, but the plasma
levels of circulating nucleosomes and extracellular DNA in
patients are correlated with cancer-related stroke and D-dimer
levels (130).

Tumors are systemic diseases. This change induces
neutrophils to release NETs. Although mechanisms related
to tumor-associated thrombosis and the formation of NETs have
been proposed, the relationship between this interaction and
the formation of NETs remains to be studied. Moreover, further
large-sample animal experiments and clinical research support
for the use of NETs to predict the sensitivity and specificity of
tumor-related thrombosis and the determination of the cutoff
value are still needed.

CONCLUSION AND PERSPECTIVES

Neutrophil extracellular traps have become undeniable factors
in the field of thrombosis and hemostasis. NETs regulate
thrombosis through different pathways and are implicated in
the pathophysiology of both arterial and venous thrombotic
complications (Figure 3). Undoubtedly, future studies will
further advance our knowledge of the temporal and spatial
processes of neutrophil-driven thrombus formation and
maturation. This information will become very valuable for
developing novel antithrombotic therapies. Pharmacological
disassembly and degradation of NETs in thrombi may enhance
acute thrombosis. In addition, strategies preventing the
formation of NETs may reduce thrombogenicity, which might
be beneficial in thrombosis prevention. Preclinical and clinical
studies investigating these new therapeutic opportunities are
now needed to fully understand the efficacy and safety of
targeting NETs in thrombosis.
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