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Abstract: An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it 
is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern 
associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major 
burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany 
aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most 
physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. 
For example, many older adults have a shift in chronotype, which is an individual’s natural inclination to sleep certain times of the day. As 
adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian 
rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the 
relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases 
commonly associated with aging. 
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Introduction
The General Role of Circadian Rhythms
Circadian rhythms are near 24-hour oscillations that exist in most biological processes such as sleep/wake cycles, hormone 
levels, attention, cognition, and mood across a 24-hour cycle.1 These endogenous rhythms are important for survival because 
they allow organisms to synchronize their internal biological processes with external environmental cues, such as the light- 
dark cycle. This synchronization allows organisms to anticipate and prepare for changes in their environment, and to optimize 
their physiological and behavioral responses accordingly.2 For example, circadian rhythms help organisms to adapt to changes 
in their environment, such as seasonal changes in light and temperature. Organisms can optimize their chances for survival and 
reproduction by adjusting their physiological and behavioral responses to changes. To maintain these rhythms, circadian 
clocks are found throughout the body and have a hierarchical timing system.3,4

The suprachiasmatic nucleus (SCN), known as the master pacemaker, is in the dorsal hypothalamus and regulates 
behavioral and physiological rhythms (Figure 1).4–7 The SCN is unique in that it becomes entrained to the light cycles 
and receives direct projections from intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the 
photoreceptor melanopsin.8–10 Melanopsin plays a key role in phototransduction functions such as circadian 
photoentrainment.11,12 Overall, the SCN receives light input, a potent timekeeper, to set the timing of rhythms by 
regulating neuronal activity, body temperature, and hormonal signals.13,14

Individual cells have a molecular clock, which is an integral part of the circadian system (Figure 2). The molecular clock 
consists of a transcriptional/translational feedback loop that cycles over 24-hours in the absence of environmental stimuli.15–17 

The major transcriptional activators consist of proteins Circadian Locomotor Output Cycles Kaput (CLOCK), or Neuronal PAS 
Domain Protein 2 (NPAS2), which bind to Brain and Muscle Arnt-like Protein 1 (BMAL1). These proteins heterodimerize to 
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Figure 1 The suprachiasmatic nucleus (SCN), the “master” pacemaker, is located in the hypothalamus and is essential in setting 24-hr rhythms in behaviors and physiology 
based on external stimuli, like the light cycle. The SCN receives direct input from the retina of the eye through a specialized pathway known as the retinohypothalamic tract. 
When light enters the eye, it activates specialized photoreceptor cells called melanopsin-containing retinal ganglion cells. These cells then send signals to the SCN, which 
uses this information to adjust the body’s internal clock. Created with BioRender.com.

Figure 2 The molecular clock consists of a transcriptional/translational feedback loop that cycles over 24-hours in the absence of environmental stimuli. The main 
transcription factors are Circadian Locomotor Output Cycles Kaput (CLOCK), or Neuronal PAS Domain Protein 2 (NPAS2), which bind to Brain and Muscle Arnt-like 
Protein 1 (BMAL1). These proteins heterodimerize and promote transcription of the Period (Per1, Per2, Per3) and Cryptochrome (Cry1, Cry2) genes. PER and CRY proteins are 
phosphorylated inhibit the CLOCK/NPAS2-BMAL1 complex, which inhibits their own expression and creates a negative feedback loop. There are additional key regulators 
of the circadian clock, such as the nuclear receptors REV-ERBα and REV-ERBβ, as well as the retinoic acid orphan receptor (ROR) (RORα, RORβ, and RORγ) establish 
another feedback loop. RORs positively regulate the expression of BMAL1 by binding to sites Retinoic acid receptor-related Orphan Receptor Element (RORE) elements in 
the BMAL1 gene promoter. Created with BioRender.com.
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recognize E-box motifs and regulate the expression of thousands of genes.18 Of these clock-controlled genes, there are Period 
(Per1, Per2, Per3) and Cryptochrome (Cry1, Cry2) genes that act as repressors.19 Within the 24-hour cycle, PER and CRY 
proteins in turn are phosphorylated and feed back into the nucleus to inhibit the transcriptional activity of the CLOCK/NPAS2- 
BMAL1 complex, which inhibits their own expression and creates a negative feedback loop.20,21 Additionally, there are further 
key regulators of the circadian clock, such as the nuclear receptors REV-ERBα and REV-ERBβ, as well as the retinoic acid 
orphan receptor (ROR) (RORα, RORβ, and RORγ) establish another feedback loop.22,23 Specifically, while REV-ERBs act as 
transcriptional repressors of BMAL1 expression, RORs positively regulate the expression of BMAL1 by binding to sites Retinoic 
acid receptor-related Orphan Receptor Element (RORE) elements in the BMAL1 gene promoter. Overall, these transcriptional- 
translational feedback loops function in a cyclic fashion and are essential to the formation of biological rhythms.22

The circadian system plays an essential role in maintaining health as circadian disruptions may lead to the 
development of diseases.24,25 For instance, limited studies suggest that shift work may be a risk factor for cardiovascular 
disease.26 Furthermore, having later bedtimes can lead to an increase in the consumption of unhealthy foods, which cause 
an increase in body mass index.27 Circadian rhythms are, thus, pervasive throughout systems and a variety of diseases.

Moreover, circadian rhythms can vary within individuals and begin to develop in infancy and change throughout the 
life cycle.28,29 For example, older individuals typically wake up earlier and go to sleep earlier in comparison to younger 
individuals.30 Interestingly, aging can also lead to diseases such as cancer.31 Furthermore, changes in the circadian 
system and sleep patterns are associated with aging while circadian disruptions accelerate aging. There is, thus, 
a potential bidirectional relationship between the circadian system and aging. Here, we review the literature to better 
characterize this relationship between aging and the circadian system.

Normal Age-Related Changes in Circadian Changes and Sleep
Aging Impacts Circadian Rhythms
Numerous studies have suggested that aging is accompanied by dampened circadian rhythms and changes in sleep 
patterns (Figure 3). For example, it has been suggested that there is a decrease in amplitude and sleep becomes more 
fragmented with age.30 However, these changes have not been consistent across studies as there may be several 
confounds, such as the short length of the studies.

Figure 3 Normal aging is characterized by the dampening of circadian rhythms, which leads to shifts in phase and decreases in amplitude. These changes can also contribute 
to sleep characteristics as total sleep time and quality decreases with age. Created with BioRender.com.
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One consistent change in the majority of people is a shift in circadian phase as one ages. For example, there is 
a prominent shift in timing of body temperature and hormone secretion one hour earlier in older individuals.32,33 

A specific example is the one-hour advance in melatonin secretion, which is associated with circadian rhythms and 
plays an essential role in sleep.34 The timing of melatonin secretion corresponds with the shifts in sleep-wake cycles. 
Moreover, previous studies suggested a decrease in melatonin levels exist in older adults; however, additional studies 
found that the levels of melatonin did not differ in healthy, older adults.35

Furthermore, these advances in phase also correspond with changes in chronotype with adults 60 and older typically 
waking up earlier and going to sleep earlier compared to younger adults.36 A self-comparison study in older adults found 
that the tendency to become a “morning person” increased with age.37 Additionally, a longitudinal study tracked the 
chronotype of 567 adult men in Finland for over 20 years and found participants became “mostly morning” types as they 
aged.38 Overall, biological shifts in circadian phase characterizes aging; however, aging also impairs one’s ability to 
adjust to environmental phase shifts.

As one ages, it becomes more difficult to adjust to schedule changes that may affect circadian phase. For example, 
chronic phase shifts caused adult rats to have longer periods of running rhythms in constant dark conditions while 
adolescent rats were able to adapt to chronic phase shifts.39 Additionally, older mice required more days to “re-entrain” 
after shifts in phases.40

Following phase advance, older adults had greater decreases in sleep efficiency, attention span, and body temperature 
amplitudes that persisted for a longer period of time in comparison to younger adults.41,42 In contrast, there were minimal 
differences between older and younger subjects following a phase delay.26 Thus, similar to younger individuals, phase 
delays may be better tolerated by an older population.

Age-Related Changes in the Circadian Clock
Aging is characterized by dampened oscillations of the circadian clock. It has been thought that the SCN, the master 
pacemaker, may change and play a role in aging. When fetal tissue SCN was graphed into aged animals, there was 
a restoration of dampened rhythms and these animals had an increase in longevity.43,44 Moreover, manipulating clock 
genes in the SCN lead to changes in physiology and behavior that match the changes seen in aging.45 Thus, the SCN 
plays a role within aging; however, the data vary on whether the SCN is vulnerable to age-related changes.

Age-related degradation exists at the network level in the SCN and the electrical output of the SCN is dampened with 
age.14,46 Additionally, it was found that the circadian amplitudes of neuronal firing were decreased in the SCN of older 
mice in comparison to younger ones.47 These data collectively support that there are age-related changes occurring in 
the SCN.

However, core molecular clocks within the SCN seem to remain robust.48–51 Further supporting this, a recent study 
found mRNA and protein levels of clock genes in the SCN remained unchanged in older nonhuman primates.52 Although 
clock genes remain robust in the SCN in older individuals, there are impacts from aging on the clock genes in the 
periphery.53 Aging has a negative effect on mRNA levels of Bmal1, Clock, Per1, and Per2 in mouse granulosa cells as 
the mRNA levels were decreased in older mice in comparison to younger.14,54 Additionally, clock genes in the ovaries 
had shifts in rhythms with age.54 Diurnal rhythms of Bmal1, Per1, and Per2 were also dampened in the mouse heart.55 

However, not all cells/organs have clock genes affected by aging. For instance, no age-related variation was found in the 
clock genes of a rat kidney.56 In contrast, a recent study found age-related declines in clock genes in male mice in the 
hypothalamus, which contains the central SCN clock, and five other peripheral tissues, lung, kidney, skeletal muscle, 
heart, and adrenal gland.57 Thus, the effects of aging on clock genes may vary in different genes and throughout different 
cells and organs.

Interestingly, previous studies find that Bmal1 plays a key role in aging. For instance, deletion of Bmal1 leads to total 
loss of circadian rhythms and an increase in age-related diseases,58–60 and an additional study suggests that knocking out 
Bmal1 leads to accelerated aging.61 Supporting this, further research found that Bmal1 deficient cells had characteristics 
of aging,62 and mice with Bmal1 deficiencies exhibited early aging and age-related pathologies.58 Interestingly, mice with 
Bmal1 decencies that were given antioxidant treatments had an increase in average life span.59 It has also been found that 
mice with Bmal1 deficiencies exhibit an increase in the activity of mTORC1, a protein complex that plays a crucial role 
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in regulating metabolic processes via the TOR pathway.63 This increase in mTORC1 activity led to accelerated aging in 
Bmal1 deficient mice, which supports that BMAL1 may be playing a role in aging via metabolic processes. Thus, normal 
aging is associated with potential changes in circadian genes, specifically Bmal1, which could lead to diseases later in 
life.

Aging Changes Sleep Patterns
One of the main regulators of sleep is the circadian timing system.64,65 Recent studies have shed light on the importance 
of sleep for the health and well-being of the older population.66 Moreover, studies suggest that sleep changes with aging. 
For example, older adults have a decrease in total sleep time67 and in sleep quality.68–70 Additionally, multiple studies 
support that deep sleep (slow wave sleep) decreases with age, and additional studies found decreases in slow wave sleep 
and changes in the brain in older individuals with no cognitive deficits.71,72

Overall, there are often changes in sleep that occur with aging, but these changes could plateau at 60 years old if one 
maintains a healthy lifestyle. However, recent studies suggest that having impaired sleep and rhythms contribute to age- 
related disorders.73,74 For instance, sleep-wake disruptions are potentially correlated with an increase in biomarkers 
associated with Alzheimer’s disease (AD).75 Thus, comorbidities can enhance normal age-related changes in sleep, which 
could be indicative of age-related diseases.

Circadian Rhythms and Sleep Changes in Age-Related Diseases
Aberrations in Circadian Rhythms and Sleep in Neurodegenerative Disorders
Alzheimer’s disease (AD) is a devastating disease that affects cognitive function and primarily occurs in older popula-
tions. Approximately 44 million people have Alzheimer’s or related dementia, and this is estimated to reach about 
135 million by 2050.76,77 Circadian dysfunction and sleep disruptions are the most common characteristics in patients 
with AD.78 Previous survey results found that 45% of patients with Alzheimer’s disease (AD) have circadian disruptions 
and fragmented sleep.63 These disruptions can appear years prior to a medical diagnosis.79

There is also a decrease in rapid eye movement (REM) and non-REM sleep that are associated with tau pathology is 
the early stages of Alzheimer’s.79 Additionally, REM sleep bouts are decreased in patients with AD in comparison to age 
matched controls.80 Short and long sleep durations are also associated with worse outcomes for older adults, such as 
greater Aβ burden, greater depressive symptoms, higher body mass index, and cognitive decline.81 Interestingly, studies 
found decreases in slow wave sleep with aging occurred individuals with no cognitive deficits,58,59 but were also 
associated with the early stages of Alzheimer’s.61,62 Thus, it could be argued that sleep patterns changing with aging 
predict the risk of developing AD.

Furthermore, AD is characterized by dampened circadian rhythms. There is an overall decrease in amplitude and 
a delay in circadian phase.82,83 Additionally, a dampening and delay in rhythms increased the chances of 
developing AD.25 Supporting this, a recent study found that there was a weakening in rhythms and activity as older 
individuals went from cognitive impairment to AD.63 These studies collectively support that there may be an interaction 
between circadian disruptions and AD.

Moreover, initial studies found that there was degradation in the SCN in patients suffering from AD.29 Specifically, it 
was suggested that patients with AD had the loss of critical neurons in the SCN. In contrast, a more recent study found no 
significant differences in major neurons in the SCN in non-AD and AD patients.84 Although data varies on the role of the 
SCN in AD, there are potential changes in clock genes. For example, the rhythms of BMAL1, PER1 and CRY1 mRNA are 
lost in the pineal gland.85 In AD patients, there are also changes in BMAL1 mRNA expression that are complex, but the 
main differences are in the temporal phase relationship.30,86,87 Additionally, phosphorylated tau, a key pathological 
feature of AD, levels are increased in a mouse model of AD after chronic sleep deprivation and correlate to changes 
found in Bmal1 expression.88 These studies collectively support that the molecular clock is playing a role in AD.

In addition to AD, Parkinson’s disorder (PD), the 2nd most common neurodegenerative disorder, may also be 
associated with abnormalities in circadian rhythms and sleep. For example, a rat model of PD found there was decreased 
expression of clock genes that could be restored with melatonin.89 To follow up on this study, PD patients are treated 
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with melatonin and measured the expression of BMAL1 and PER1.90 At baseline, BMAL1 was decreased and increased 
with melatonin while PER1 remained the same. Thus, PD patients have altered levels of clock genes that can restored 
with treatments that focus on circadian rhythms and sleep-wake cycles.

Additionally, there are variations in sleep characteristics in patients with PD. For example, male patients with 
Parkinson’s had an increase in daytime sleeping and were more active at night.91 Specifically, men with excessive 
daytime sleepiness combined with daytime napping were 3 times more likely to develop PD. Additionally, patients with 
PD are commonly diagnosed with insomnia and tend to have problems staying asleep.92 However, this could be due to 
motor issues that happen during the night.93

Furthermore, normal rhythms exist in rest-activity stages, but these rhythms are modified in patients with PD. Patients 
with mild to moderate PD have an overall decrease in motor activity but maintain diurnal rhythms. However, patients in 
the advanced stages of PD do not express diurnal rhythms in motor activity.94,95 Interestingly, a rat model of PD found 
overall activity was decreased, but there were no phase shifts and circadian rhythms were not disrupted.96 Supporting 
this, additional studies did not find circadian disruptions in patients with PD; however, patients being treated with 
dopaminergic treatments have later sleep onset, severe insomnia, and an advance in circadian phase.92,97–99 Moreover, 
a recent study utilized bright light therapy for one hour during the evening hours in PD patients receiving dopamine 
treatment and found an improvement in sleep problems.83

Thus, the phase shifts seen in patients with PD may be due to the dopaminergic treatments. Interestingly, male rats 
receiving a D1 dopamine agonist exhibit altered circadian genes in the SCN.100 When given a D1 dopamine agonist in 
the morning, the expression in the SCN of Per2 and Clock genes are increased and Per1 and Bmal1 are decreased in 
comparison to saline treatments. Receiving a D1 dopamine agonist in the evening had a decrease in the expression of 
Per2, Clock, Per1, and Bmal1 in the SCN. These alterations in clock genes in the SCN may underly the shifts in 
circadian phases in PD patients. Selecting the appropriate times in which dopaminergic treatments are received may 
improve symptoms. Furthermore, combining dopaminergic treatments with light therapies later in the evening may 
combat additional symptoms and help prevent additional phase shifting.

Disruptions in Circadian Rhythms and Sleep May Play a Role in Cancer
Cancer and aging are closely related as cancer frequency is higher in an older population in comparison to a younger 
one.101 In 2007, the International Agency for Research on Cancer (IARC) listed circadian disruptions as a probable 
carcinogen. Moreover, multiple studies propose that shift workers have a higher risk of developing cancer.102,103 For 
example, women who were nurses and did shift work for 30 years or more had a higher chance of developing breast 
cancer.104–106 A recent review examined about 26 studies focusing on shift work and breast cancer.102 Although the 
studies all varied, they collectively support that there is an increased risk of developing breast cancer after 20 years of 
shift work or after shorter periods with many consecutive nights of shift work.

Supporting these studies, research utilizing preclinical chronic jet lag models to disrupt circadian rhythms found that 
chronic jet lag may increase the chances of developing cancer. For example, chronic jet leg resulted in the deregulation of 
liver gene expression and metabolism that led to hepatocellular carcinoma.107 Chronic jet lag also accelerated the 
progression of Glasgow osteosarcoma in comparison to mice that were not disrupted.108 Recent studies found that 
chronic jet lag altered transcriptomes that have been linked to cancer-related pathways109 and changed the expression of 
genes related to glioma in several brain regions.110 Thus, chronic circadian disruptions could increase the chances of one 
developing cancer later in life.

Data varies on the relationship between cancer and the circadian clock. For instance, single-nucleotide polymorph-
isms (SNP) in CLOCK and/or BMAL1 genes are associated with an increase in susceptibility to develop prostate, breast, 
ovarian, and pancreatic cancer in humans.107,111,112 Additionally, suppression of CLOCK and BMAL1 promotes tumor 
progression.113,114 However, tissue from breast cancer patients expressed significantly higher CLOCK gene expression in 
comparison to healthy controls.115 CLOCK is also upregulated in glioma tissues, which pays a role in proliferation, 
survival, and migration of glioma cells.116,117 The differences from these studies in CLOCK expression and regulation 
may be due to the different types of tissues from different cancers. Thus, circadian genes may vary based on types of 
tissue and cancer.
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Moreover, evidence also suggests that Cry and Per genes play a role in cancer. Mutations in these genes have been 
linked to a variety of cancers, including breast cancer, prostate cancer, and glioblastoma. For example, CRY1 was 
downregulated in human osteosarcoma cells.118 Additionally, Per and Cry genes may play a role in regulating cell 
proliferation, apoptosis, and DNA repair, which are all processes that can become dysregulated in cancer. For instance, 
mice with Per2 loss-of-function mutations exhibited a greater occurrence of tumors following exposure to γ-irradiation 
compared to mice with normal Per2 genes.119 Furthermore, the genes associated with cell proliferation, including c-myc, 
CyclinD1, and Gadd45, which are regulated by c-myc, were disrupted in Per2 mutants. These data, thus, support that 
multiple parts of the molecular clock may be playing a role in cancer.

However, other studies suggest that circadian genes may not play a role in cancer. For example, Clock gene mutant 
mice were not more tumor prone.120–122 Additionally, the TCGA database suggests that mutations in core circadian genes 
are low in cancer patients. Some studies suggest that circadian gene alterations are a shared feature of tumors.123 One 
thought could be that cancer is disrupting circadian rhythms, which leads to alterations in circadian genes that in turn 
enhance tumor progression. A recent study found that MYCN, a protein coding gene and hallmark of advanced 
neuroblastoma, disrupts the circadian clock.124 Specifically, MYCN was found to upregulate REV-ERBα and down 
regulate ROR and BMAL1. ROR activity was able to rescue the MYCN-mediated repression of BMAL1 expression. 
These data, thus, support that cancer may dysregulate the molecular clock. Overall, these data collectively support that 
there is a relationship between cancer and circadian rhythms and sleep.

The Role of Circadian Rhythms and Sleep in Cardiovascular Diseases
One of the major risk factors for heart failure and cardiovascular disease is aging.125 The aging process can negatively 
affect the health of the heart and the arterial system. Indeed, there are increases in atherosclerosis, hypertension, 
myocardial infarction, and stroke in the older population.126 Circadian rhythms also regulate the cardiovascular system 
and contribute to diseases. The core molecular clock is present in most cardiovascular cell types, which can function 
independently from the SCN.127–131

These clocks mediate fluctuations in cardiovascular processes. For example, heart rate fluctuates throughout 
the day.132 Research suggests this may be due to the cardiomyocyte circadian clock as cardiomyocyte-specific Clock 
mutant mice have decreases in heart rate.133 Additionally, circadian disruptions in animals can cause cardiomyopathy, 
cardiac fibrosis and systolic dysfunction, which can lead to cardiovascular death.134,135

Similar to cancer studies, shift workers were found to have a higher chance of developing coronary heart diseases.136 

These data are consistent with a previous study that found a 23–24% increased risk of any coronary event in shift 
workers.137 Additionally, a recent study on shift work found that disruption of circadian rhythms exacerbates reperfusion 
injury in myocardial infarction.138 These compelling data support the potential relationship between circadian rhythms, 
aging and cardiovascular disease.

Conclusions
Bidirectional Relationship Between Aging and Circadian Rhythms
With our population having an increase in older adults, it is imperative to better characterize the bidirectional relationship 
between aging and circadian rhythms. There are changes in the circadian system and sleeping patterns that are commonly 
associated with aging and age-related diseases (Figure 4). Additionally, some changes may predict and contribute to age- 
related diseases such as neurodegenerative disorders and cancer.

However, it is unclear whether circadian and sleep disruptions are characteristic of aging or if these disruptions lead 
to accelerated aging and age-related diseases. Most age-related diseases are characterized by circadian and sleep 
disruptions. For example, individuals suffering from neurodegenerative disorders, like AD, tend to have exasperated 
disruptions in rhythms.30 Moreover, sleeplessness can play a role in the immune system and heart diseases, which 
becomes worse in older populations. Better understanding whether changes in circadian rhythms and sleep problems are 
caused by aging or lead to age-related diseases may improve current treatments and ways to reduce the chances of 
developing these diseases.
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As our older population grows, modern society is also characterized by chronic disruptions, like shift work, to 
circadian rhythms and sleep patterns. Several studies suggest that circadian rhythm and sleep disruptions can accelerate 
aging and exacerbate age-related diseases. For example, shift workers have a potential increased chance of developing 
cancer, and multiple chronic jet lag studies suggest circadian disruptions increase the risk of developing cancer. Thus, 
circadian disruptions may lead to age-related diseases.Individuals may be able to improve their circadian rhythms and 
sleep patterns by avoiding light exposure and could also utilize bright light therapy. Better understanding the relationship 
between circadian rhythms and aging will allow us to better treat the older population but will also allow us characterize 
types of disruptions to lead to age-related diseases.
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