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Abstract

Background: Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites
of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the
environment. The molecular mechanisms that these organisms use to process and integrate these external cues
are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may
occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player
in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites
could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide
enrichment.

Results: Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses
an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp
achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific
predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates
that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that
Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes.
Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs.
We further demonstrate that this improvement in performance extends to the related trypanosomatids
Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a
predictor combining all the peptides from L. infantum, T. brucei and T. cruzi.

Conclusions: Our work demonstrates that training on organism-specific data results in an improvement that
extends to related species. PhosTryp is freely available at http://phostryp.bio.uniroma2.it

Background
Protein phosphorylation is the most abundant post-
translational modification in both prokaryotic and
eukaryotic organisms. This process is regulated through
the enzymatic activities of protein kinases and phospha-
tases. Phosphorylation occurs predominantly on serine,
threonine, and tyrosine residues, and has been shown to
be a key regulatory switch in a variety of cellular

processes, ranging from cell cycle and differentiation to
motility and learning [1,2]. In particular Leishmania
lacks transcription factors and phosphorylation has been
proposed as an important regulatory mechanism [3].
Recent advances in mass spectrometry enabled the

identification of a large number of phosphorylation sites
in most eukaryotes (see [4,5] for a review). Information
on the phosphoproteome of parasitic protozoa is also
starting to be available. In-depth analyses of the phos-
phoproteome of parasitic protozoa has only recently
been initiated in African Trypanosomes and Leishmania
[6-10].
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These studies reported phosphorylation sites whose
sequence did not match known kinase recognition
motifs, e.g. 25% of the sites identified by Nett et al. [6]
were not recognized by either Scansite [11] or Netphos
[12]. Moreover the data reveal the presence of phos-
phorylation events not conserved in orthologous pro-
teins. For instance Hem et al. [7] showed that a number
of chaperones and heat-shock proteins which are very
conserved from Leishmania to human possess parasite-
specific phosphorylation sites.
These findings implicate that new and more family- or

genera-specific prediction tools are required. Here we
use the results of phosphoproteomic experiments in
Leishmania to develop a novel method that improves P-
site prediction in Leishmania and other organisms of
the trypanosomatidae group.
The complete spectrum of protein phosphorylation is

difficult to assess due to the low stoichiometry of many
phosphorylation events and the highly dynamic nature
of this modification. Thus the bioinformatic identifica-
tion of putative phosphorylation sites and the subse-
quent analysis of these sites by biochemical assays may
be an important alternative strategy to discover new
phosphorylation events.
Phosphorylation sites prediction tools are usually

grouped into two categories: generic and kinase-specific.
The first category of prediction tools indicates the phos-
phorylation state of the site, without making any
assumption about the protein kinase responsible for the
phosphorylation. Methods in the latter category aim to
infer which kinase family is responsible for the phos-
phorylation event. This information is extremely useful
for the elucidation of signaling networks, however
experimental data linking a protein kinase to its sub-
strate is available only for a limited number of sites
[13,14].
Netphos [12] was the first predictor to use neural net-

works in 1999, outperforming phosphorylation site iden-
tification based on sequence motifs alone. Besides the
primary sequence, the structural context is also impor-
tant in determining whether a site is phosphorylated or
not [15,16]. Indeed several predictors such as DISPHOS
[17] and PHOSIDA [18] include the predicted structural
characteristics of the putative phosphorylation sites.
Protein kinase-specific predictors include NetphosK

[19], Scansite [11], KinasePhos [20], PredPhospho [21],
GPS [22], pkaPS [23] and PrediKin [24]. NetphosK is
the extension of the method Netphos to kinase-specific
predictions. Scansite uses Position Specific Scoring
Matrices (PSSMs) for 62 different kinase phosphoryla-
tion motifs. KinasePhos and PredPhospho use HMMER
profiles and Support Vector Machines (SVM) respec-
tively. In both cases the prediction models are trained
on sets of peptides phosphorylated by protein kinases of

the same family. GPS performs profile searches with
short motifs instead of using a machine learning
approach. In order to achieve a higher coverage of
known phosphorylation sites, the algorithm reduces the
strength of the profiles, thus increasing the false positive
predictions. PkaPS has been developed to predict pro-
tein kinase A-specific phosphorylation sites, based on an
extensive analysis of the PKA motifs, thus achieving the
best results for these particular predictions. PrediKin is
based on the analysis of the contact positions between
kinases and substrates in proteins of known structure.
The authors were able to associate the identification of
specific kinase residues with a corresponding preference
in the sequence of the substrate.
Moreover a number of organism-specific prediction

systems have been developed in recent years [25-28].
These methods aim at increasing the prediction accu-
racy by training on peptides derived from single organ-
isms. This approach makes it possible to capture
organism-specific differences in known phosphorylation
motifs and to reduce false positives arising from kinase
families that are under-represented in the organism of
interest. Following this line of reasoning, the aim of this
work is to use Leishmania phosphoproteomics data to
develop a tool that improves phosphorylation site pre-
diction in trypanosomatids.

Results and discussion
SVM features
The dataset used in this work consists of 1176 phos-
phorylation sites (966 on serine and 210 on threonine)
mapping to 482 phosphoproteins. The sites were identi-
fied by mass spectrometry after enrichment on a tita-
nium dioxide column. A portion of this data has already
been published [7].
PhosTryp uses an SVM-based approach to predict

phosphorylation sites; it was therefore necessary to
choose a number of features that describe the sites and
were used as inputs to the predictor. The features we
included in the SVM are:
∙ the sequence of the peptide
∙ a residue composition feature
∙ the secondary structure and disorder predictions for

the site.
The sequence of the peptide is clearly the most

important characteristic as shown in previous works
[18,29]. We considered a window of +/- 5 positions
around the phosphorylation site. An important point is
how the sequence is encoded, i.e. transformed in vari-
ables that can be used as input to the SVM. We tried
two different encodings. The first one was the standard
orthogonal binary encoding that essentially considers
each position as a collection of 20, mutually exclusive,
binary variables, each one representing the presence of a
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specific amino acid in that position. We also used a dif-
ferent encoding based on the values in a substitution
matrix (similar to the one used in [30]). This encoding
should better represent the fact that a substitution in a
position of the peptide could have little influence on the
probability of phosphorylation if the residues have simi-
lar physicochemical properties.
Moreover we reasoned that in some cases residues

close to the phosphorylation site might have an effect
independent of their position. To this end we included a
feature that depends on the enrichment of each residue
in a +/-2 window around phosphorylation sites with
respect to non-phosphorylated serine and threonine
residues.
Besides these sequence-dependent features we also

included two descriptors of the structural context of the
site. Indeed phosphorylation sites are usually located in
regions of the protein which are flexible and exposed to
the solvent in order to facilitate the interaction with
protein kinases [15]. The analysis of our dataset con-
firmed that phosphorylation sites have a preference for
disordered regions and segments of the proteins that
have a coiled structure. Indeed 968 (83%) of the positive
sites lie in a region predicted as coil compared with 780
(66%) of the negatives. The preference for disorderd
regions is also apparent: 521 (44%) of the positives are
predicted to be disorderd compared with 362 (30%) of
the negatives. The significance of these values was con-
firmed by performing a Chi-square test on the two con-
tingency tables which yielded a p-value < 2e-16 for coil
preference and a p-value < 8e-12 for disorder prefer-
ence. Therefore we added two binary variables describ-
ing whether the sites lie in a disordered region or in a
coil.

Training and testing the SVM
As described in the methods we experimented with var-
ious combinations of features, building 4 different
SVMs. We used 80% of data as training and 20% as test.
Both the positive and the negative peptides in the train-
ing set were clustered at the 50% sequence identity level
to reduce the redundancy. Moreover we removed the
peptides in the test set that had more than 50% identity
with one of the peptides used for training. The training
data was used to optimize each SVM by performing a
10-fold cross validation for each combination of the
gamma, cost and epsilon parameters. The results for
each SVM are displayed in table 1.
The SVM using only the sequence in binary encoding

and the one using the PAM30 encoding and including
all the features achieved the same performance on the
training set (AUC = 0.73). However the results on the
test set indicate that the latter has a superior perfor-
mance (AUC = 0.74 ± 0.01) and therefore was used

throughout the work. However all the SVMs reached
essentially comparable performance levels. The final
score threshold used for the prediction is 0.54 and was
chosen as the one that maximizes the MCC.

Comparison with Netphos and NetphosK
We compared PhosTryp with Netphos, that provides
generic predictions, and with NetphosK that returns a
score for each kinase family, according to the likelihood
that kinases from that family are responsible for the
phosphorylation. Since NetphosK predictions are kinase-
specific, we considered as positive predictions the sites
that are predicted to be phosphorylated by at least one
kinase family.
We tested Netphos and NetphosK on the same non-

redundant test set used for PhosTryp, obtaining an
AUC 0.57 ± 0.01 for both methods (see table 2). The
performance of these programs is therefore markedly
inferior to the one obtained by PhosTryp (0.74 ± 0.01).
These values represent the average and standard error
of 100 bootstrap replicates (see Methods) and therefore
give a reliable picture of the performance differences
between the three methods.
Figure 1 displays the Receiver operating characteristic

(ROC) curves corresponding to the application of each
method to the non-redundant test set. PhosTryp there-
fore represents a 17% performance improvement over
non organism-specifc methods for the prediction of
phosphorylation sites in Leishmania.

PhosTryp captures phosphorylation features specific to
Leishmania
The improved performance of PhosTryp could be
explained by differences in sequence specificity between
the Leishmania kinases and the kinases of other, better
characterized, organisms. To investigate this possibility

Table 1 Results obtained with four different SVMs with
different sequence encoding and features

Sequence
encoding

Features AUC
Training

AUC Test non-
red

binary all 0,714 ± 0,060 0,719 ± 0,006

binary sequence
only

0,729 ± 0,039 0,706 ± 0,007

PAM30 all 0,729 ± 0,051 0,737 ± 0,007

PAM30 sequence
only

0,724 ± 0,021 0,724 ± 0,007

Table 2 Performance of Nepthos and NetphosK on the
Leishmania dataset

Method AUC Test non-red

Netphos 0,569 ± 0,008

NetphosK 0,572 ± 0,008

Palmeri et al. BMC Genomics 2011, 12:614
http://www.biomedcentral.com/1471-2164/12/614

Page 3 of 9



we used NetPhorest [31], a collection of 125 sequence-
based classifiers that predicts which kinase group is
more likely to phosphorylate a given substrate. The out-
put of NetPhorest is a score representing the probability
that a given kinase group phosphorylates the peptide
under analysis. In this analysis we only considered the
highest scoring kinase group for each peptide. Obviously
the more the sequence of the peptide is similar to the
consensus recognition sequence of the kinase the higher
the score. The majority of the data in NetPhorest comes
from experiments performed with human kinases and
kinases from model organisms. Therefore the score of a
peptide is a direct indication of the overlap between the
specificity of the kinase responsible for its phosphoryla-
tion and the specificity of kinases from well-character-
ized organisms.
We divided our phosphorylation sites in two groups:

the sites that were predicted correctly by PhosTryp and
Netphos, and the sites that were false negatives accord-
ing to Netphos and true positive for our method. The
latter group, which was missed by Netphos but not by
PhosTryp, could contain peptides with Leishmania-spe-
cific recognition sequences. Indeed the average NetPhor-
est score for this set of peptides is 0.24, lower than the
0.34 obtained with the peptides that were correctly pre-
dicted by our method and Netphos (p < 8.6e-16, Wil-
coxon test). These results further confirm that
PhosTryp, by training on Leishmania sequences, is able
to identify phosphorylation events that are specific to
this organism.

Search for new motifs in peptides predicted by PhosTryp
One possible explanation for the increased performance
of PhosTryp compared to Netphos and NetphosK is
that the dataset we used contains Leishmania-specific
phosphorylation motifs. Therefore we extracted all the
peptides which were correctly predicted by PhosTryp
but not by Netphos, to assess whether they contain
novel phosphorylation motifs. We used the motif-x ser-
ver with default parameters for motifs extraction [32]
using as background dataset the whole L. infantum pro-
teome. To further assess the novelty of the motifs we
visually compared the sequence logos with an extensive
collection of known kinase recognition logos [31].
This analysis resulted in the identification of two pos-

sible Leishmania-specific motifs for phosphorylation on
serine (see Figure 2). The first motif, NxS, has a 6.01
fold enrichment in the phosphopeptides dataset with
respect to the whole Leishmania proteome while the
second one, SF, has a 5.11 fold enrichment. All the
motifs have a significance <=10e-6. Clearly the biological
significance of these motifs should be experimentally
tested. However the enrichment in the phosphopeptides
dataset with respect to the proteome shows that these
are not simply residues over-represented by chance at
proximal positions.

Testing the predictor on other Trypanosomatids
We decided to investigate how the increase in perfor-
mance with respect to NetPhos and NetPhosK trans-
lated to trypansomatids other than Leishmania
infantum. To this end we collected two other sets of
phosphorylation sites from two recent phosphoproteo-
mics experiments performed in Trypanosoma cruzi [33]
and T. brucei [6]. For each set we collected, similarly to
what we did for L. infantum, an equal number of nega-
tive sites by a random sampling of the proteome. The T.
cruzi dataset comprised 356 peptides (half of which
positives and the other half negatives) while the T. bru-
cei dataset consisted of 3056 peptides.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of the predictors on a non−redundant Leishmania dataset.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

PhosTryp
Netphos
NetphosK

Figure 1 ROC curves obtained with PhosTryp, Netphos and
NetphosK on the Leishmania dataset. The curves represent the
average of 100 bootstrap replicates.

Figure 2 Novel motifs identified by the motif-x webserver on
the set of peptides correctly predicted by PhosTryp but not by
Netphos. The two motifs were identified in the Leishmania
infantum dataset. The left motif has a 6.01 fold enrichment in the
phosphopeptides dataset with respect to the whole Leishmania
proteome while the right one has a 5.11 fold enrichment. All the
motifs have a significance <=10e-6.
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We then used the SVM that had the best performance
on L. infantum to classify the peptides in the two new
datasets. We obtained an AUC of 0.74 on the T. cruzi
dataset and of 0.75 on T. brucei (Figures 3 and 4). Net-
phos had a lower performance of 0.68 and 0.65 respec-
tively. The results with NetphosK were even worse, with
an AUC of 0,56 on T. cruzi and 0.55 on T. brucei (see
table 3). These results show that PhosTryp, which was

trained on Leishmania infantum, performs better
than generic predictors when applied to this group of
organisms.
In order to verify whether this improvement was sim-

ply due to the identification of phosphorylation sites in
the orthologues of the proteins used for training, we
used the orthoMCL database [34] to exclude from this
test any sequence belonging to the same ortholog group
as one of the training proteins. Following this step there
is a 0.01 reduction in AUC on both the datasets from T.
cruzi and T. brucei. We can therefore conclude that
PhosTryp, after being trained on L. infantum, succeeded
in capturing phosphorylation features that are specific to
trypanosomatids.

Development of a predictor for organisms of the family
Trypanosomatidae
Our results show that a predictor trained on Leishma-
nia-specific data performs better than generic predictors
even when applied to the related organisms T. cruzi and
T. brucei. This is an important point because it shows
that it is possible to improve the prediction of phos-
phorylation sites in Trypanosomatidae using data speci-
fic to a single organism of this group. Clearly, since
phosphorylation data is available for T. cruzi and T. bru-
cei as well, the best strategy to develop a predictor spe-
cific for Trypanosomatidae is to also use these peptides
in the training. We therefore developed another predic-
tor that was trained on a combined dataset including
phosphopeptides from L infantum, T. cruzi and T. bru-
cei. As previously described for the Leishmania SVM we
split the data into 80% training and 20% test. Moreover
the peptides in the test set that had more than 50%
identity with one of the peptides used during the train-
ing were removed.
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Figure 3 ROC curves obtained with PhosTryp, Netphos and
NetphosK on the T. cruzi dataset.
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Figure 4 ROC curves obtained with PhosTryp, Netphos and
NetphosK on the T. brucei dataset.

Table 3 Comparison of the results obtained with
PhosTryp, Netphos and NetphosK on the T.brucei and
T. cruzi datasets

Method T. brucei T. cruzi

PhosTryp 0,753 0,741

Netphos 0,647 0,680

NetphosK 0,553 0,560

Table 4 Comparison of the results obtained with
PhosTryp trained on all organisms, Netphos and
NetphosK

Method L. infantum T. brucei T. cruzi All organisms

PhosTryp 0.746 ± 0.008 0.794 ± 0.005 0.788 ± 0.013 0.776 ± 0.004

Netphos 0.654 ± 0.007 0.646 ± 0.006 0.723 ± 0.014 0.659 ± 0.005

NetphosK 0.520 ± 0.010 0.585 ± 0.006 0.456 ± 0.019 0.557 ± 0.005

Palmeri et al. BMC Genomics 2011, 12:614
http://www.biomedcentral.com/1471-2164/12/614

Page 5 of 9



On the test including the peptides from all the organ-
isms the method has an AUC of 0.78 (see Table 4). The
score threshold that maximizes the MCC is 0.49. We
also evaluated the performance on the test peptides spe-
cific to each organism. The sequences from L. infantum,
T. brucei and T. cruzi were predicted with an AUC of
0.75, 0.79, 0.79 respectively. As expected the perfor-
mance of the method increases when more data is used
for training. This predictor is the one used in the web-
server available at http://phostryp.bio.uniroma2.it.

Conclusions
We have described the development of PhosTryp, the
first phosphorylation site predictor specific for
trypanosomatids.
PhosTryp uses an SVM approach and was initially

trained on an extensive collection of 1176 phosphoryla-
tion sites derived from large-scale phosphoproteomics
experiments conducted in Leishmania. The predictor
was tested on a dataset that did not contain peptides
similar to those used during the training and obtained
an AUC of 0.74. This result represents a 17% improve-
ment over the results obtained with Netphos, a generic,
non organism-specific, predictor.
We investigated in more detail the peptides that are

correctly predicted by PhosTryp but not by Netphos.
This analysis showed that these peptides have, on aver-
age, significant differences in their kinase recognition
sequences when compared with phosphorylation sites
from more extensively studied model organisms. More-
over we identified two possible novel serine phosphory-
lation motifs specific for Leishmania. These results
show that our method performs better than generic pre-
dictors because it captures Leishmania-specific phos-
phorylation features.
We also verified that this perfomance improvement

extends to other organisms in the trypanosomatids
group. More specifically PhosTryp represents a 10% per-
formance improvement over Nepthos in the prediction
of T. brucei phosphorylation sites and a 6% improve-
ment when applied to data from T. cruzi.
These results show that it is possible to improve phos-

phorylation site prediction in trypanosomatids using data
specific to a single organism of this group. In order to
maximize the performance and usefulness of PhosTryp
we retrained the predictor combining the data from
L. infantum, T. cruzi and T. brucei. As expected this
combined predictor shows an increase in performance.
In conclusion our work highlights the usefulness of

developing predictors starting from species-specific data,
so as to capture features which are characteristic of a
given organism, or, such as in this case, group of organ-
isms. We have made available PhosTryp as a web server
at http://phostryp.bio.uniroma2.it.

Methods
Positive dataset
The phosphorylation sites used in this study are derived
from phosphoproteomics experiments conducted in
Leishmania donovani using the fully annotated genome
database of the closely related L. infantum (http://www.
genedb.org) [35] (i.e. all the sequences used in this work
are from L. infantum). A portion of these peptides has
already been published [7]. The remainder was identified
using the following experimental procedure (Tsigankov
et al., in preparation).
A cloned line of L. donovani 1SR was grown and sub-

mitted to differentiation as described in [36]. Phospha-
tase inhibitors were used during cell harvesting. Frozen
cell pellets were lysed using a buffer that contained
deoxy-cholate and phosphatase inhibitors as described
in [37]. One milligram of protein from each time point
was reduced with dithiothreitol and cysteine sulfhydryls
alkylated with iodoacetamide, and then subjected to 20
μg of trypsin for 16 h at 37°C. The resultant peptides
were mixed with TiO2 beads, and phosphopeptides
were eluted in 2 steps, using 30 and 50% ACN in 0.5%
NH4OH. The eluted peptides were subjected to LC-MS/
MS analysis. All data files were searched for protein
identification using Protein Pilot (V 2.01) and MAS-
COT. Data was searched against the L. infantum ver. 3
database.
The peptides used in this work represent the largest

available reportoire of Leishmania phosphorylation sites.
Since the dataset contained a low number of tyrosine
phosphorylation sites we decided to eliminate them and
only focus on serine and threonine. Our work is there-
fore based on 1176 phosphorylation sites, 966 on serine
and 210 on threonine, mapping to 482 phosphoproteins.
We obtained our positive set by extracting a window of
-5/+5 residues around the phosphorylation site. The
redundancy of the dataset was reduced by discarding
peptides having more than 50% identity (including the
phosphorylated residue) with another peptide in the set.

Negative dataset
To construct a negative dataset we firstly extracted all
the serine and threonine residues with their surrounding
amino acids (-5/+5) from the L. infantum proteome
after excluding the proteins with experimentally identi-
fied phosphorylated residues. We then performed a ran-
dom sampling of these peptides in order to have
negative and positive sets of the same size. The sam-
pling process preserved the same 8:2 ratio of serines to
threonines that was found in the positive dataset. As
done for the positive set, the redundancy of the negative
peptides was reduced using a 50% sequence identity
cutoff.
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Support Vector Machine features
For each peptide, the features we included as variables
in the Support Vector Machine (SVM) were: the amino
acid sequence, the secondary structure and the disorder
prediction for the site, and a feature dependent on the
composition of a window of +/- 2 residues around the
phosphorylation site. Each feature is described in more
detail in the following paragraphs.

Sequence features
The sequence was given as input to the SVM using two
different representations: the standard orthogonal binary
encoding, and an encoding based on the substitution values
in a PAM30 matrix. More specifically each one of the 11
residues of the peptide is represented by a vector of 20 ele-
ments, corresponding to the 20 different aminoacids.
When the binary encoding is used the column correspond-
ing to the identity of the aminoacid at a specific position of
the peptide has value 1, while the remaining 19 columns
are 0. The alternative encoding assigns to each of the 20
columns the value for the substitution of the residue in the
peptide with the aminoacid corresponding to the column.
The substitution matrix-based encoding is clearly less

stringent than the orthogonal encoding. However we did
not want to be excessively permissive as even a single
mutation can have a profound effect on the interaction
of a kinase with its substrate. Therefore we chose to use
the PAM30 matrix which is fairly stringent and is also
the default used by the NCBI BLAST server when deal-
ing with peptide queries.

Secondary structure and disorder features
The secondary structure of each residue was predicted
using the PSIPRED software [38] (the whole sequence of
the protein was used as input). We encoded this predic-
tion as a binary feature according to whether the phos-
phorylation site is located in a coil or not. Similarly we
predicted the order/disorder state of each residue using
the Remark465 predictor of DisEMBL [39]. This was
also coded as a binary feature according to whether the
site is predicted to lie in a disordered region or not.

Residue composition feature
The last feature we included in our predictor depends
on the identity (but not position) of the residues in a
window of +/- 2 aminoacids around the site. Firstly we
calculated the number of occurrences of each aminoacid
in the positive and negative sets, normalizing by the size
of each set. We then defined a propensity value as the
logarithm of the ratio between the occurrence of each
aminoacid in the positive and negative sets. The propen-
sity scores of the four residues in the +/- 2 window were
then summed to obtain a final value which was given as
input to the SVM.

SVM training
We used 80% of the positive and negative sets to train
the SVM. The remaining peptides were used as test.
The SVM training and testing procedure was written in
R, using the package e1071. We trained 4 SVMs: each
one of the two sequence encodings (orthogonal and
matrix-based) was tried with and without the extra,
non-sequence, features (secondary structure, disorder
predictions and residue composition feature). We used
the Radial Basis Function as kernel for regression.
This means that each classifier outputs a numeric
value according to the likelihood that a residue is
phosphorylated.
For each SVM, we performed a grid search to select

the best values for the kernel function parameters:
gamma, cost and epsilon. The grid search method we
implemented is an iterative process that starts from the
full range of values for each parameter. For the cost, i.e.
the penalty factor, we centered the search around a
value equal to the range of output values. The epsilon
parameter search was restricted to a range of values that
give good generalization capabilities [40]. The gamma
parameter is known to be related to the number of fea-
tures of the SVM, therefore a different range of gamma
values was used for each SVM.
The range of each parameter is first discretized

according to a certain step size. Then at each iteration
the algorithm tests all the possible combinations of
parameters values to identify the one yielding the best
performance (i.e. lowest mean squared error). Each par-
ticular combination of parameters is evaluated using a
10-fold cross validation. At each subsequent iteration
the range is halved, using the best value of each para-
meter as the center of the new range. If the new range
contains points that fall outside of the initial range of
the parameter the bounds are modified. This process is
halted when the variation in lowest mean squared error
between the current and previous iterations is less than
a fixed value. The values of gamma, epsilon and cost
that result in the best performance across all the itera-
tions are selected for each SVM.

SVM test
As previously stated 20% of the positive and negative sets
were used to test the SVM. All the SVMs were tested
using a 50% non-redundant test set. This dataset was
obtained by discarding from the test set the peptides that
shared a sequence identity greater than 50% with any of
the peptides of the training set (including the phosphory-
lated residue). Furthermore the same redundancy reduc-
tion was applied within the dataset. Positive and negative
peptides were treated separately throughout. The
final non-redundant test set comprised 116 positive and
170 negative peptides. A bootstrap procedure was
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implemented to assess the variability of the performance
measures on the final test. The bootstrap consisted of
100 samples (with replacement) of 80% of the final test
set. The Area Under the ROC Curve was used as perfor-
mance measures throughout this work.

Training and testing using the combined dataset of L.
infantum, T. brucei and T. cruzi
To derive the final version of PhosTryp we used our
data from L. infantum combined with recently published
data from the related organisms T. cruzi and T. brucei.
All the phosphopeptides from these three organisms

were pooled in one set. Negative peptides were sampled
from each proteome, maintaining the same proportion
as found in the positive set. We reduced the redundancy
using a 50% sequence identity cutoff similarly to what
we did for the L. infantum SVM (see above). The same
pipeline described above for the L. infantum dataset was
applied for training (80% of the data) and testing (20%).
The features we included in this predictor were the
ones that resulted in the best performance for the L.
infantum SVM, i.e. all the non-sequence features and
the sequence in PAM30 encoding.
Two tests were performed. In one case all the

sequences were kept together. In the second test we
divided the test sequences according to the organism
which they belong to, and we assessed the performance
separately for each organism.
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