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Abstract

Proteins evolve under a myriad of biophysical selection pressures that collec-

tively control the patterns of amino acid substitutions. These evolutionary

pressures are sufficiently consistent over time and across protein families to

produce substitution patterns, summarized in global amino acid substitution

matrices such as BLOSUM, JTT, WAG, and LG, which can be used to success-

fully detect homologs, infer phylogenies, and reconstruct ancestral sequences.

Although the factors that govern the variation of amino acid substitution rates

have received much attention, the influence of thermodynamic stability con-

straints remains unresolved. Here we develop a simple model to calculate

amino acid substitution matrices from evolutionary dynamics controlled by a

fitness function that reports on the thermodynamic effects of amino acid muta-

tions in protein structures. This hybrid biophysical and evolutionary model

accounts for nucleotide transition/transversion rate bias, multi-nucleotide

codon changes, the number of codons per amino acid, and thermodynamic

protein stability. We find that our theoretical model accurately recapitulates

the complex yet universal pattern observed in common global amino acid sub-

stitution matrices used in phylogenetics. These results suggest that selection

for thermodynamically stable proteins, coupled with nucleotide mutation bias

filtered by the structure of the genetic code, is the primary driver behind the

global amino acid substitution patterns observed in proteins throughout the

tree of life.
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1 | INTRODUCTION

Protein amino acid sequences change due to spontaneous
mutations at the DNA level. Amino acid exchange rates
depend not only on the background mutation rate, but

also on how the mutation at the protein level impacts
overall organismal fitness. Empirical models that incor-
porate global amino acid substitution matrices have wide-
ranging applications in bioinformatics and evolutionary sci-
ence, including homology search, phylogenetics, ancestral
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sequence reconstruction, and the prediction of functional
residues. While such empirical models have tremendous
practical utility, the importance of various fitness pressures
in shaping the patterns of amino acid substitutions is still
unknown. Amino acid mutations can impact fitness by
modifying protein properties such as catalysis, binding,
expression, aggregation, non-specific interactions, and pro-
tein stability, the latter of which is known to be a major
selection pressure at most sites for all proteins.1–4 Here we
develop from first principles a biophysical and genetic
model that predicts amino acid substitution rates by assum-
ing that the fitness effects of amino acid mutations arise
from changes in protein stability alone. We then evaluate
the ability of thermodynamic stability to explain empirical
amino acid substitution patterns.

The prevailing phylogenetic models of protein evolu-
tion explicitly describe amino acid substitution processes
using instantaneous rate matrices whose parameters are
inferred from observed sequences using statistical
methods. Substitutions are modeled as an aggregated
Markov process in which sites evolve independently with
a substitution rate that depends on the identity of the cur-
rent amino acid. All widely used phylogenetic programs
(e.g., PhyML,5 IQ-TREE,6 RAxML,7 MrBayes,8 BAli-Phy,9

and PhyloBayes10) incorporate global substitution
(or exchangeability) matrices as a key component of the
default evolutionary model. Some of the most common
and successful global matrices include the JTT,11 WAG,12

and LG13 exchangeability matrices. Similarly, NCBI
blastp14 uses the BLOSUM62 matrix15 by default for
remote homology detection. Global substitution matrices
are empirically constructed by averaging rate processes
over numerous sites in many proteins. These global
matrices contain amino acid rate information that has
been incredibly useful and effective in practice, and they
are essential to modern phylogenetics and computational
biology. All these global amino acid substitution matrices
have highly similar, consistent patterns that call out for
an explanation.

The pairwise amino acid rate constants (known as the
“exchangeabilities”) in global substitution matrices are a
function of the inherent physical properties of amino acids
and folded proteins, and hence they should be predictable
from first principles. To understand the origin of the varia-
tion in global amino acid exchangeabilities, several studies
have established correlations with biophysical amino acid
descriptors such as hydrophobicity, secondary structure pro-
pensity, charge, and codon table structure.16–19 While these
phenomenological correlations help identify factors that
influence amino acid substitutions, biophysical and genetic
models are required for a mechanistic understanding of the
underlying fitness constraints that give rise to the empirical
substitution patterns.

Over the past two decades, mechanistic models that
combine evolutionary dynamics and protein biophysics
have led to significant advances in our understanding of
the causes of evolutionary rate variation in proteins.20–23

Biophysical models of rate variation typically treat molec-
ular fitness as dominated by fold stability or the stability
of an active structure. Evolutionary trajectories simulated
with biophysical fitness models have shown how fluctua-
tions in the structural environment within proteins influ-
ence substitution rates24 and produce epistatic effects
between sites.25 However, such structure-based evolu-
tionary models have yet to be applied to understand the
origin of global amino acid substitution patterns.

Building on this previous work, here we develop a
biophysical model of amino acid substitution rate varia-
tion to investigate the evolutionary and thermodynamic
basis for global substitution patterns in proteins. Since
global substitution matrices are constructed by averaging
over protein sites, our theoretical analysis must necessar-
ily also average over sites to offer a plausible explanation
of these ubiquitous global substitution patterns. We first
calculate the thermodynamic effects of amino acid muta-
tions in native protein structures and combine a fitness
function solely based on protein stability26 with a
position-specific codon-level model of sequence evolu-
tion27 to predict global amino acid substitution rates.
Using this model, we find that our calculated amino acid
substitution rates are strongly correlated with experimen-
tal values described by global empirical substitution
matrices such as the widely used LG matrix. Most of the
empirical amino acid substitution pattern can be
explained wholly by mutation combined with selection
pressure to maintain thermodynamically stable protein
structures.

2 | RESULTS

2.1 | A parametric all-atom
thermodynamic model of protein evolution

We selected a non-redundant, curated set of 52 high-
quality protein structures for the basis of our analysis.28,29

These 52 protein structures were subjected to a computa-
tional analog of saturated mutagenesis. For each site in
every protein, we calculated the thermodynamic effect
(ΔΔG) of all possible amino acid mutations with the
Rosetta macromolecular modeling suite.30 We assume
that fitness is proportional to the fraction of folded
protein,26 which is determined by the ΔΔG value, and
then calculate the probability of fixation in a finite popu-
lation using the Kimura equation31,32 (Figure 1). A global
amino acid substitution matrix can then be constructed
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from these amino acid fixation probabilities and a
codon-level model of nucleotide mutation. There are
only four free parameters in this mechanistic evolu-
tionary model: (a) the free energy of the native protein,
ΔGnat, (b) the effective population size, Ne, (c) the
nucleotide transition rate, κ, and (d) a whole-codon
rate parameter, ρ. Values of these four parameters are
required to calculate a substitution matrix, because we
do not know the values of these parameters a priori, we
optimize them with the method of maximum likeli-
hood. The end-result of this method is an amino acid
exchangeability matrix (189 free exchangeability rate
constants) and an amino acid equilibrium frequency
vector (19 free probabilities) that has been fit using
only three or four free parameters, each with a clear
physical and evolutionary interpretation.

2.2 | Thermodynamic effects of amino
acid mutations

A full atomistic model of protein structure and energet-
ics is necessary to realistically model site-specific
behavior. However, computing the folding stability of
proteins at this level of detail is currently intractable

for simulations of protein evolution, as it requires
extensive sampling of alternative conformations for
every sequence evaluated. Instead, we treat the folding
stability of native sequences (ΔGnat) as a global free
parameter in the model. In contrast to folding stability,
the free energy change upon amino acid mutation
(ΔΔG) is both reasonably fast to compute and fairly
accurate (r2 = .56 between prediction and experi-
ment33). We therefore calculate the folding stability of
a sequence variant at site L as:

ΔGL
j ¼ΔGnatþΔΔGL

ij ð1Þ

where i indicates the index of the native amino acid at
site L and j indicates the index of the proposed amino
acid mutation at that site. The equilibrium properties
of each position are conditioned only on the fitness
pressure exerted by the native structural environment
in the selected proteins. In contrast to using a
mutation-after-mutation simulation method, this elim-
inates the need for sequence pre-equilibration, avoids
compounding errors of model and energy function, and
allows computation of a site-specific Q-matrix from just
20 ΔΔG calculations.27

FIGURE 1 Overview of

method illustrated for a M to V

mutation. The rate of substitution

between any two amino acids in a

protein is evaluated based on an

underlying codon mutation

Markov process. Mutations arise

according to the mutation proposal

model and fix depending on the

fitness difference according to an

evolutionary dynamics model.

Fitness is proportional to the

fraction folded (i.e., the probability

of the native state) based on an all-

atom energy function. The model

contains four free parameters

(ΔGnat, Ne, κ, ρ) that are

simultaneously optimized
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2.3 | Protein fitness as a function solely
of thermodynamic stability

To understand to what degree thermodynamic
stability explains the process of protein evolution, we
base our fitness function on folding stability alone. Fol-
lowing previous work,26 we assume that a protein's con-
tribution to fitness is proportional to the fraction of the
protein folded into its functional conformation. The frac-
tion of protein folded ω for a two-state folding model
with stability ΔGL

i is given by

ωL
i ¼

1

1þexp ΔGL
i =RT

� � ð2Þ

2.4 | Fixation probability in a finite
population

Given enough time, a proposed mutation will either
spread throughout the population and fix or be purged
due to negative selection or genetic drift. We assume
throughout a monomorphic population evolving under
weak-mutation.34 The probability of fixation when amino
acid i mutates to amino acid j at site L depends on the
relative change in fitness due to that mutation (the selec-
tion coefficient sLij ¼ωL

j =ω
L
i �1) and the effective popula-

tion size Ne:
32

f Lij ¼
1�exp �2sLij

� �
1�exp �4NesLij

� � ð3Þ

The effective population size Ne is another global free
parameter in the model. The fixation probability we use
above is for diploid populations with non-overlapping
generations in which a new mutation arises as a single
copy. Similar equations, with exponential terms differing
by a factor of two, apply to haploids and overlapping
generations,35 but the effects on our analysis are negligi-
ble for large population sizes (e.g., Ne > 100).

2.5 | Nucleotide and codon mutation
proposals

Most spontaneous mutations involve changes to single-
base pairs. Due to the intrinsic chemical properties of
nucleotides,36,37 point mutations occur with greater rates
for transitions (pyrimidine to pyrimidine or purine to
purine) than transversions. To capture this bias in our
model, the transversion rate is fixed at 1.0 and the

transition rate κ is treated as a free parameter. A smaller
subset of mutations involve changes of multi-nucleotides
or whole codons, for instance as may result from inser-
tions, deletions, or tandem mutations due to error-prone
replication38 or UV damage.39 These types of mutations
have not been modeled previously in structure-based sim-
ulations of evolution, but they play an important role in
the evolution of natural sequences.40 We model the rate
of whole-codon mutations, scaled relative to trans-
versions, with a single parameter ρ. The mutation pro-
posal probability P at a given site is:

P¼
1þρ

κþρ

ρ

if transversion

if transition

else

8>><
>>: ð4Þ

2.6 | Construction of amino acid rate
matrices from codon mutations and
protein fixation

We model the site-specific evolutionary process as a
continuous-time Markov process, where the unit of
change is the codon and the relative instantaneous sub-
stitution rate qLuv from codon u with amino acid i to
codon v with amino acid j is the product of the mutation
proposal rate, Puv, and the fixation probability, f Lij:

27

qLuv ¼Puv � f Lij ð5Þ

Codons representing the same amino acids are then
aggregated, allowing determination of site-specific amino
acid flux matrices. The flux matrices are averaged across
sites and proteins to construct a global 20 � 20 amino
acid instantaneous rate matrix Q. For comparison with
empirical global substitution matrices such as JTT, WAG,
and LG, and for use in phylogenetic analyses, the Q-
matrix was decomposed into a diagonal amino acid equi-
librium probability matrix, π, and an independent sym-
metric 20 by 20 exchangeability matrix R:13,41

Q¼ πR ð6Þ

The rate constants in the symmetric exchangeability
matrix R can be considered normalized equilibrium
fluxes between amino acids, where the fluxes have been
normalized by the appropriate equilibrium amino acid
probabilities (see Methods). The equilibrium probabili-
ties, in turn, describe the expected frequency distribution
of amino acids when the substitution process has prog-
ressed long enough that it reaches equilibrium.
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2.7 | Optimized model parameters
provide typical values

Using the computed mutation energies (ΔΔG), an opti-
mal exchangeability matrix R was found by optimizing
values of the four parameters of the model θ¼
ΔGnat,Ne,κ,ρf g by maximizing the phylogenetic likeli-
hood for the 52 non-redundant protein families. With
grid-search optimization, we found an optimal parameter
set of ΔGnat = �6.0± 0.1 kcal/mol, log(Ne) = 3.8± 0.1,
κ = 2.1± 0.1, and ρ = 0.11± 0.01 (standard error esti-
mated by bootstrap,42 see supporting methods). We refer
to this optimized matrix as the Thermodynamic
Mutation-Selection (TMS) matrix. Alternatively, parame-
ter values can also be determined by direct optimization
against, say, the LG matrix, a procedure that gives nearly
identical results as the maximum likelihood method
(Figure S1). Because the TMS model parameters are
based on fundamental quantities in population genetics
(Ne), spontaneous mutation processes (κ, ρ) and protein
thermodynamics (ΔGnat), the optimal parameter values
can be compared with independent empirical measure-
ments from protein biochemistry and population genet-
ics. As discussed further below, these optimal values
from our thermodynamic, evolutionary model corre-
spond surprisingly well to representative physical and
biological values.

The stability of natural proteins is typically between
�5 and �10 kcal/mol,43 while effective population sizes
vary over many orders of magnitude. For instance, the
effective population size for humans is on the order of
1013,44 while Escherichia coli have an population size
of approximately 103.45 The optimal ΔGnat and Ne TMS
values compare well with these ranges. By inspecting the
likelihood surface (see Figure S2), the stability ΔGnat and
population Ne parameters are seen to be highly corre-
lated, with optimal parameters found along a line
given by

ΔGopt ≈ �1:5 � log Nopt
� ��0:2 ð7Þ

Along this line, substitution parameters do not vary sub-
stantially (Figure S3). A similar dependence of protein
stability ΔG on Ne at equilibrium has been noted previ-
ously.4,46 The strong correlation between ΔG and Ne sug-
gests that they represent a single latent parameter,
reducing the effective parameter space of our model from
four to three.

In contrast to stability and population size, the
parameters describing the mutation process (κ and ρ) are
largely independent (Figure S2). The optimal transition/
transversion bias κ = 2.1 is consistent with experimental

data for spontaneous mutation rates from E. coli,47 where
κ ’ 2.6 (assuming a K80-type Markov model,48 see
Appendix S1). For the whole codon mutation parameter
ρ, the MLE is 0.1 relative to the transversion rate. This
corresponds to that 29% of all proposed mutations are
multi-nucleotide mutations. Obtaining direct empirical
estimates of ρ is difficult, but for indels of 2–4 nucleotides
in E. coli, the spontaneous mutation rate is approximately
10% of the single-nucleotide mutation rate.47 In eukary-
otes, multi-nucleotide mutations comprise approximately
3% of all mutations49 and have been shown to be impor-
tant in phylogenetic tests.50 Given that processes other
than indels can result in multi-nucleotide mutations, and
that indels typically result in multiple codon mutations,
our ρopt value appears reasonable.

2.8 | The thermodynamic TMS model
reproduces empirical substitution patterns

Most of the variation in empirical amino acid substitu-
tion matrices can be explained by our thermodynamic
evolutionary model, as judged by the logarithmic correla-
tion coefficient with the ML TMS matrix (Figure 2). The
TMS matrix appears to be a rather typical exchangeability
matrix, as the average correlation of TMS with many
widely used empirical matrices is r2 = .54, whereas the
correlation of those empirical matrices with each other

FIGURE 2 Heatmap of correlations between popular

exchangeability matrices. Squared Pearson correlations (r2) were

computed in log-space over the 190 exchangeability parameters.

Matrices were clustered based on r2 using hierarchically

clustering.51 The TMS matrix is indicated by asterisks
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(excluding TMS) is r2 = .52 (Figure 2). The average corre-
lation with globular matrices is higher (r2 = .59), whereas
the correlation with mitochondrial matrices is substan-
tially lower (r2 = .42). For example, the TMS exchange-
ability matrix has an r2 of .67 and .64 with the widely
used WAG (Figure S4) and LG substitution matrices
(Figure 3), respectively. The lower correlation with mito-
chondrial matrices is likely due to the preponderance of
transmembrane proteins in the mitochondrial
datasets,52,53 as the Rosetta energy function used in our
thermodynamic free energy calculations is intended for
soluble proteins. Breaking exchangeabilities down by
individual amino acids, we see the lowest correlation for
cysteine and proline (r2 = .50), likely reflecting
shortcomings of the energy function and limited model-
ing of backbone flexibility. The other amino acids have
higher correlations, up to r2 = .85 (Figure 4).

The high correlation between TMS and other experi-
mental matrices like LG is a result of both the thermody-
namic model, in which more chemically similar amino
acids have higher fixation probabilities, and the mutation
model, which biases amino acid replacements in the
genetic code due to preferred nucleotide mutations,
codon number, and codon connectivity. To understand
the impact of the genetic component on the correlations,
we computed a “mutation-only” R-matrix, assuming only
the connectivity of the codon table and the transition-
transversion bias by setting all fixation probabilities in
Equation 5 to 1 and setting ρ = 0.10 and κ; = 2.1 to their
optimal values. This mutation-only R-matrix accounts for
32% of the variation in the LG substitution pattern
(Figure 3c), suggesting that genetic and thermodynamic
factors contribute roughly equally to the patterns of
empirical amino acid substitutions.

(a) (b)

(c) (d)

FIGURE 3 The TMS model recapitulates the mean substitution behavior between amino acids. (a) Comparison of the amino acid

exchangeability matrix predicted by TMS (black circles) and the LG phylogenetic empirical exchangeability matrix (red circles). Inset,

correlation between exchangeabilities from TMS (x-axis) versus LG (y-axis). (b) Correlation between amino acid equilibrium probabilities

predicted by TMS (x-axis) and values from LG (y-axis). Identity shown as dashed line. (c) The “mutation-only” exchangeability matrix,

without selection for stability, vs LG. (d) Correlation between mutation-only equilibrium probabilities and those from LG. Identity shown as

dashed line
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Correct recapitulation of amino acid exchangeabilities
is strongly dependent on the thermodynamic component
of the model. For example, using LG as the standard for
comparison, the empirical exchangeability for tryptophan
to tyrosine is underestimated by 7.4-fold by the mutation-
only R-matrix but is underestimated by 1.1-fold by TMS.
Similarly, the mutation-only model overestimates the
empirical exchangeability of asparagine to phenylalanine
by 4.8-fold, while TMS overestimates it by 1.3-fold.

Our ML TMS matrix was optimized over the
exchangeabilities and not the amino acid equilibrium fre-
quencies. Nevertheless, from the decomposition of the Q-
matrix (given in Equation 6), we can provide the implied
TMS equilibrium frequencies and compare them with
those provided with common exchangeability matrices
(Figure S5). For example, the calculated TMS equilibrium
frequencies correlate well with those from LG (linear
r2 = .65), but suggest unmodelled fitness effects. For
instance, we do not model disulfide formation, and

unsurprisingly the stationary frequency of cysteine calcu-
lated from TMS is 2.8-fold too low. Likewise, we ignore
codon usage biases, which could explain the over-
estimation of the background frequency of arginine and
leucine, both of which have exceptionally skewed codon
usage.54

Although our model correlates strongly with empiri-
cal exchangeability matrices like LG, some of the varia-
tion in the rate constants remains unexplained. One
possible contribution to this discrepancy stems from the
fact that we selected a set of proteins that are different
from those used to infer the LG-matrix. Our set of pro-
teins will likely have a slightly different substitution
process than the LG set. To investigate this possibility, we
used a maximum likelihood phylogenetic inference
method,55 similar to that used for the construction of the
LG matrix, to infer exchangeabilities from the sequence
alignments for our set of benchmark proteins (Figure S6).
The inferred phylogenetic exchangeability matrix for our

FIGURE 4 The TMS model recapitulates amino acid-specific exchangeabilities. Identity is shown as a dashed line
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proteins is highly correlated with LG (r2 = .97), indicat-
ing that our benchmark proteins are similar to those that
LG was derived from, and that stochastic errors originat-
ing from the rate-inference itself are minimal.

A second source of the unexplained variation could
be errors in the energy function used for ΔΔG prediction,
as Rosetta energies have an imperfect correlation with
empirical values (r2 = .56). We explored this possibility
by simulating noisy data using empirically determined
ΔΔG Rosetta prediction errors. This analysis suggested at
least 21% of the unexplained variance could be caused by
energy function errors (see Appendix S1).

Finally, our mutation-selection model operates at the
codon level, producing rates that are subsequently aggre-
gated to the amino acid level—a reduction in dimension-
ality that can affect the assumed Markov property of
codon and amino acid evolution.56 It is possible that our
codon-level model could explain codon exchangeability
matrices better than amino acid matrices. Additionally,
when determining an amino acid exchangeability matrix
like LG by phylogenetic methods, all 189 exchangeability
rate constants are free parameters that are estimated
independently from the sequence data. In contrast, our
codon model is highly constrained by only two parame-
ters (κ and ρ) and the K80 assumption of equal nucleotide
frequencies. More complex mutational models could pro-
vide higher correlations at the expense of model simplic-
ity and interpretability. To explore this possibility, we
extended our codon model with the T92 nucleotide muta-
tion proposal model.57 Compared to the K80 model, the
T92 model adds a single additional parameter that
addresses G+C content bias (%-GC), which captures most
of the variation in nucleotide frequencies per Chargaff's
second rule.58 The optimal %-GC bias for the exchange-
abilities R is 0.51 and for the equilibrium frequencies π is
0.52, which barely deviates from the K80 value fixed at
0.5 (see Figure S7). At the optimal %-GC bias values, the
T92 model does not improve the correlation of the TMS
matrix with empirical substitution matrices (such as LG),
suggesting that equal nucleotide frequencies in the K80
model is a relatively weak assumption that does not sig-
nificantly limit the fit of the TMS matrix.

2.9 | TMS explains some phylogenies
better than empirical substitution matrices

The purpose of our study is to see how far a simple ther-
modynamic and mutation-selection model could go in
explaining empirical amino acid substitutions; it was not
intended to provide a better substitution matrix for prac-
tical use. Nevertheless, it is interesting to see how well
our TMS matrix fares in phylogenetic analyses. For each

of the 52 individual phylogenetic trees in our benchmark
set, we compared the TMS maximum likelihood values to
the LG maximum likelihood values for the same align-
ments. The mean TMS likelihood was �13,664 while the
mean LG likelihood was �13,492, a difference of 172 on
average in favor of LG. For most trees, the LG matrix is
better, but for three of the 52 trees TMS has a higher
likelihood than LG. Using a larger set of 500 Pfam
alignments,13,59 independent of both our model parame-
ters and LG, we similarly found that in eight alignments
TMS had higher likelihood than LG (see Table S1). Thus,
for a certain subset of protein families, TMS does appear
to provide a better substitution model than LG.

3 | DISCUSSION

We present an approach to predict relative rates of
global amino acid substitutions in evolution from first
principles by combining population genetics and pro-
tein biophysics. We find that most of the global substi-
tution behavior of amino acids in proteins can be
explained by a simple evolutionary fitness model that
captures (a) the thermodynamic effects of mutations,
(b) the biases in spontaneous mutations, and (c) the
structure of the genetic code. Our model is based on an
extremely simple assumption: the fitness of a gene vari-
ant is controlled only by constraints on protein stabil-
ity. Nevertheless, this naive model can remarkably
recapitulate the complex amino acid substitution pat-
terns seen in empirically derived substitution matrices.
Our model incorporates transition/transversion muta-
tion biases, multi-nucleotide codon changes, variation
in codon counts due to the genetic code, and free
energy changes calculated from the detailed atomic
interactions at specific sites in proteins. By calculating
the fitness effects of mutations in the structural envi-
ronment of native sequences and averaging over many
sites in many proteins, we are able to reproduce the
majority of the amino acid substitution patterns quan-
tified in common global exchangeability matrices.

Previous work by others has used structure-based
models of evolution to predict amino acid substitution
rates and equilibrium frequencies at specific sites in pro-
teins.46,60–64 Such methods have been applied to predict
site-specific substitution matrices, rather than global
matrices, but the results are difficult to validate against
empirical site-specific matrices due to the lack-of-data
problem at specific sites.65 Arenas and Bastolla have
emphasized that there are currently two incomplete
kinds of structure-based evolutionary models described
in the literature: stability-constrained fitness models and
structurally-constrained fitness models.66,67 Stability-
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constrained models calculate fitness from the effect of a
mutation on protein stability, but ignore the structural
changes due to the mutation.46,60,61,67,68 On the other
hand, structurally constrained models calculate fitness
from the effect of a mutation on the structure, but ignore
the change in stability.62,64,69 Notably, our method brid-
ges both categories of structure-based fitness model, as
we simultaneously estimate the change in structure due
to a mutation (allowing local backbone rearrangements
and side chain repacking) and calculate the free energy
change of the resulting perturbed structure relative to the
native state using a state-of-the-art energy function.

Like the previous structure-based evolutionary
methods described above, we also calculate site-specific
rates. However, in our analysis these rates are then
averaged over sites and proteins to arrive at the
predicted global TMS exchangeability matrix. What
then is the physical interpretation of a global substitu-
tion matrix? The exchangeabilities in amino acid sub-
stitution matrices are rate constants that can be
considered to be instantaneous probabilities. The prob-
ability of a substitution at a given site is a function that
is conditional on the particular physical environment
at that protein site and depends on the chemical and
physical properties of the current and mutated amino
acids. These amino acid properties are largely constant
regardless of the different chemical environments at
different sites in the different proteins found through-
out life. Amino acid mutations with similar chemical
and physical properties are expected to have little effect
on fitness. Highly dissimilar mutations will likely
decrease stability and be eliminated quickly, while
mutations that increase stability due to favorable inter-
actions in the site-specific environment will fix quickly.
Since the exchangeabilities in global matrices are cal-
culated by averaging over many different sites,
exchangeabilities are seen to be marginal probabilities
in which all site-specific variation has been integrated
out. In most common applications of substitution
matrices, like phylogenetic analyses and homology
detection, we lack detailed physical information at spe-
cific protein sites. Hence, in the absence of atomic-level
site-specific information, global (i.e., marginal)
exchangeability matrices should provide the maximum
information possible about amino acid substitution
behavior. After site-specific variation has been
removed, the remaining information in a global
exchangeability matrix quantifies the degree of similar-
ity between amino acids in their inherent biological,
chemical, and physical properties, as seen by selection
in the context of folded proteins.13 The fact that we can
use site-specific physics and genetics to accurately pre-
dict empirical global substitution matrices helps

explain why global matrices have been so successful in
practice in phylogenetics, bioinformatics, homology
detection, and ancestral sequence reconstruction.

4 | MATERIALS AND METHODS

4.1 | Protein dataset

We selected a non-redundant subset of 52 proteins struc-
tures from a curated set of high-quality protein
structures.28,29 All structural modeling was done with the
Rosetta macromolecular modeling suite.30 To ensure
structural diversity, sequence redundancy was decreased
so that no sequence shared more than 60% identical posi-
tions with any other sequence. Before analysis, each
structure was adapted to the energy function using the
FastRelax protocols as described by Nivon et al.70 all-
owing cartesian space minimization.

4.2 | Prediction of the energetic effects
of amino acid mutations

The ΔΔG prediction method is based on a modified ver-
sion of the method presented by Park et al.,33 but with a
cutoff in the Lennard-Jones potential set to 6.0 Å. This
ΔΔG method samples backbone degrees of freedom for
the mutated and neighboring residues in the sequence
and allows repacking of all side chains in energetic con-
tact (>0.1 kcal/mol) with the mutated residue.

4.3 | Markov chain aggregation and
averaging

To calculate the amino acid substitution rate matrix QL
20

for site L from the codon substitution rate matrix QL
64, we

first determine the frequency of each codon:71,72

πLi ¼
exp 4NeωL

i

� �
P

iexp 4NeωL
ið Þ ð8Þ

Next, we determine the rate between two amino acids
i, jð Þ with codons u∈i and v∈j using the aggregation
approach presented by Yang et al.:73

qLij ¼
X
u∈i

X
v∈j

πLv
πLi

qLvu ð9Þ

where qLvu is the rate between codon v to u at site L. The
flux between a pair of amino acids at a site L is:

NORN ET AL. 2065



ΦL
ij ¼ πLi q

L
ij ¼

X
u∈i

X
u∈j

πLv q
L
vu ð10Þ

The site-specific rate μL (the total flux) is:

μL ¼
X
i

X
j≠ i

ΦL
ij ð11Þ

We normalize the site-specific flux matrix, ΦL
20, so that a

unit of time corresponds to one expected amino acid sub-
stitution per site.

ΦL
ij,norm ¼ΦL

ij=μ
L ð12Þ

To calculate the mean instantaneous rate for amino acid
i to j we average over sites by normalizing by the equilib-
rium frequency of an amino acid i at that site:

qij ¼
hΦL

ij,normiL
hπiiL

¼
P

LΦ
L
ij,normP
LπLi

ð13Þ

Sites with rates with μ < 10�10 were excluded from the
analysis to avoid numerical errors. Next, we determine
the exchangeability matrix R20 ¼ rij

� �
as

rij ¼ qij=πj ð14Þ

From this, it can be seen that the exchangeability
matrix is equivalent to the equilibrium flux matrix nor-
malized by the appropriate amino acid equilibrium
frequencies:41

rij ¼ Φij

πiπj
ð15Þ

4.4 | Model parameterization based on
phylogenetic trees

Optimal values for the four free parameters of the modelbθ¼ ΔGnat,Ne,κ,ρf g were determined by maximizing the
sum log-likelihood of phylogenetic trees for the 52 non-
redundant protein alignments with a total of 8,907 sites:

bθ¼ argmax
Xn
i¼1

logL MSAijQ θ,ΔΔGð Þð Þ ð16Þ

The maximum likelihood trees (optimizing branch lengths,
topology, equilibrium frequencies, and site rate variation
parameter α) were determined with IQ-TREE6 (model
TMS + FO + G4, where TMS is an exchangeability matrix

calculated from specific values of ΔGnat ¼�5:91,
Ne ¼ 103:8,κ¼ 2:1,ρ¼ 0:1). Note that because we use the
IQ-TREE “FO” model option, rather than specifying the
equilibrium frequencies predicted by our TMS model,
this method optimizes over the TMS exchangeabilities
alone. To speed the calculation the tree search was
seeded with a tree inferred using LG. To find the parame-
terization that maximizes the sum log-likelihood, we per-
formed a grid-search over the parameter space. Grid
search optimization was performed over linearly spaced
steps in the ranges ΔGnat∈ �8:0 :�4:6kcal

mol

� �
,κ∈ 1:4 : 2:8½ �

and over log-linearly spaced steps in the ranges
ρ∈ 0:05 : 0:25½ �, Ne∈ 103 : 105½ �. The maximum likelihood
TMS matrix is available in supplementary materials.

4.5 | Correlations between substitution
matrices

The agreement between exchangeability matrices was
quantified using a Pearson correlation coefficient calcu-
lated in log-space for the 190 exchangeability parameters.
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