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INTRODUCTION

The red-pigmented yeasts are ubiquitous microbes that often 
occur on the surfaces of plant material (Phaff 1990, Takashima 
& Nakase 2000, Fell et al. 2001, Inácio et al. 2002). In the past, 
these were grouped artificially into asexual genera—primarily 
Sporobolomyces and Rhodotorula—based on morphology and 
physiology (Boekhout 1991, Hamamoto et al. 2011, Sampaio 2011). 
Although DNA sequence data have demonstrated repeatedly 
that these asexual genera are polyphyletic (e.g., Hamamoto & 
Nakase 2000, Aime et al. 2006, Wang et al. 2015a, b), taxonomic 
revision has been long overdue. Within Pucciniomycotina, 
Sporobolomyces, and Rhodotorula species have been placed in 
several orders within Agaricostilbomycetes, Cystobasidiomycetes, 
and Microbotryomycetes in the past (e.g., Fell et al. 2000, Aime et 
al. 2006, Bauer et al. 2006). In the seven-locus phylogeny of Wang 
et al. (2015a), representatives of Rhodotorula and Sporobolomyces 
occurred in 17 and 23 clades, respectively. Wang et al. (2015b) 
revised five polyphyletic genera (Bensingtonia, Rhodosporidium, 
Rhodotorula, Sporidiobolus and Sporobolomyces). These authors 
proposed new combinations for 27 species of Rhodotorula (in 15 
genera) and for 40 species of Sporobolomyces (in 16 genera).

Our study focuses on one of the groups within 
Cystobasidiomycetes that is known as the gracilis lineage 

(Scorzetti et al. 2002) or marina clade (Nagahama et al. 2006, 
Kurtzman et al. 2011, Wang et al. 2015a). No sexual morph is 
known for any species in this lineage and all the species have 
been described as either Sporobolomyces or Rhodotorula. The 
gracilis/marina clade contains seven species originating from 
various parts of the world. The first species that was described 
is S. gracilis, isolated from a decaying leaf in western Europe 
(Derx 1930). Other known species are: S. foliicola isolated 
from the leaf surface of Banksia collina in Australia (Shivas & 
Miranda 1983); S. oryzicola from a dead Oryza sativa leaf in 
Japan (Nakase & Suzuki 1986); S. coprosmae from dead leaves 
and fruit of Coprosma tenuifolia in New Zealand (Hamamoto & 
Nakase 1995); S. vermiculatus from a dead leaf of Pennisetum 
pedicellatum in Thailand (Takashima & Nakase 2000); and S. 
symmetricus from a Betula platyphylla leaf in China (Wang & 
Bai 2004). The only species not originally described from plant 
material is R. marina, a yeast isolated from shrimp (Penaeus 
setiferus) wash water in Texas, USA (Phaff et al. 1952).

All seven species mentioned above form smooth, butyrous, 
somewhat shiny colonies on agar medium. The colonies produce 
entire margins and colony color varies from pink to brick-red. 
None of these species have been observed to form hyphae 
or pseudohyphae, but most of them do form ballistoconidia 
(Hamamoto et al. 2011, Sampaio 2011). These characters are 
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shared with many other species in Cystobasidiomycetes and 
Microbotryomycetes, and modern generic circumscriptions of 
these yeasts are mainly based on molecular phylogenetic data 
(Wang et al. 2015b). Using phylogenetic inference analyses of 
a seven-locus dataset and an extended LSU rDNA locus dataset, 
Wang et al. (2015b) proposed the genus Symmetrospora to 
accommodate six of the seven species in the gracilis/marina 
clade. In this study, we reveal and formally describe three new 
species of Symmetrospora based on culture studies, physiological 
characterization, and rDNA sequence data (Kurtzman et al. 
2011) from newly and previously collected material. In addition, 
according to the results of our phylogenetic reconstruction, we 
propose a new combination.

MATERIALS AND METHODS

Sample collection and isolations

Eighteen new yeast strains were examined during this study. 
Fifteen of these were obtained from various leaf surfaces 
in Illinois, Indiana, Louisiana, and Michigan in the USA and 
in Taiwan. Leaves were cut into small pieces that then were 
attached using Vaseline Petroleum Jelly to the inner lid of a Petri 
dish containing agar media. Chloramphenicol (1 mL L21) was 
added to the media to limit bacterial growth. One strain (BG 02-
5-27-3-2-2) was isolated from the gut of a Staphylinidae beetle 
as described in Suh et al. (2005) and one strain (SA42) was 
isolated from a small piece of decaying wood using the spore-
drop method as outlined above. Strain SA107 was obtained from 
indoor air by exposing a media plate on a lab bench top for 1 h. 

All pure cultures were maintained on potato dextrose agar 
(PDA); long-term preservation of isolates was accomplished in 
the Aime Lab at Purdue University on PDA slants at 4 °C and as 
glycerol stocks at -80 °C. Holotypes are deposited at PUL (Kriebel 
Herbarium, Purdue University, West Lafayette, Indiana, USA) as 
dried inert material; ex-type and other cultures are deposited 
at the CBS culture collection (Westerdijk Fungal Biodiversity 
Institute, Utrecht, The Netherlands).

Morphological and physiological characteristics

Colony morphology was described by examining 10-d-old 
cultures on Yeast Malt extract Agar (YMA). Corn Meal Agar 
(CMA) and Dalmau plates were used to test for the formation of 
pseudohyphae and/or true hyphae. Culture colors were described 
subjectively and coded from 10-d-old cultures on YMA and CMA. 
Color codes were assigned following the Online Auction Color 
Chart (Kramer 2004). Microscopic characters were examined 
with a Nikon Eclipse 80i microscope with standard differential 
interference contrast (DIC) settings and with 40× and 100× 
objectives. Cell measurements from 20 cells grown in YM broth 
for 5 d were taken with an ocular micrometer using 100× oil-
immersion objective. Images were taken with Nikon Digital Sight 
DS-Fi1 camera setup and measurements were calibrated with a 
stage micrometer.

Assimilation of various single carbon sources was determined 
for yeast species using Biolog YT microplates (Biolog Inc., 
Hayward, California, USA). Two-d-old cultures on YMA were used 
to inoculate BUY agar plates (Biolog Inc.). After 48 h of growth, 
these plates were used to prepare cell suspensions for inoculating 
the microplates. The optical density of the cell suspension in 

sterile water was adjusted to 0.04 (= 91 % transmittance) and 
100 μL of that suspension was transferred to each microplate 
well. Measurements were performed at 1, 2, 5, 10, and 14 d post 
inoculation (dpi) using the ELx800 Universal Microplate Reader 
(Bio-Tek Instruments Inc., Winooski, Vermont, USA). The turbidity 
in the wells of each microplate was determined separately 
and the well with the highest reading value per each plate was 
determined (considered as 100 %). The wells with turbidity values 
lower than 20 % of the maximum value were recorded as negative 
and higher than 50 % were recorded as positive. The assimilation 
ability of the wells that had turbidity values between 20 % and 
50 % was considered uncertain. The data from each plate were 
used only after the turbidity values for both negative control wells 
of the plate remained below 20 % which in most cases was around 
10 dpi.

The assimilation of nitrogen compounds, fermentation 
ability, and the ability to grow in highly osmotic environment 
were tested on agar media as described in Suh et al. (2008). The 
maximum growth temperature was determined on YMA plates 
at 30 °C, 35 °C, and 37 °C.

PCR, sequencing and phylogenetic inference

The small and large subunits (SSU, LSU) of the nuclear ribosomal 
DNA (rDNA) and the internal transcribed spacer (ITS) region 
were amplified by colony PCR. The LSU D1/D2 region is the DNA 
barcode for yeasts (Kurtzman & Robnett 1998), whereas the ITS is 
the default barcode for the Kingdom Fungi (Schoch et al. 2012). 
One colony of cells from a 2-d-old culture was eluted in 100 μL of 
sterile water, 5 μL of which was used as template for PCR. PCRs 
were carried out in 25 µL reactions containing 12.5 µL Apex Taq 
RED Master Mix (Genesee Scientific, San Diego, California, USA), 
1.25 µL of each 10 µM primer, and 5 µL of ddH2O. Primer pairs 
were NS1/NS4 and NS3/NS8 for SSU (White et al. 1990), ITS1F/
ITS4 for ITS (White et al. 1990, Gardes & Bruns 1993), and LR0R/
LR6 for LSU (Vilgalys & Hester 1990, Rehner & Samuels 1994). 
An Eppendorf Mastercycler EP Gradient Thermal Cycler was 
used for amplifications. Cycling conditions for the ITS locus were 
initial denaturation at 95 °C for 5 min; followed by 35 cycles 
of denaturing at 95 °C for 30 s, annealing at 45 °C for 45 s and 
elongation at 72 °C for 45 s; and a final elongation step of 72 °C for 
7 min. Cycling conditions were the same for SSU and LSU, except 
for an extended extension up to 1 min for both loci, and annealing 
at 55 °C for 45 s for the SSU locus. Purification of PCR products and 
sequencing using the same primers were outsourced to Genewiz 
(South Plainfield, New Jersey, USA). Generated sequences were 
assembled, edited and trimmed using Sequencher v. 5.2.3 (Gene 
Codes Corporation, Ann Arbor, Michigan, USA) and are deposited 
in GenBank (accession numbers in Table 1).

A Nucleotide BLAST search (https://blast.ncbi.nlm.nih.
gov/) confirmed that all strains belonged to Symmetrospora. 
Datasets were constructed for individual SSU, ITS, and LSU 
loci by downloading sequences of type strains of described 
Symmetrospora species (accession numbers in Table 1). 
Alignments were constructed using MUSCLE v. 3.7 (Edgar 2004), 
which is available on the CIPRES Science Gateway v. 3.3 (Miller 
et al. 2010). Ambiguously aligned regions and uninformative 
positions were removed by using trimAl v. 1.2 (Capella-Gutiérrez 
et al. 2009) with a gap threshold of 60  % and coverage of 
50  %. We constructed a concatenated SSU+ITS+LSU dataset 
of 31 isolates in MEGA v. 7 (Kumar et al. 2016). Phylogenetic 
relationships were inferred by analyzing the combined three-
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Table 1. Species used in phylogenetic analysis, with strain information, type status (indicated by T), GenBank accession numbers of rDNA sequences 
(SSU, ITS, LSU), and references. Accession numbers of sequences generated during this study are in boldface.

Species Strain Status SSU ITS LSU References

Naohidea sebacea CBS 8477 – KP216515 DQ911616 DQ831020 Wang et al. (2015a), P.B. Matheny & D.S. 
Hibbett unpubl. data, Matheny et al. (2006)

Buckleyzyma armeniaca CBS 8076 T – AF444523 AF189920 Fell et al. (2000), Scorzetti et al. (2002)

Buckleyzyma aurantiaca CBS 317 T KJ708436 AF444538 AF189921 Fell et al. (2000), Scorzetti et al. (2002), 
Wang et al. (2015a)

Buckleyzyma kluyveri-nielii CBS 7168 T AB021674 AF444544 AF189988 Fell et al. (2000), Hamamoto & Nakase 
(2000), Scorzetti et al. (2002)

Erythrobasidium 
hasegawianum 

CBS 8253 T D12803 AF444522 AF189899 Suh & Sugiyama (1993), Fell et al. (2000), 
Scorzetti et al. (2002)

Erythrobasidium yunnanense JCM 10687 T AF229176 AB030353 AB127358 Bai et al. (2001), Nagahama et al. (2006)

Symmetrospora clarorosea SA308 – KJ701227 KJ701225 KJ701226 This study

SA333 – KJ701230 KJ701228 KJ701229 This study

CBS 14055 
(WRP 7)

T KJ701233 KJ701231 KJ701232 This study

WRP 8 – KJ701236 KJ701234 KJ701235 This study

Symmetrospora coprosmae CBS 7899 T D66880 KY105570 KY109807 Hamamoto & Nakase (2000), Vu et al. (2016)

MT 262 – KJ701201 KJ701199 KJ701200 This study

MT 264 – – KJ701205 – This study

P 116 – KJ701204 KJ701202 KJ701203 This study

Symmetrospora cf. coprosmae HU9059 – – MN586903 – This study

HU9256 – – MN586904 MN586902 This study

Symmetrospora foliicola CBS 8075 T AB021671 KY105571 KY109808 Hamamoto & Nakase (2000), Vu et al. (2016)

Symmetrospora gracilis CBS 71 T D10788 AF444578 AF189985 Nakase et al. (1993), Fell et al. (2000), 
Scorzetti et al. (2002)

Symmetrospora marina CBS 2365 T AB126645 AF444504 AF189944 Fell et al. (2000), Scorzetti et al. (2002), 
Nagahama et al. (2006)

Symmetrospora sp. P 114 – KJ701221 KJ701219 KJ701220 This study

P 115 – KJ701224 KJ701222 KJ701223 This study

Symmetrospora oryzicola CBS 7228 T AB021677 AF444546 AF189990 Fell et al. (2000), Hamamoto & Nakase 
(2000), Scorzetti et al. (2002)

MCA4496 – KJ701195 KJ701193 KJ701194 This study

MCA4497 – KJ701198 KJ701196 KJ701197 This study

Symmetrospora pseudomarina SA42 – KJ701215 KJ701213 KJ701214 This study

CBS 14057 
(SA716)

T KJ701218 KJ701216 KJ701217 This study

Symmetrospora suhii CBS 14094 (BG 
02-5-27-3-2-2)

T AY520260 KJ701206 AY520389 Su et al. (2005), this study

Symmetrospora symmetrica CBS 9727 T KJ708350 KY105573 KY109810 Wang et al. (2015a), Vu et al. (2016)

P 118 – KJ701212 KJ701210 KJ701211 This study

SA107 – KJ701209 KJ701207 KJ701208 This study

Symmetrospora vermiculata CBS 9092 T KY105574 AF460176 Scorzetti et al. (2002), Vu et al. (2016)

locus dataset by maximum likelihood (ML). We used the 
command-line version of IQ-TREE (Nguyen et al. 2015) under 
partitioned models (Chernomor et al. 2016). Appropriate 
models of nucleotide substitution were selected according to 
the corrected Akaike Information Criterion (AICc) through the 
built-in ModelFinder (Kalyaanamoorthy et al. 2017). Selected 
models were TIM2+F+R2 (SSU, -lnL = 6946.074), TIM2+F+G4 
(ITS1, -lnL = 2010.895), K3P (5.8S, -lnL = 554.742), SYM+G4 
(ITS2, -lnL = 3158.263), and TIM2+F+I+G4 (LSU, -lnL = 4498.519). 

Ultrafast bootstrapping was done with 1 000 replicates (Hoang 
et al. 2018). The final tree with ML bootstrap support values 
(BS) was visualized in FigTree v. 1.4.3 (http://tree.bio.ed.ac.uk/
software/figtree/) and edited in Adobe Illustrator CC 2018.

In keeping with Kurtzman & Robnett (1998), we calculated 
the % similarity and number of nt differences between ex-type 
rDNA sequences (LSU, ITS) of our new species and their closest 
related relatives. These numbers are given in the respective 
diagnoses.
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RESULTS

Nucleotide alignment dataset & phylogenetic inference

During this study, we generated 47 rDNA sequences (14 SSU, 18 
ITS, 15 LSU) for 18 examined strains of Symmetrospora. The SSU 
section of our concatenated rDNA sequence dataset comprised 
1  664 characters, of which 1  523 were constant and 56 were 
parsimony-informative. The ITS (partitioned into ITS1, 5.8S, and 
ITS2) comprised 173+158+249 characters, of which 92+151+117 
were constant and 49+2+73 were parsimony-informative. Finally, 
the LSU comprised 728 characters, of which 585 were constant 
and 99 were parsimony-informative. Maximum likelihood of 
the combined SSU+ITS+LSU dataset allowed comparisons with 
reference sequences from ex-type strains (Fig. 1).

Of the 18 strains isolated in this study, nine represented four 
undescribed species of which three are formally described below. 
The remaining nine isolates were Symmetrospora (cf.) coprosmae 
(MT 262, MT 264, P 116, HU9059, HU9256), S. oryzicola (MCA4496, 
MCA4497), and S. symmetrica (P 118, SA107). Characteristics of 
colony and cell morphology were not sufficient to differentiate 
among the new Symmetrospora species. The colony pigmentation 
for most of the studied strains was dark pink to orange-red, 
whereas the color of S. pseudomarina strains varied from salmon 
pink (SA716) to red (SA42). All strains had butyrous colonies with 
entire margins, only presenting some variation in the shiny or dull 
appearance. However, results from assimilation studies (Table 2) 
supported the delimitation of species based on our molecular 
phylogenetic data.

Taxonomy

Symmetrospora Q.M. Wang et al., Stud. Mycol. 81: 175. 2015.
Type species: Symmetrospora gracilis (Derx) Q.M. Wang et al., 
Stud. Mycol. 81: 176. 2015.

Symmetrospora clarorosea Toome, Albu & Aime, sp. nov. 
MycoBank MB809695. Fig. 2A.

Etymology: Referring to the color of the colonies on solid media 
(clarus = bright, roseus = pink).

Diagnosis: LSU shares 97.84 % identity with ex-type sequence 
of S. gracilis (13 nt different); ITS shares 96.15 % identity with 
ex-type sequence of S. gracilis (23 nt different). Different 
from S. gracilis by the ability to assimilate sucrose, galactose, 
melezitose, and L-arabinose.

Typus: USA, Louisiana, Florida Parishes Region, East Baton 
Rouge Parish, Baton Rouge, Louisiana State University campus, 
30.407817N, 91.176187W, 27 Jan. 2009, W.R. Pilcher, surface of 
Quercus virginiana leaf (Fagales, Fagaceae), WRP 7 (dried inert 
material at PUL holotype), ex-type culture at CBS (CBS 14055), 
GenBank accession nos. KJ701233 (SSU), KJ701231 (ITS), 
KJ701232 (LSU).

Description: Colonies on YMA are butyrous, smooth, with 
entire margins, shiny or dull, pink (oac573 on YMA but oac574 
on CMA). Growth at 20‒25 °C (optimal); no growth at 30 °C. 
Yeast cells after 5 d in YM broth ellipsoid, 2‒5 × 5‒10 μm (av. 
3.4 × 7.2 μm), with length/width ratio of 1.4‒3.5 (av. 2.2); 
polar budding from a narrow base, generally only one bud 

per cell; ballistosporic. Fermentation ability absent. Carbon 
compounds assimilated: D-cellobiose, gentiobiose, maltotriose, 
melezitose, sucrose, turanose, D-glucose, galactose, methyl-α-
D-glucoside, D-mannitol, D-sorbitol, adonitol, D-arabitol, ribitol, 
glycerol, L-arabinose, and D-xylose. No growth on melibiose, 
D-glucosamine, amygdalin, and erythritol. Nitrogen compounds 
assimilated: nitrate, D-tryptophan, L-lysine (variable), and 
cadaverine (variable). Additional compounds assimilated: 
D-gluconic acid and 2-keto-D-gluconic acid. Osmotic stress: 
no growth in the presence of 10  % NaCl or 50  % glucose. No 
pseudohyphae or hyphae observed. Sexual morph unknown. 

Additional material examined: USA, Louisiana, Florida Parishes Region, 
East Baton Rouge Parish, Baton Rouge, Louisiana State University 
campus, 30.407817N, 91.176187W, 13 Apr. 2011, S. Albu, surface of 
Lygopodium japonicum leaf (Schizaeales, Lygodiaceae), SA333, referred 
to as Sporobolomyces sp. cf. gracilis 1 in Albu (2012), culture at CBS 
(CBS 14085), GenBank accession nos. KJ701230 (SSU), KJ701228 (ITS), 
KJ701229 (LSU); Ibid., Jan. 2009, W.R. Pilcher, surface of Salix sp. leaf 
(Malpighiales, Salicaceae), WRP 8, culture at CBS (CBS 14093), GenBank 
accession nos. KJ701236 (SSU), KJ701234 (ITS), KJ701235 (LSU); 
Louisiana, Florida Parishes Region, East Baton Rouge Parish, Baton 
Rouge, Louisiana State University campus, 30.409093N, 91.176428W, 18 
Mar. 2011, S. Albu, surface of Dryopteris erythrosora leaf (Polypodiales, 
Dryopteridaceae), SA308, referred to as Sporobolomyces sp. cf. gracilis 
2 in Albu (2012), GenBank accession nos. KJ701227 (SSU), KJ701225 
(ITS), KJ701226 (LSU).

Habitat and distribution: On leaf surfaces in North America 
(USA, Louisiana).

Notes: A Portuguese strain, CBS 10200 (Inácio et al. 2009), 
appears to be conspecific to S. clarorosea based on its published 
ITS and LSU rDNA sequences (Table 3). These sequences were 
submitted to GenBank as Symmetrospora sp.

Symmetrospora oryzicola (Nakase & M. Suzuki) Haelew. & 
Aime, comb. nov. MycoBank MB833757. Fig. 2B.
Basionym: Sporobolomyces oryzicola Nakase & M. Suzuki, J. 
Gen. Appl. Microbiol., Tokyo 32: 152. 1986.

Description: Colonies on YMA butyrous, smooth but becoming 
verrucose in age, with entire margins, dull, dark pink to red 
(oac588 on YMA but oac577 on CMA). Growth at 20‒25 °C 
(optimal) and at 30 °C (weak). Yeast cells after 5 d in YM broth 
subglobose, 4‒6 × 6‒8 μm (av. 4.9 × 7.2 μm), with length/width 
ratio of 1.2‒1.75 (av. 1.5); polar budding from a narrow base; 
ballistosporic. No pseudohyphae or hyphae observed. Sexual 
morph unknown.

Materials examined: Taiwan, Southern Taiwan Region, Tainan City, 
Shanhua District, World Vegetable Center (Asian Vegetable Research 
and Development Center), 23.115782N, 120.298994E, 25 Jul. 2011, 
M.C. Aime, surface of Vigna sp. leaf (Fabales, Fabaceae), MCA 4496, 
culture at CBS (CBS 14050), GenBank accession nos. KJ701195 (SSU), 
KJ701193 (ITS), KJ701194 (LSU); Ibid., MCA 4497, GenBank accession 
nos. KJ701198 (SSU), KJ701196 (ITS), KJ701197 (LSU). 

Habitat and distribution: On leaf surfaces in Asia (Japan, Taiwan).

Notes: The sister species of S. oryzicola is S. coprosmae, which is 
reported from various substrates in Europe (Austria, Molnár et 
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Fig. 1. Phylogenetic placement of Symmetrospora clarorosea sp. nov., S. oryzicola comb. nov., S. pseudomarina sp. nov., and S. suhii sp. nov., 
reconstructed from a combined dataset of SSU, ITS, and LSU sequences. The topology is the result of maximum likelihood inference performed with 
IQ-TREE. For each node, ML BS support values ≥ 70 % are presented above/below the branch leading to that node. 

Table 2. Physiological differences between Symmetrospora clarorosea sp. nov., S. pseudomarina sp. nov., S. suhii sp. nov., and their closest related 
species. 

Compound S. clarorosea S. gracilis S. marina S. pseudomarina S. suhii S. symmetrica S. vermiculata

Sucrose + - + + + + l

Melibiose - - - - u - -

Galactose + - + u u - +

Lactose u + - + + + +

Trehalose u + - + + + +

Maltose u - + - + - -

Melezitose + - w/s + u + +

Cellobiose + + + + u + l

D-Xylose + + s + + - +

L-Arabinose + - s + u - +

L-Rhamnose u - s +a - - -

L-Sorbose u - w/s - - - l/w

Ribitol + + w/s + + + l/w

Nitrate + - - u w - -

+, growth; -, no growth; l, latent; s, positive but slow; v, variable; w, weak; u, uncertain. Data for the new species taken from the ex-type strains (S. 
clarorosea, WRP 7; S. pseudomarina, SA716; S. suhii, BG 02-5-27-3-2-2). Data for the reference species taken from Kurtzman et al. (2011).
a The assimilation of L-rhamnose was uncertain for the ex-type strain but positive for the other strain tested (SA42).
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al. 2008), North America (USA, Indiana & Michigan, this study), 
and Oceania (New Zealand, ex-type strain, Hamamoto & Nakase 
1995). In contrast, S. oryzicola is much less commonly found; in 
addition to the two strains from Taiwan presented here, only 
the Japanese ex-type strain of S. oryzicola is known (Nakase & 
Suzuki 1986).

Symmetrospora pseudomarina Haelew., Albu & Aime, sp. nov. 
MycoBank MB809701. Fig. 2C–D.

Etymology: Referring to similarities and past confusion with S. 
marina.

Diagnosis: LSU shares 99.83 % identity with ex-type sequence of 
S. marina (1 nt different) and 99.49 % with ex-type sequence of S. 
vermiculata (3 nt different); ITS shares 98.24 % identity with ex-
type sequence of S. marina (10 nt different) and 97.18 % with ex-
type sequence of S. vermiculata (15 nt different). Different from 
S. marina by the ability to assimilate lactose and D-trehalose, 
and the inability to assimilate maltose and L-sorbose. Different 
from S. vermiculata by the ability to assimilate L-rhamnose and 
the inability to assimilate L-sorbose.

Typus: USA, Louisiana, Florida Parishes Region, East Baton 
Rouge Parish, Baton Rouge, Louisiana State University campus, 
30.409093N, 91.176428W, 1 Nov. 2011, S. Albu, surface of 
Dryopteris erythrosora leaf (Polypodiales, Dryopteridaceae), 
SA716 (dried inert material at PUL holotype), referred to as 
Rhodotorula marina 3 in Albu (2012), ex-type culture at CBS 
(CBS 14057), GenBank accession nos. KJ701218 (SSU), KJ701216 
(ITS), KJ701217 (LSU).

Description: Colonies on YMA butyrous, smooth, with entire 
margins, shiny, salmon pink to red (culture SA42 oac617 on YMA 
but oac618 on CMA; culture SA716 oac619 on YMA and CMA). 
Growth at 20‒25 °C (optimal) and at 30 °C (variable); no growth 
at 35 °C. Yeast cells after five days in YM broth globose to ovoid, 
3‒5 × 4‒8 μm (av. 3.8 × 5.5 μm), with length/width ratio of 1‒2.3 
(av. 1.5); polar budding from a narrow base, generally 1–2 buds 
per cell; ballistosporic. Fermentation ability absent. Carbon 
compounds assimilated: D-cellobiose, gentiobiose, melezitose, 
sucrose, trehalose, D-glucose, methyl-β-D-glucoside, arbutin, 
D-mannitol, D-sorbitol, adonitol, D-arabitol, ribitol, glycerol, 
D-arabinose, L-arabinose, and D-xylose. Variable growth on 
maltotriose, palatinose, turanose, D-psicose, and L-rhamnose. 
No growth on maltose, melibiose, stachylose, D-glucosamine, 
L-sorbose, and erythritol. Nitrogen compounds assimilated: 
L-lysine and D-tryptophan. Additional compounds assimilated: 
fumaric acid, L-malic acid, bromosuccinic acid, L-glutamic acid, 
and D-gluconic acid. Osmotic stress: no growth in the presence 
of 10  % NaCl or 50  % glucose. No pseudohyphae or hyphae 
observed. Sexual morph unknown. 

Additional material examined: USA, Louisiana, Rapides Parish, Lena, 
Kisatchie National Forest, in the vicinity of 31.583217N, 92.544855W, 
9 Oct. 2010, S. Albu, decaying wood, SA42, culture at CBS (CBS 14084), 
GenBank accession nos. KJ701215 (SSU), KJ701213 (ITS), KJ701214 
(LSU). 

Habitat and distribution: On leaf surfaces in North America 
(USA) and South America (Brazil) and on decaying wood in North 
America (USA).

Fig. 2. Colony and cell morphology of Symmetrospora species on 
YMA (left panels) and YM broth (right panels): A. Symmetrospora 
clarorosea strain SA308. B. Symmetrospora oryzicola strain MCA 
4496. C–D. Symmetrospora pseudomarina strains SA42 (C) and SA716 
(D, ex-type), showing the variation in colony color between the two 
strains. E. Symmetrospora suhii strain BG 02-5-27-3-2-2 (ex-type). 
Scale bars = 1 cm in culture images (left panels), 10 μm in cell images 
(right panels).
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Notes: One strain for which ITS and LSU sequences have been 
published (T.S. Leite et al. unpubl. data) is conspecific with 
S. pseudomarina. This strain, accessioned as S. marina, was 
isolated from Coffea arabica var. Catucaí Amarel (Gentianales, 
Rubiaceae) in Brazil (details in Table 3). Symmetrospora 
pseudomarina is distinguished from sister species S. marina 
by several characteristics: rDNA sequence data (Fig. 1), habitat 
(marine in S. marina versus phylloplane in S. pseudomarina), 
assimilation profiles (Atkin et al. 1970, Sampaio 2011), and colony 
color (pink in S. marina versus variable in S. pseudomarina). 

Symmetrospora suhii Toome & Aime, sp. nov. MycoBank 
MB809699. Fig. 2E.

Etymology: Named after Dr. Sung-Oui Suh, scientist at the 
American Type Culture Collection, who isolated and partially 
characterized the ex-type strain of this species.

Diagnosis: LSU shares 98.67 % identity with ex-type sequence of 
S. marina (8 nt different), 98.47 % with ex-type sequence of S. 
vermiculata (9 nt different), and 98.43 % with ex-type sequence 
of S. pseudomarina (9 nt different); ITS shares 95.18 % identity 
with ex-type sequence of S. marina (28 nt different), 95.29  % 
with ex-type sequence of S. pseudomarina (27 nt different), and 
94.74 % with ex-type sequence of S. vermiculata (29 nt different). 
Different from S. vermiculata by the ability to assimilate maltose 
and the inability to assimilate L-sorbose. Different from S. marina 
by the ability to assimilate lactose, trehalose, and nitrate, and 
the inability to assimilate L-sorbose and L-rhamnose. Different 
from S. pseudomarina by the ability to assimilate maltose and 
the inability to assimilate L-rhamnose. 

Typus: USA, Louisiana, Florida Parishes Region, East Baton Rouge 
Parish, Baton Rouge, Rural Life Museum, 27 May 2002, S.-O. Suh, 
gut of staphylinid beetle (Coleoptera, Staphylinidae) collected 
from mushroom, BG 02-5-27-3-2-2 (dried inert material at 
PUL holotype), ex-type culture at CBS (CBS 14094), GenBank 
accession nos. AY520260 (SSU), KJ701206 (ITS), AY520389 (LSU). 

Description: Colonies on YMA butyrous, smooth, with entire 
margins, shiny or dull, occasionally elevated in the center, 
red-orange (oac649 on YMA but oac650 on CMA). Growth at 
20‒25 °C (optimal), and at 30 °C (weak); no growth at 35 °C. 
Yeast cells after 5 d in YM broth ellipsoid, 3‒4 × 4‒7 μm (av. 
3.7 × 5.4 μm), with length/width ratio of 1‒1.75 (av. 1.5); polar 

budding from a narrow base, occasionally more than one bud 
per cell; ballistosporic. Fermentation ability absent. Carbon 
compounds assimilated: gentiobiose, maltose, palatinose, 
sucrose, trehalose, maltitol, D-mannitol, D-sorbitol, adonitol, 
D-arabitol, glycerol, D-ribose, and D-xylose. No growth on 
L-rhamnose, L-sorbose, and erythritol. Nitrogen compounds 
assimilated: ethylamine, cadaverine, creatine, D-tryptophan, 
and nitrate (weak). Osmotic stress: no growth in the presence 
of 10  % NaCl or 50  % glucose. No pseudohyphae or hyphae 
observed. Sexual morph unknown. 

Habitat and distribution: In beetle gut in North America (USA); 
on leaf surfaces in South America (Brazil); in marine water in 
Asia (Taiwan, Thailand).

Notes: Four strains appear to be conspecific with S. suhii based 
on their published ITS and LSU rDNA sequences (Table 3). Their 
sequences were submitted to GenBank under different names. 
These strains are: DMKU 5-4 (from a sea sponge/marine water 
in Thailand, S. Limtong & C. Kaewkrajay unpubl. data); IMUFRJ 
52025 and IMUFRJ 52026 (from sugarcane leaves in Brazil, as S. 
aff. marina, J.R.A. Ribeiro unpubl. data); SM10 (in marine water 
in Taiwan, Chang et al. 2016).

Additional materials examined

Symmetrospora coprosmae (Hamam. & Nakase) Q.M. Wang et 
al., Stud. Mycol. 81: 175. 2015. 
Basionym: Bullera coprosmae Hamam. & Nakase, Antonie 
Leeuwenhoek 69: 281. 1996.

Materials examined: USA, Illinois, Cook County, Chicago, 18 May 2016, 
H. Urbina, surface of Lactuca sativa leaf (Asterales, Asteraceae), lettuce 
head no. L30, HU9256, GenBank accession nos. MN586904 (ITS), 
MN586902 (LSU), as S. cf. coprosmae; Indiana, Tippecanoe County, 
Wabash Township, West Lafayette, 40.455385N, 86.917498W, 5 May 
2016, H. Urbina, surface of Lactuca sativa leaf, lettuce head no. L13, 
HU9059, GenBank accession no. MN586903 (ITS), as S. cf. coprosmae; 
Louisiana, Orleans Parish, New Orleans, Audubon Park, 29.924645N, 
90.129245W, 13 Nov. 2010, S.L. Newerth, surface of Cyrtomium falcatum 
leaflet (Polypodiales, Dryopteridaceae), P 116, GenBank accession 
nos. KJ701204 (SSU), KJ701202 (ITS), KJ701203 (LSU); Michigan, Emet 
County, Cross Village Township, 45.645097N, 85.039827W, 1 Sep. 2013, 
M. Toome-Heller, surface of Salix sp. leaf infected with Melampsora 
sp. (Pucciniales, Melampsoraceae), MT 262, GenBank accession 

Table 3. Additional strains downloaded from NCBI GenBank of Symmetrospora clarorosea sp. nov., S. pseudomarina sp. nov., and S. suhii sp. nov., 
with original identification in GenBank, accession numbers for ITS and LSU, BLAST results, and references.
Strain ID in GenBank Species Origin ITS ITS BLAST LSU LSU BLAST References

CBS 10200 Symmetrospora sp. Symmetrospora 
clarorosea

Portugal EU002879 98.91 % EU002821 99.65 % Inácio et al. (2009)

A31 Symmetrospora 
marina

Symmetrospora 
pseudomarina

Brazil KM246155 98.42 % KM246010 99.67 % T.S. Leite et al. unpubl. data

DMKU5-4 Symmetrospora sp. Symmetrospora 
suhii

Thailand LC216897 100 % LC216897 99.83 % S. Limtong & C. Kaewkrajay 
unpubl. data

IMUFRJ 52025 Symmetrospora aff. 
marina

Symmetrospora 
suhii

Brazil FN428894 99.33 % FN428894 99.84 % J.R.A. Ribeiro unpubl. data

IMUFRJ 52026 Symmetrospora aff. 
marina

Symmetrospora 
suhii

Brazil FN428925 99.48 % FN428925 99.67 % J.R.A. Ribeiro unpubl. data

SM10 Symmetrospora sp. Symmetrospora 
suhii

Taiwan FJ515188 100 % FJ515243 99.66 % Chang et al. (2016)
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nos. KJ701201 (SSU), KJ701199 (ITS), KJ701200 (LSU); Ibid., MT 264, 
GenBank accession no. KJ701205 (ITS). 

Symmetrospora symmetrica (F.Y. Bai & Q.M. Wang) Q.M. Wang 
et al., Stud. Mycol. 81: 176. 2015.
Basionym: Sporobolomyces symmetricus F.Y. Bai & Q.M. Wang, 
FEMS Yeast Res. 4: 584. 2004.

Materials examined: USA, Indiana, Tippecanoe County, Wabash Township, 
West Lafayette, Purdue University campus, 40.422300N, 86.917383W, 14 
Jun. 2013, S.L. Newerth, surface of Pinus nigra leaf (Pinales, Pinaceae), P 
118, culture at CBS (CBS 14058), GenBank accession nos. KJ701212 (SSU), 
KJ701210 (ITS), KJ701211 (LSU); Louisiana, Florida Parishes Region, East 
Baton Rouge Parish, Baton Rouge, Louisiana State University campus, 
30.411000N, 91.177300W, 11 Nov. 2010, S. Albu, indoor air contaminant, 
SA107, culture at CBS (CBS 14059), GenBank accession nos. KJ701209 
(SSU), KJ701207 (ITS), KJ701208 (LSU).

DISCUSSION

The asexual red-yeast genera Sporobolomyces and Rhodotorula 
are polyphyletic (e.g., Nakase et al. 1993, Fell et al. 2000, 
Hamamoto & Nakase 2000, Aime et al. 2006, Boekhout et 
al. 2011, Wang et al. 2015a). Wang et al. (2015b) provided a 
taxonomic infrastructure for the gracilis/marina clade of the 
Cystobasidiomycetes and introduced the genus Symmetrospora 
with six species. Even though Sporobolomyces oryzicola was part 
of the maximally supported Symmetrospora clade in their LSU 
rDNA phylogenetic reconstruction, the authors did not introduce 
the new combination. In our three-locus phylogeny, S. oryzicola 
was maximally supported as a sister species of S. coprosmae. 
Hence, we formally include it in the genus Symmetrospora.

This study reveals that Symmetrospora is more diverse 
and more broadly distributed than currently recognized. Our 
opportunistic collecting, mostly from university campuses, 
increased the number of known species in the group by two thirds 
and expanded known geographic ranges for previously described 
species. Our records of S. coprosmae and S. symmetrica are the 
first ones for the USA, and our strains of S. oryzicola represent 
the first report of this species outside Japan. Overall, we present 
the first reports of any species in this genus for North America. 
We also consider sequences from strains previously isolated by 
other researchers in Table 3, which represent additional isolates 
of the species described here. These isolates have identical or 
near-identical ITS and/or LSU sequences to our type strains. 
By considering these isolates, we were able to reveal broader 
occurrences of the new species. For example, we collected S. suhii 
from Louisiana, USA, but sequence data from GenBank revealed 
that this species is likely more broadly distributed – with isolates 
from South America and Asia (Chang et al. 2016, S. Limtong & C. 
Kaewkrajay unpubl. data, J.R.A. Ribeiro unpubl. data).

In addition to expanding both the number of species in the 
genus and distributional ranges, our study also reveals a diverse 
array of habitats for Symmetrospora species. Whereas most 
species were isolated from the phylloplane, several strains were 
from the air, marine water, the beetle gut, and a sea sponge. This 
is in addition to previous work, which reported the isolation of a 
strain of S. symmetrica from Pleurotus eryngii, causing red spot 
disease (Xu et al. 2014). When isolated from the phylloplane, 
no preference for host plants can be detected. As an example, 
S. clarorosea was isolated from leaves of two unrelated fern 

species and two unrelated species of eudicots. We also found 
more than one species of yeast from a single host plant; strains of 
both newly described species S. clarororea and S. pseudomarina 
were isolated from leaf surfaces of D. eyrthrosora.

We confirm previous findings that culture-based sampling 
from the surface of leaves, referred to as the phylloplane, 
effortlessly results in the discovery of undescribed species. 
During an ongoing study of the fungal microbiome of romaine 
lettuce, we sequenced the ITS region of 330 strains, resulting in 
63 species of which 11 are undescribed (Urbina & Aime 2018, D. 
Haelewaters & M.C. Aime, unpubl. data). Two of these strains 
isolated from romaine lettuce leaves, HU9059 and HU9256, were 
identified as S. cf. coprosmae and are reported here. Whereas a 
number of these new species have been described over the last 
years (e.g., Inácio et al. 2002, 2005, Péter et al. 2007, Golubev & 
Scorzetti 2010, Toome et al. 2013, Wang et al. 2016, Limtong et 
al. 2017), many remain undescribed even though they have been 
recognized as new. One of such examples was a two-year survey 
of phylloplane yeasts at Nature Park of Arrábida in Portugal 
that resulted in over 850 isolates representing 70 species, half 
of which may be new to science (Inácio et al. 2002).  Likewise, 
a survey targeting phylloplane-colonizing basidiomycete yeasts 
reported 29 potential new species from a collection of 463 
isolates, including the type strain of S. pseudomarina (Albu 
2012). It seems that the extent of species diversity in the leaf 
habitat is not fully understood yet, highlighting the importance 
of further studies to capture the hidden fungal biodiversity. 
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