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Objective: Accurate prediction of abdominal aortic aneurysm (AAA) growth in an individual can allow
personalised stratification of surveillance intervals and better inform the timing for surgery. The authors recently
described the novel significant association between flow mediated dilatation (FMD) and future AAA growth. The
feasibility of predicting future AAA growth was explored in individual patients using a set of benchmark machine
learning techniques.
Methods: The Oxford Abdominal Aortic Aneurysm Study (OxAAA) prospectively recruited AAA patients
undergoing the routine NHS management pathway. In addition to the AAA diameter, FMD was systemically
measured in these patients. A benchmark machine learning technique (non-linear Kernel support vector
regression) was applied to predict future AAA growth in individual patients, using their baseline FMD and AAA
diameter as input variables.
Results: Prospective growth data were recorded at 12 months (360 � 49 days) in 94 patients. Of these, growth
data were further recorded at 24 months (718 � 81 days) in 79 patients. The average growth in AAA diameter
was 3.4% at 12 months, and 2.8% per year at 24 months. The algorithm predicted the individual’s AAA diameter
to within 2 mm error in 85% and 71% of patients at 12 and 24 months.
Conclusions: The data highlight the utility of FMD as a biomarker for AAA and the value of machine learning
techniques for AAA research in the new era of precision medicine.
� 2018 The Author(s). Published by Elsevier Ltd on behalf of European Society for Vascular Surgery. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

The clinical management of abdominal aortic aneurysms
(AAAs) is defined by three key domains: screening/diag-
nosis, surveillance, and surgical intervention. With regard to
the surveillance of AAAs, it is important to develop tools for
the assessment of the likelihood of AAA rupture or for the
prediction of future AAA growth. In the setting of clinical
research, the true risk of rupture can only be established by
allowing AAA rupture without intervention. In comparison,
the growth rate of individual AAAs can be ascertained by
repeat measurements of the AAA size during surveillance.
ese authors contributed equally.
ese authors are joint senior author.
rresponding author.
il address: regent.lee@nds.ox.ac.uk (R. Lee).
-6553/� 2018 The Author(s). Published by Elsevier Ltd on behalf of
an Society for Vascular Surgery.This is an open access article under the
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
s://doi.org/10.1016/j.ejvssr.2018.03.004
The average growth rates of AAAs can be observed from
cohort studies. However, there is currently no means of
predicting the growth of an AAA in individual patients. In a
recent survey of international vascular surgery colleagues,
“discovering new tests for the prediction of AAA growth”
was identified as the top priority for research in AAAs.1

In this regard, the novel observation that flow mediated
dilatation (FMD, a marker of endothelial function) of the
brachial artery is inversely correlated with the rate of future
AAA growth, has recently been described. In the study, FMD
of the participants was measured at baseline, and they
were followed over a 12 month period. There was a sig-
nificant inverse correlation between baseline FMD and the
growth rate recorded over the subsequent 12 months.2 This
highlights the potential utility of FMD as a novel biomarker
of AAA progression.

Machine learning techniques are gaining mainstream in-
terest in biomedical research. They are non-linear exten-
sions of standard linear tools from medical statistics. For
example, logistic regression maps a vector of values (as
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Table 1. Summary of participant characteristics at the baseline
assessment.
Number (male) 94 (82)
Age at consent, years (SD) 74 (8)
AAA size, mm (IQR) 43 (36e48)
Height, m (SD) 1.72 (0.08)
Weight, kg (SD) 83.5 (14)
BMI median (IQR) 27 (24e31)
Blood pressure SBP/DBP, mmHg (SD) 137/77 (15/11)
Smoking status, n (%)
Current smoker 14 (15)
Past history of smoking (>1 month) 66 (70)
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input) onto a class membership probability (at the output).
Logistic regression finds the relationship between the multi-
dimensional input and the output (in the range of [0 1]
values) using a linear weighted sum of the inputs. Machine
learning methods generalise this, by allowing the relation-
ship between the same inputs and outputs to be a non-
linear relationship. This allows interactions between input
variables to be modelled such that the output value is
closer to that which is required.

We have previously demonstrated the utility of machine
learning in developing prognostic tools for the prediction of
cardiovascular disease using ECG data in the China Kadoorie
Biobank3 and other clinical settings.4 Here the application of
a set of benchmark machine learning techniques (non-linear
Kernel support vector regression) to predict future AAA
growth in individual patients is described.
Never smoked 14 (15)
History of ischaemic heart disease, n (%) 38 (40)
MI/ACS 33 (35)
Stable angina 18 (19)
Coronary intervention/bypass 34 (36)

History of peripheral arterial disease, n (%) 24 (26)
History of cerebral arterial disease, n (%) 12 (13)
History of hypertension, n (%) 62 (66)
History of hypercholesterolemia, n (%) 57 (61)
Total cholesterol, mmol/L (IQR) 4 (3.4e5)
High density lipoprotein, mmol/L (IQR) 1.1 (1e1.4)
Low density lipoprotein, mmol/L (IQR) 2.2 (1.7e3.1)
Triglycerides, mmol/L (IQR) 1.3 (0.9e1.9)

History of diabetes mellitus, n (%) 14 (15)
HbA1C%, mean (SD) 41 (8)
Oral anti-hyperglycaemics, n (%) 11 (12)
Insulin, n 0

Chronic kidney disease (eGFR< 60), n (%) 21 (22)
Creatinine mmol/L (IQR) 80 (68e96)

Chronic respiratory disease, n (%) 15 (16)
Family history of AAA, n (%) 20 (21)
History of treated neoplasms, n (%) 14 (15)
Regular medication, n (%)
Aspirin 56 (60)
Thienopyridine/
cyclopentyltriazolopyrimidine

14 (15)

Anticoagulants 11 (12)
Statin 71 (76)
b blocker 35 (37)
ACE inhibitor/ARB 60 (64)

C-reactive protein (mg/L, IQR) 2.9 (1.1e7.3)
Median FMD (%, IQR) 2.0 (0.75e4.02)

Note. For variables which demonstrate Gaussian distribution,
mean and standard deviation (SD) are presented. For variables
which demonstrate non-Gaussian distribution, median and
interquartile range (IQR) are presented. AAA ¼ abdominal aortic
aneurysm; IQR ¼ interquartile range; BMI ¼ body mass index;
SBP ¼ systolic blood pressure; DBP ¼ diastolic blood pressure;
MI ¼ myocardial infarction; ACS ¼ acute coronary syndrome;
PAD ¼ peripheral arterial disease; TC ¼ total cholesterol;
TG ¼ triglycerides; DM ¼ diabetes mellitus; HbA1C ¼ glycated
haemoglobin; CKD ¼ chronic kidney disease; eGFR ¼ estimated
glomerular filtration rate; ARB ¼ angiotensin II receptor blocker;
CRP ¼ C-reactive protein; FMD ¼ flow mediated dilatation of
brachial artery.
METHODS

This study is based on a prospectively recruited cohort of
patients with AAAs (Oxford Abdominal Aortic Aneurysm
Study, OxAAA). Every participant gave written consent to
take part in the study. The ethics approval reference for this
study is SC/0250/13. AAA size data obtained by the National
Health Service (NHS) AAA surveillance programme was
used. AAA size was measured by the anteroposterior
diameter (APD) (outer to outer) on ultrasound. FMD of the
brachial artery was measured as an additional research
assessment in the study participants. Annual AAA % growth
was calculated by (DAPD/APD at baseline)/(number of days
lapsed/365 days).

Full details of patient recruitment and data acquisition of
the OxAAA study cohort are as reported recently.2 A sig-
nificant correlation between the baseline AAA diameter and
AAA growth rate recorded over the subsequent 12 months
was observed, but none of the other clinical demographic
parameters correlated with future AAA growth. Therefore
baseline FMD and AAA diameter were included as the two
variables to construct the prediction algorithm. In addition,
longer term (24 months) growth data were included in the
latest analysis.

Receiver operating characteristic curves (ROC) were
plotted first, using two variables (baseline FMD and AAA
diameter) to analyse the performance of the generalised
linear logistic regression model for discerning growth
against a predefined growth rate threshold.

A set of benchmark machine learning techniques was
then applied for the prediction of AAA diameter in indi-
vidual patients at 12 and 24 months from baseline. These
included non-linear kernel support vector regression (SVR)
using two features (FMD, AAA diameter) and hyper-
parameter optimisation using nested fivefold cross valida-
tions5,6 (Matlab, V2016b, Natick, MA, USA).

SVR is a regression technique which can be used in the
context of linear or non-linear regression, where the linear
relation assumption would not be optimal or sufficient to
characterise the dynamics of input feature patterns versus
model outcome. A Kernel trick can be used in SVR to learn a
non-linear function andmap feature input into desired model
output. Here, non-linear kernel SVR including a Gaussian
kernel has been used to non-linearly map the feature input
(FMD, AAA size) into the future AAA growth rate.
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Cross validation is a well established approach where the
data are partitioned into a training set used to train the
predictive model and a test set to evaluate the model. In “k-
fold”, the data is partitioned into “k” equal sized subset
(folds). Then, k-1 folds of the data are used for training the
model and a single fold is used for testing the trained
model. The process is then repeated k times (the folds) and
the average error has been calculated to assess the model.
Based on this model, all the observations are used for both
training and testing the model.

A 2 mm error margin was allowed in the algorithm
because this is the accepted technical variability between
ultrasound antero-posterior diameter measurements in
AAAs.7,8
RESULTS

Baseline demographic data of the study participants are
presented in Table 1. Prospective growth data were recor-
ded at 12 months (360 � 49 days) for 94 patients. Of these,
growth data were further recorded at 24 months (718 � 81
days) in 79 patients. The average growth in AAA diameter
was 3.4% at 12 months, and 2.8% per year at 24 months.

The ROC curves are plotted with the threshold of “stable/
no growth” (defined as growth �0%/year) or “fast growth”
(defined as � the upper tertile of growth within the group,
during the respective period) for both 12 and 24 months
(blue and red line respectively; Fig. 1A and B). The area
under ROC (AUROC) metrics show good discrimination
based on FMD, AAA diameter, and the prediction of future
growth rates at 12 and 24 months against the predefined
thresholds.

Using the machine learning techniques as described, the
individual’s AAA diameter was predicted to within 2 mm
error in 85% and 71% of patients at 12 and 24 months,
respectively (with root mean square error of 1.7 and 2.4,
Figure 1. Receiver operating curve (ROC) demonstrating the ability of th
growth rate thresholds. ROC curves were first plotted using two variable
the generalised linear logistic regression model. The ROC curves are
growth � 0mm/year) or “fast growth” (B) (defined as upper tertile of
and 24 months (blue and red line respectively).
respectively) (Fig. 2C and D; black cross, actual AAA diam-
eter measured at 12 and 24 months; blue and red circles,
machine predicted diameter at 12 (blue) and 24 (red)
months).
DISCUSSION

To prevent AAA rupture related mortalities, AAA screening
programmes have been established in the UK, Sweden, and
Germany. International guidelines state that small AAAs
(<55 mm in diameter) require regular ultrasound scans to
monitor growth until the 55 mm threshold is reached.9e11

For AAAs between 30 and 45 mm diameter, monitoring
with an annual ultrasound scan is recommended; for AAAs
between 45 and 55 mm in diameter, monitoring with 6
monthly scans is recommended. In the UK, the total num-
ber of screen detected AAAs requiring surveillance increases
by w2,000 each year.12 The total number of surveillance
scans performed each year therefore increases accordingly.

In 2016, a survey of all AAA patients at the Oxford
Regional Vascular Service was conducted to ascertain their
experience during AAA care. Among the comments raised
by the participants (n ¼ 194), “frequency/regularity of AAA
monitoring” and “explanation regarding their management”
emerged as the most important issues. This was further
underpinned by the fact that 52% of the respondents felt
highly preoccupied by the size of their AAAs.13

A tool for predicting the future growth of an AAA will
impact clinical practice. Firstly, an explanation and reas-
surance to our patients can be provided regarding the
“future” of their AAAs. More so, accurate prediction of AAA
growth in an individual will allow personalised stratification
of surveillance intervals. Those with a predicted slow
growing AAA would not require as frequent monitoring,
whereas the opposite is true for those with a predicted fast
growing AAA. By applying benchmark machine learning
e logistic regression model to discern future growth at predefined
s (baseline FMD and AAA diameter) to analyse the performance of
plotted with the threshold of “stable/no growth“ (A) (defined as
growth within the group, during the respective period) at both 12
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Figure 2. Applying machine learning techniques for the prediction of AAA growth in individual patients. For the prediction of AAA diameter
in individual patients at 12 (A) and 24 (B) months from baseline, non-linear kernel support vector regression (SVM) was applied using two
features (FMD, AAA diameter), and hyperparameter optimisation using nested fivefold cross validations. The SVM method is a non-linear
regression which can potentially improve the accuracy of predicting AAA diameter by considering non-linear functions of the input fea-
tures. A 2 mm error margin was allowed because this is accepted technical variability between ultrasound diameter measurements in
AAAs. The algorithm predicted the individual’s AAA diameter to within a 2 mm error in 85% and 71% of patients at 12 and 24 months,
respectively (with root mean square error of 1.7 and 2.4, respectively). Note. The figure includes only data points that are within the 2 mm
error tolerance. Black cross, actual AAA diameter measured at 12 and 24 months; blue and red circles, machine predicted diameter at 12
(blue) and 24 (red) months.

Applied Machine Learning for the Prediction of Growth 27
techniques to an established dataset, an algorithm is
derived that is able to predict the future growth of AAA in
an individual patient.

Patients with small AAAs are typically monitored
through dedicated AAA surveillance programmes. In real
life settings, more than one operator would have per-
formed the surveillance scans during the course of AAA
surveillance. The pragmatic approach was taken of utilising
the diameter measurements obtained at the clinical scan
by the NHS AAA surveillance programme. In the prediction
algorithm, clinically acceptable inter-observer variation
was allowed in the ultrasound measurements. These
measures help to improve the external validity and gen-
eralisability of the results.

The predictive accuracy of any forecasting algorithm
would be expected a priori to decrease as the look ahead
duration is increased. The degree of the decrease will vary
according to the dynamics of the data for the individual
application.14 It is noted here that a decrease from 85% at
12 months to 71% at 24 months is a relatively small
decrease, considered informally, compared with equivalent
doubling of the look ahead duration for many applications.

The study is designed to examine biomarkers predictive of
future AAA growth as it utilises the documented size mea-
surements during the natural history of AAA surveillance. It is
also important for studies to examine biomarkers predictive
of the future risk of AAA rupture. However, in order to
examine the correlations between baseline biomarkers and
the risk of future AAA rupture, a study should ideally establish
the actual rupture rate observed in a prospectively recruited
cohort, instead of the assumed risk of rupture. This can only
happen if the recruited patients (with small AAAs) are
allowed to progress to rupture without intervention, and
therefore presents practical and ethical challenges. If FMD
becomes a widely adopted biomarker in the setting of AAA
surveillance, it may one day be possible to examine its value
for predicting AAA rupture at a population level.

There is emerging evidence that the geometric/volu-
metric measurements of an AAA may provide better infor-
mation regarding AAA growth. In particular, volumetric
measurement by 3D ultrasound is particularly applicable for
AAA surveillance.15 For future validation work, it will be
useful to acquire geometric/volumetric measurements of
the AAA to assess its effect on the prediction algorithm.
CONCLUSION

Biomarkers for the prediction of AAA rupture or growth can
have important implications in the management of AAAs.
The data highlight the utility of FMD as a biomarker for AAA
growth, and the value of machine learning techniques in the
new era of precision medicine. Given the international
opinion regarding the importance of biomarkers for the
prediction of AAA growth, the findings serve as a primer to
stimulate interest for further validation of this biomarker by
external cohorts.
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