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Abstract

Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza
viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined
antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the
antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPETM bioinformatics analysis
of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity
of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II
alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for
the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for
each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A
single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential
T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates
from 1968–2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of
predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding
sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in
the antigenic drift of influenza A H3N2.
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Introduction

Influenza viruses cause a major burden of disease, and spread

rapidly throughout global populations. Many factors contribute to

the infectivity and transmissibility of influenza viruses. Among these

are the presence of specific sialic acid receptors [1], the enzyme

cleavage sites in hemagglutinin [2], peptide transporter processing

[3], innate immune defenses [4], and the presence of neutralizing

antibody [5]. The high degree of variability of the hemagglutinin

protein subunit (HA1), to which neutralizing antibody binds, is well

known. Antigenic drift allowing escape from neutralizing antibodies

is an important feature of the continued transmission and survival of

seasonal influenza viruses in populations from year to year [6,7].

This makes the task of selecting vaccines an ongoing challenge [8].

Antigenic drift is attributed to selection under pressure of an

immune response and has been measured primarily by escape

from the neutralizing effect of antibodies [7]. Antigenic drift has

been studied in particular detail for influenza A H3N2, which

emerged first in epidemic form in 1968. Multiple specific amino

acid changes in the HA1 protein associated with antigenic drift

have been identified [9–14]. Smith et al [9] have mapped the effect

of progressive genetic mutations leading to antigenic change, as

detected by hemagglutination inhibition with polyclonal ferret

antisera. This study showed well-defined antigenic clusters of

influenza A H3N2 virus isolates emerging chronologically.

Antibody alone can neutralize influenza virus infectivity and

prevent infection [15,16]. In primary infection the antibody

response is the result of both B-cell and T–cell stimulation and is

polyclonal. The spectrum of antibodies present in a polyclonal

response is a function of which B-cells and T-helper cells are

stimulated. The neutralizing antibody response on re-exposure is

the combination of neutralization by residual circulating antibody,

anamnestic stimulation of a subset of both B-memory cells and T-

memory cells, as well as de novo antibody formation. Unlike the

molecular mechanism of neutralization of virus by antibody, the

pathways of antibody production which involve function of T-cells

are dependent on MHC binding of peptides and hence vary with

host MHC allelic diversity. CD8+ cytotoxic T-cells (CTL) have

been shown to have a role in limiting the duration of virus

shedding and in eliminating virus infected cells [17,18].

CD4+ cells are not effective at achieving viral clearance in the

absence of B-cells; a T-dependent antibody response is a key

component of the CD4+ role [16,19]. CD4+ T-cell responses are

also essential for a fully developed CD8+ T-cell response to

influenza [20].

Screening studies using synthetic peptide probes have identified

CD4+ T-cell epitopes broadly distributed in the HA and

neuraminidase [21,22]. Importantly, Barnett et al in 1989 [23]

showed the common location of CD4+ epitopes and B-cell

epitopes, primarily in the variable regions of HA1 in H3N2
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influenza, and pointed to the possibility of a role of MHC

polymorphism in antigenic drift. CD8+ CTL epitopes have been

identified in most influenza A proteins [24]. Single amino acid

sequence differences in H3N2 nucleoprotein peptides binding to

MHC-I molecules have been shown experimentally to allow

escape from recognition by cytotoxic lymphocytes [25–28].

In understanding the role of antigen presenting cells (APC) in

influenza, considerable emphasis has been placed on MHC-I

CD8+ epitopes [29–31]. The role of B-cells as APC in influenza

has received less attention. While all APC within the lung were

able to stimulate MHC-I restricted responses, B-cells were very

inefficient compared to macrophages or dendritic cells in this role

[30]. The inability to infect B-cells with influenza, attributed to the

absence of NF-kB signaling [32], means they may not be exposed

to influenza core proteins and so may have a different APC

function for influenza than do dendritic cells and macrophages.

Given the role of T-helper cells in determining the antibody

spectrum, and CTLs in curtailing virus shedding, understanding

the influence of host immunogenetics is a key part of understand-

ing the immunological pressure bringing about antigenic drift.

Experimental studies of T-cell epitopes necessarily take a

reductionist approach, in which individual interactions of single

MHC alleles and specific virus peptides are examined.

In this study we use a bioinformatics approach to examine the

interface of influenza virus diversity with host immunogenetics at a

population level and to address the consequent variations in

immunologic selection pressure.

We recently described a method, termed uTopeTM analysis, for

whole proteome mapping of predicted binding to MHC-I and

MHC-II molecules. In this approach binding affinity is represent-

ed by the three dominant physical property principal components

of each amino acid making up each peptide 9-mer or 15-mer,

respectively [33,34]. This method offers significant advantages

over previous bioinformatics approaches, which depend on

position specific matrices [35]. In the present study, we applied

uTOPETM analysis to ask how patterns of antigenic drift in

influenza H3N2, as monitored by antibody binding over time,

compared to the patterns of predicted T-cell epitopes reflected in

predicted MHC binding within the HA1 of influenza H3N2. We

examined the interaction of protein sequences for the HA1 of 447

H3N2 virus isolates with 35 MHC-I HLAs and 14 MHC-II alleles.

We compared clusters based on predicted MHC binding patterns

with those described by Smith et al [9]. We further examined the

impact of individual changes in HA1 amino acid sequences

between virus isolates representative of different antigenic clusters

over time to understand the changes in MHC binding. By

analyzing all possible MHC-peptide interactions within HA1 of

several hundred virus isolates and for a large number of MHC

alleles, sufficient data density is achieved to allow patterns of MHC

binding to be appreciated and analyzed. We examined how host

immunogenetics contributes to determination of the antibody

spectrum and hence the immune pressure bringing about

antigenic drift. We conclude that MHC diversity likely has a

major determinant role in the antigenic drift of influenza A H3N2.

Methods

Database and Statistical Software
All mathematical operations, database operations, and statistical

analysis were carried out with JMPH version 9.0 or JMP

GenomicsH version 5/SAS 9.2 using the JMPH scripting language

[36]. The MegAlignH application within LaserGeneH v8 was used

for sequence alignments. Much of the work involved populations

of numerical data standardized to zero mean and unit variance.

The term s is used throughout to describe the numerical data in

standard deviation units.

Workflow
Figure 1 outlines the sequence of analytical steps applied. In

particular it differentiates between those analyses conducted on all

influenza proteins (validation), all H3N2 HA1 proteins (cluster

analysis), and on a representative subset of H3N2 HA1 (detailed

analysis on the impact of mutations).

Viruses and Curation of Sequences
A set of approximately 156,000 influenza A proteins was

assembled from the Genbank Influenza database in December

2010. HA1 proteins for all H3N2 isolates from 1968 to present

Figure 1. Workflow of bioinformatics analysis.
doi:10.1371/journal.pone.0026711.g001
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were extracted. Some of the H3N2 viruses used by Smith et al [9]

were not in the primary influenza database; these were located by

Genbank searches and consolidated with the primary collection.

Several quality control procedures were applied to the dataset

prior to use. A small number of duplicate sequences with the same

Virus ID but different Genbank accession numbers were removed.

All amino acid position assignments used in this paper are based

on the N-terminal methionine and include the signal peptide. As

the clustering algorithms used are intolerant of missing amino

acids, sequences in the database without a signal peptide were

edited to add a consensus signal peptide. Sequence submitters

have not used uniform C-termini for HA1; we terminated all HA1

at position 345 prior to cluster analysis. One sequence, A/

Moscow/10/1999(H3N2)_49339009, had several amino acid

deletions marked and was removed.

The resulting virus dataset comprised 260 HA1 used by Smith et

al [9] which we designated by a prefix of the Smith cluster

designation (HK68, EN72 etc.). An additional 187 H3N2 HA1

proteins from isolates dated 1968–2002 were included and given

the prefix of the year of the isolate and ‘‘NON’’ (NON1998,

NON2001 etc.).

For each Smith cluster a single representative virus isolate was

selected for further analysis. The isolates selected are shown in

Table 1. These were chosen from those which, on initial clustering

analysis based on MHC binding patterns, were located in the

mainstream of the Smith cluster groups. As our list only comprised

two isolates from TX77 and in many instances these isolates

clustered with EN72, no TX77 representative was selected for

further comparisons.

Epitope prediction methods
The uTOPETM methods used to predict MHC binding affinity

using a neural network prediction scheme based on amino acid

physical property principal components have been described in

detail elsewhere [33,34]. Briefly, for MHC-II the protein was

broken down into 15-mer peptides each offset by 1 amino acid. The

peptide 15-mers were converted into vectors of principal compo-

nents wherein each amino acid in a 15-mer is replaced by three z-

scale descriptors. {z1(aa1),z2(aa1),z3(aa1)}, {z1(aa2),z2(aa2),z3(aa2)},

… {z1(aa15),z2(aa15),z3(aa15} that are effectively physical property

proxy variables. With these descriptors, ensembles of neural

network prediction equation sets were developed using publicly

available datasets of peptide-MHC binding data wherein the

inhibitory concentration 50% (ic50) has been catalogued as a

measure of binding affinity of the peptides for a number of different

HLAs [37,38]. Because the ic50 data have a numerical range in

excess of 10,000-fold, they were natural logarithm transformed to

give the data better distributional properties for predictions, and

subsequent statistical analysis used the log normal inhibitory

concentration50 (ln(ic50)). For each of the 15-mers predicted ln(ic50)

values were computed for fourteen different human MHC-II alleles:

DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*04:04,

DRB1*04:05, DRB1*07:01, DRB1*08:02, DRB1*09:01,

DRB1*11:01, DRB1*13:02, DRB1*15:01, DRB3*01:01,

DRB4*01:01, DRB5*01:01. The peptide data was indexed to the

N-terminal amino acid; thus each prediction corresponds to the 15-

amino acid peptide downstream from the index position.

An identical process was then followed with all 9-mer peptides

for prediction of binding to 35 MHC-I alleles: A*01:01, A*02:01,

A*02:02, A*02:03, A*02:06, A*03:01, A*11:01, A*23:01, A*24:02,

A*24:03, A*26:01, A*29:02, A*30:01, A*30:02, A*31:01, A*33:01,

A*68:01, A*68:02, A*69:01, B*07:02, B*08:01, B*15:01, B*18:01,

B*27:05, B*35:01, B*40:01, B*40:02, B*44:02, B*44:03, B*45:01,

B*51:01, B*53:01, B*54:01, B*57:01, B*58:01.

Each of the alleles has a different characteristic mean and

standard deviation of binding affinity to 9-mer and 15-mer peptides.

Thus for statistical comparisons involving multiple HLA alleles, the

predicted ln(ic50) values were standardized to zero mean and unit

standard deviation on a within-protein basis. For the virus HA1

sequences the standardization of the affinity of the HLA binding

predictions was done on a within-virus basis. For the validation test

set, the grand mean and grand standard deviation of each HLA

across all 10 influenza proteins from multiple influenza viruses

represented in the dataset (124 different proteins in all), were used to

compute the standardized binding affinity of the isolated peptides.

Validation Dataset and Approach
To evaluate the validity of the epitope prediction method in the

context of influenza virus, a dataset of T-cell epitopes experimen-

tally defined by others in each of the proteins of influenza A viruses

was prepared from records at the Immune Epitope Database

(IEDB, iedb.org) and by reference to the source publications. From

the available experimental data, a set of 460 non-redundant

experimentally defined unique peptides was assembled. This

included 296 experimentally determined epitope positive and

164 negative. Epitopes had been defined since 2000 using

chromium release, ELISPOT, or MHC tetramer binding and

the HLA restriction was known. Details of the selection process are

included in Table S1, which includes a table of the epitopes used.

Using a set of 156,000 influenza A proteins, representing all

influenza proteins, we generated a master array of the predicted

binding affinity to HLA alleles for all 9-mer and 15-mer peptides

for each protein. Those corresponding to the experimentally

determined epitopes were compared. For this purpose the

recursive partitioning platform of JMP using a 5 K-fold cross-

validation was used. The area under the receiver operator

characteristic curve (AROC) was used as a measure of the

sensitivity and accuracy of the predictions. A confusion matrix was

generated showing agreement/ disagreement (true positives, false

positives, true negatives, false negatives) with the 460 experimental

measurements. We have previously described the use of

uTOPETM analysis for B-cell epitope prediction [34]. This

approach was applied to the cluster representative isolates.

MHC binding predictions and analysis and clustering
methods

All subsequent analyses were derived from a subset of the

master array of individual MHC-peptide binding affinities of all

Table 1. Influenza H3N2 virus isolates selected as cluster
representatives.

Cluster Representative virus isolate GI Accession number for HA

HK68 Bilthoven/16190/68 49339049

EN72 England/42/1972 6470275

VI75 Bilthoven/1761/76 49338983

BK79 Netherlands/209/80 49339065

SI87 Victoria/7/87 2275517

BE89 Madrid/G12/91 49339129

BE92 Finland/247/1992 49339247

WU95 Wuhan/359/1995 49339351

SY97 Netherlands/427/98 49339385

FU02 Netherlands/22/03 49339039

doi:10.1371/journal.pone.0026711.t001
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influenza proteins described above, initially for 447 H3 HA1 and

then for a representative subset of 10 HA1 proteins.

Cluster analysis was conducted to examine patterns of similarity

and dissimilarity in MHC binding between virus isolates. For

clustering of the virus protein sequences, the amino acid sequence

of each isolate protein was represented by vectors of predicted

ln(ic50) data sequentially indexed by 1 amino acid as described

above. Two forms of data were used depending on the application.

For certain analyses the ln(ic50) data were standardized by

subtraction of the mean and division by the standard deviation

to produce a uniform scale with a mean of zero and standard

deviation of one, a process common in statistical analysis. In other

analyses non-standardized ln(ic50) data were used. Clustering was

done using the hierarchical and K-means clustering platforms of

JMPH. These platforms have a wide range of tools to assess the

quality of the analysis, and these were used as appropriate. The K-

means platform was used initially to obtain an estimate of the

optimal number of clusters within the dataset for each of the HLA

alleles [39]. Using the 447 viruses in the data set with each of 35

MHC-I and 14 MHC-II alleles, the optimal number of clusters

ranged from 17 to 23. As a compromise, the larger of these

numbers was used for all subsequent work with hierarchical

clustering where the number of clusters of interest can be manually

specified for graphical and textual output. To order the clusters in

the hierarchical clustering process, principal component analysis

was first carried out on the dataset, and the order of the clusters

was based on the first principal component of the dataset under

consideration. Clusters of HA for the 447 viruses based on MHC

binding were assembled; initially one by one for each HLA to

compare to the Smith clusters. We then prepared hierarchical

arrays which compared binding for each HLA to the HA1 of

selected representatives of each cluster.

Permuted population binding patterns
For certain analyses and graphical representations of MHC

binding by the population, the permuted minimum algorithm

described previously was used [34]. This is based on the concept

that within a heterozygous or homozygous individual, the HLA

allele providing the highest binding affinity to any specific peptide

will prevail at each MHC locus. All possible heterozygous and

homozygous HLA pair combinations at each allele were

determined and the best affinity of the two selected. These values

were then averaged across all possible combinatorial pairs of alleles

available in the prediction data set to arrive at a prediction for

each peptide for a metapopulation. Hence, for N = 14 MHC-II,

105 combinations are used (((N22N)/2)+N). The MHC binding

affinity to a peptide can change over several orders of magnitude

for a single amino acid index position increment along the protein.

As an MHC can bind in any of several different indexing positions,

if one of the indexing positions of either of the heterozygous alleles

provides for a high binding affinity then the peptide will effectively

be trapped in that location. Thus, to compute the permuted

phenotype, the highest binding affinity for each allelic pair within

a narrow averaging window (62–64 amino acids) around the

index amino acid position was recorded and then averaged over all

potential combinatorial pairs in a population. For plotting the

results we applied the minimal distortion polynomial filter of

Savitsky and Golay [40].

Changes in binding affinity
We developed algorithms and statistical metrics that enabled

quantifying and visualizing changes in individual peptide-MHC

binding arising from the amino acid changes between each pair of

cluster-representative viruses stepwise in chronological order

(HK68 to EN72…HK68 to FU02). Changes in predicted binding

of a peptide, indexed to the N-terminus amino acid of the 9-mer or

15-mer, were scored on a 5-point basis as shown in Table 2. The

sign and magnitude of the scoring parameter indicate the direction

and size of the change in ln(ic50) value; hence a negative sign

indicates a shift toward higher affinity. A 22 therefore indicates a

large change in affinity with the result being a high affinity binder.

This allowed us to analyze (1) how many amino acid mutations

were needed to bring about a significant change in MHC binding,

(2) to determine the aggregate of changes in the HA1 protein over

time, and (3) to plot where within HA1 mutations leading to gain

or loss of high affinity MHC binding were occurring.

Results

Validation of analysis
A meta-analysis was carried out using experimentally defined

epitopes from all influenza proteins compared to the MHC

affinities predicted by the in silico approach. Results are shown in

Figure 2 for T-cell epitopes. There are caveats to interpretation of

Table 2. Classification of changes in predicted peptide HLA binding affinity due to amino acid changes.

Classification High affinity binder status Binding affinity before and after
Description of amino acid change
impact

22 New .21s to #21s Large increase in affinity (.1s change) to
surpass threshold and become a new high
binder

21 Retained #21s to #21s Already a high binder, further affinity
increase

0 No Change #21s to #21s High affinity, no change

+1 Retained #21s to #21s A high binder, affinity loss but remains above
threshold as a high binder

+2 Lost #21s to . = 0 High affinity initially; large decrease to below
high binder threshold

The impact on binding affinity associated with amino acid changes arising in cluster transition was determined. Based on impact of the mutations on predicted binding
affinity a classification code was assigned to each peptide for each of the affected MHC molecules. The threshold of 21s was selected based on the outcome of
recursive partitioning (Figure S1). The peptides were then assigned to different one of five different classifications according to whether high affinity binding was
gained, lost or retained above the threshold. Only high binders were considered, so some peptides that did not surpass the threshold were not included in the analysis
of the particular transition.
doi:10.1371/journal.pone.0026711.t002
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this type of analysis because the source of the data is the result of

several experimental techniques, each with different endpoints and

carried out by numerous laboratories without inter-laboratory

validation. An extensive international collaboration effort for

assessment of T-cell epitopes in Type I diabetes [41] has shown

cross-laboratory standardization to be critical to producing valid

T-cell epitope results. Nevertheless, by pooling epitopes charac-

terized over several years by many laboratories, we obtained a

much broader comparison than would have been possible within

our own laboratory. Experimentalists tend to focus on testing and

reporting on epitope peptides that are positive. This characteristic

has three consequences that potentially affect the statistical

analysis: the overall mean of the dataset is less than the mean of

the proteins from which the epitopes were selected, the number of

positives documented experimentally is much larger than the

negatives, and the same epitope is tested experimentally numerous

times by different laboratories. With these points in mind, we

carried out a comparison between our in silico predictions and the

assay results combining all HLAs, peptides, and experimental

methods into a single consolidated dataset after having eliminated

redundant measurements on the same epitope. Figure S1, provides

the same analysis with redundant measurements included. For the

combined, non-redundant dataset, the AROC across all experi-

mental methods (Cr release, ELISPOT, and MHC tetramers) was

0.89 with an optimal cutpoint of 20.53s (below the overall mean)

on a standardized binding scale for selection of a positive. Thus, a

binding affinity of less than 20.53s can be interpreted as being a

prediction metric for a positive T-cell response. This does not

mean that binding predictions .20.53s might not be associated

with a positive cellular response, but they cannot be reliably

predicted as such by our neural net method. At this cutpoint, our

predictions for the 460 experimentally characterized epitope were

in agreement for 382 (83%) of the epitopes. For the remaining

17%, we cannot be sure whether our prediction or the

experimental determination was the correct one; we note that in

some cases experimental determination by two different methods

also gave conflicting outcomes. Between the cutpoint and the

overall mean of the dataset there is considerable overlap between

the predictions for the positive and negative group. Both negative

and positive categories span both sides of the mean with the

negatives averaging about +0.4 s and the positives average about

21.4 s. As the binding data was normally distributed, we chose to

use a somewhat more conservative cut point of 21s of

standardized binding data in the remainder of the study. In a

recent study by Greenbaum et al [38] the 20th percentile was

chosen as a cutpoint for inclusion of data for a clustering analysis

of MHC-II binding to a dataset of peptides, quite close to the 21s
value used here. A more detailed discussion and an analysis

showing the effects of epitope selection bias and measurement

redundancy is provided in Figure S1. The comparison of B-cell

epitope predictions and curated epitope characterizations, less

central to this study, are shown in Figure S2.

Observations of binding patterns in the master array
As an illustration of the binding prediction array output,

Figure 3 shows binding affinity for two HLAs, DRB1*04:01 and

A*02:01, for a small subset of sequential peptides from two virus

isolates (HK68 A/Bilthoven/16190/68 and EN72 A/England/

42/1972), as well as the difference in binding affinity between the

isolates at each position. The binding affinity varies greatly with a

single amino acid displacement along the protein. As shown in

Figure 3 for the HK68 isolate, a DRB1*04:01 MHC-II binding a

Figure 2. Relationship between MHC binding prediction and curated epitope characterizations. Panel A. The area under the ROC curve
of 0.88 reflects the categorization reliability at the optimum cut-point of 20.53s chosen by the recursive categorization process. Panel B. The chart
shows that the mean of the positive class was approximately 21.5s (center of the diamond). The mean of the negative class is approximately +0.4s.
The ends of the boxes are the 25th and 75th percentile and the horizontal line in the box is the median. The ends of the lines are the 5th and 95th
percentiles of the respective distributions. Many points are plotted on top of each other but the histograms on the right shows the data distribution.
A cut-point of 20.53s was chosen by the recursive categorization process (dotted line). The cutpoint at 21s (solid line) is a more rigorous threshold
which was used as a readily understandable criterion throughout the study. Panel C. The confusion matrix documents agreement and disagreement
between predictive and experimental methods.
doi:10.1371/journal.pone.0026711.g002
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15-mer with N terminus at 160 (ln(ic50) = +1.09 s) would have a

very different outcome from one which binds one or two amino

acids downstream (ln(ic50) = 21.16 s and 23.16 s). Likewise,

single amino acid substitutions can result in a significant change in

predicted MHC binding affinity (see right hand side of each panel

in Figure 3). In assessing the effect of an amino acid mutation on

MHC binding to its impact on antibody binding, it is important to

recognize the multiple registers of MHC binding that may be

affected by a single amino acid. Although conceptualized and

treated as specific 15-mers with a core 9-mer binding domain, the

large entropy contribution implies a more dynamic association of

the HLA with the peptide [41], where the peptide might adopt

several energetically equivalent binding registers. Further, the

effect of an amino acid change is not necessarily, or only, when it

occurs at the index position of a peptide, but rather may extend

upstream to all 15-mer or 9-mer registers in which it participates.

For example, substitution of glycine by aspartate at position 160

between the HK68 isolate and the EN72 isolate brings about

changes of .1s in binding affinity in multiple registers upstream

for both the alleles shown.

Cluster analysis of H3N2 HA1 based on predicted MHC
binding patterns over time

The array of predicted binding affinities of 345 successive

peptides for each of the 447 HA1 was clustered, based on the

patterns of binding affinity for each one of the 35 MHC-I and 14

MHC-II alleles. These are very large arrays comprising over

154,000 datapoints. Dendrograms were drawn of the clustering

patterns for each MHC allele. Two representative dendrograms

are shown in Figures S3 and S4, these are for the widely studied

HLAs A*02:01 and DRB1*04:01. These large figures can be

zoomed to allow the list of viruses to be reviewed. Observation of

the dendrograms shows that MHC-I binding patterns were more

conserved than MHC-II binding patterns. Low binding affinity

regions of the protein remained unchanged, in some cases through

34 years. Based on the K-means clustering algorithm the 447

viruses were grouped into 23 clusters. Although in the present

analysis there are more clusters than were found by Smith et al [9],

this difference is largely due to additional metrics used in the

present study. Despite the larger number, clustering based on

MHC binding closely mirrors that identified by Smith et al based

on antibody hemagglutination inhibition studies and shows clearly

defined clusters following a chronological progression.

To facilitate comparisons between HLA alleles of the clustering

patterns seen in the large dendrograms, cell plots of contingency

tables were assembled. For each HLA allele these plots count the

number of isolates in each cluster. Representative examples are

shown in Figure 4. Isolates from each Smith cluster group are

present in 1–4 contiguous clusters based on MHC binding. A few

exceptions are noted. For example, in the case of A*02:01, the Smith

BE92 cluster, which comprises 57 virus isolates, spans 7 clusters.

Three WU95 isolates (A/Madrid/G252/93(H3N2))_49339273, A/

Netherlands/399/93(H3N2))_49339305, and A/Netherlands/372/

93(H3N2))_49339297 ) cluster with BE92; notably these are isolates

which Smith found to be interdigitated with BE92.

Each HLA allele generates a slightly different contingency plot

indicative of different clustering patterns. However, the plot

patterns fall into three related groups within each of MHC-I A,

MHC-I B and DRB1, examples of which are in Figure 4. For each

HLA, isolates comprising each Smith cluster tend to locate

together, but in a different relative order. NON isolates (the

contemporaneous virus set not studied by Smith et al) are arrayed

below the Smith cluster isolates in each cell plot and form an

approximately parallel pattern by date order for each HLA.

Figure 3. Impact of single amino acid changes on MHC-I and MHC-II binding. The examples of MHC-I A*02:01 and DRB1*04:01 binding to
peptides in a section of HA1 from two isolates representing clusters HK68 and EN72 (isolates as shown in Table 1) show (a) that a single amino acid
displacement can significantly impact predicted binding affinity and (b) that a single amino acid change impacts predicted MHC binding across
multiple registers. For both A*02:01 and DRB1*04:01 the predicted binding affinity of the peptide starting at index position 160 is significantly
different from that in either of the two positions starting at 161 or 162. A change in the amino acid at position 160 may contribute to the appearance
of a new MHC-1 A*02:01 high affinity binding site with index position 152; it may also contribute to new high affinity MHC-II DRB1*04:01 binding
peptides with index positions at 160, 157, 154, and 149 and the loss of a high affinity binding peptide with index at position 147. Standardized
binding affinity is shown as standard deviations below the mean (s). Position numbering is from the signal peptide N terminus.
doi:10.1371/journal.pone.0026711.g003
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Selection of cluster representative viruses
In light of the observation that each HLA generated a different

cluster pattern, we selected a single representative virus from each

of ten Smith clusters and examined their interaction with the

different MHC alleles more closely. These viruses are listed in

Table 1.

Hierarchical clustering shows diverse binding by HLA
The peptide binding affinity arrays for all peptides in the 10

representative HA1 were clustered based on similarity of the

binding affinity patterns for each HLA. Within-virus standardiza-

tion of each HLA allele prediction was done using the Johnson Sb

distribution, which is most appropriate for measurements with

experimental data having upper and lower bounds [42]. The

output for one virus (HK68 A/Bilthoven/16190/68) is shown in

Figure 5. Arrays for the other nine viruses are in Figure S5. In

these plots the peptide binding patterns for all HLAs can be

compared.

In general, more variation in binding affinity pattern is seen

between MHC-II alleles than between MHC-I alleles. It should be

Figure 4. Representative cell plot patterns of the clustering of virus isolates based on predicted MHC binding patterns of HA1
compared to clusters defined by antibody binding. Hierarchical clustering of affinity patterns in HA1 of 447 virus isolates was carried out for
each HLA as shown in Figure S3 and S4 using the Ward method. Each cluster was assigned a numerical ID from 1 to 23, shown in the X-axis. Cross-
tabulations were then prepared that tallied the cluster numerical ID with the clusters identified by Smith et al [9] and shown in the upper half of the
y-axis. The lower half of each plot shows the clustering of contemporaneous virus isolates that were not evaluated by Smith et al. arrayed against the
year of isolation in the y-axis. The color scale shows the count of viruses in each cell. Each HLA generated a similar pattern but with different counts.
Three broad types of pattern were noted and representative examples are shown here for MHC-I A and B and MHC-II DRB.
doi:10.1371/journal.pone.0026711.g004
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emphasized that in the convention we have adopted, the

coloration indicating affinity of binding the N-terminus of a 9-

mer or 15-mer. When the arrays for each of the virus isolates are

compared, the patterns across the protein are clearly visible but

they differ, sometimes greatly, between HLA alleles at any single

peptide. Marked differences in binding affinity can arise from a

single amino acid displacement (see Figure 3). In these plots it is

also apparent that certain regions of the molecule, for example

peptides initiating at amino acids 155–190 and 220–250, have a

much higher frequency of predicted high affinity binders (purple-

blue coloration). Other regions, for example amino acids 40–60,

have a preponderance of low affinity predictions (yellow–red).

When the ranking of HLA based on predicted MHC binding

pattern is compared between each of the ten representative

viruses, differences in rank order were noted. Figure 6 shows the

variation in mean and standard deviation of predictions between

HLA alleles. While some alleles were consistently high affinity

binders (A*30:02, B*57:01, DRB1*01:01) and some were

consistently low affinity binders (A*23:01, B*53:01,

DRB3*01:01), others ranked differently for each virus. Again

more variation in rank order and affinity was noted for MHC-II

alleles than MHC-I.

Permuted population binding patterns
The cluster analyses have considered each HLA allele in

isolation. However, in a population of individual hosts it is further

necessary to consider the way in which a heterozygote carrying

different combinations of alleles might respond. As described

previously [34], we have found that a relatively simple combina-

torial calculation for a heterozygous population captures some of

the qualitative patterns noted above by the clustering graphics. For

each of the ten representative viruses, graphical representations of

the MHC binding affinity for the permuted population are shown

in Figure 7. The regions with high and low binding for many

alleles, noted in the cluster graphics above clearly stand out in

these plots. The population plots bring together data for multiple

immunological characteristics (predicted MHC-I binding as the

red line, predicted MHC-II binding as the blue line, B-cell epitope

probability by orange lines) for a metapopulation. They identify

sequences which contain the highest probability, based on HLA

genotype-pairs, of MHC-I and MHC-II high binding affinity (10th

percentile of minimum trace shown in red and blue ribbons,

respectively) and high probability B-cell binding (orange ribbons

show 25th percentile Bayesian probability). We have shown that

this type of plot correlates closely with experimentally defined

epitopes in a very wide range of proteins [34]. Notably there is

overlap of many MHC-I and MHC-II high probability binding

sequences, and likewise overlap or proximity of MHC binding

regions to B-cell binding. Each of the lines in these graphs are the

running affinity averages of a very large number of combinatorial

binding data (105 HLA pairs for MHC-II and 630 pairs for MHC-

I). The range and pattern of changes of each of these averages is

very characteristic for each protein. When the ten viruses are

compared in Figure 7, subtle differences are seen in the trace of the

average MHC-I and MHC-II binding (red line and blue line,

respectively) over time. The plots clearly show minima (high

affinity MHC binding) in areas that have been identified as being

highly mutable and close to antibody binding sites [6,9,14] and

that are visible as qualitative patterns in the cluster graphics

(Figure 5). The orange shading marks predicted B-cell epitope

Figure 5. Hierarchical Cluster of predicted MHC-I and MHC-II binding to HA1 from a HK68 cluster representative isolate. Hierarchical
clustering of predicted binding of multiple MHC-I and MHC-II alleles to consecutive peptides in HA1 of Influenza A/Bilthoven/16190/68 was done by
the method of Ward using Johnson Sb distribution standardized binding data [42]. The Y-axis lists the MHC alleles. The X-axis shows the protein
amino acid positions N-C. Each pixel represents the 9-mer or 15-mer peptide which starts at that amino acid position. The binding data for each HLA
was first submitted to principal component analysis and the first principal component was used as an ordering variable. In each case clusters are
indicated by the color of the y-axis legend. Comparable plots of binding to HA1 of other cluster representative viruses are shown in Figure S5. The
color scale shows the binding affinity as ln(ic50). Purple-blue colors indicate strong binders and red-orange pixels are weak binders.
doi:10.1371/journal.pone.0026711.g005
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sequences. These are consistent with the antibody binding regions

mapped by Wiley at al [6]. Once adjusted for the 16 amino acid

signal peptide, Wiley’s Site A is at 138–162, Site B 171–213, Site C

66, 69–70, Site D 217–238, and Site E 276 and 278.

Gain and loss of high affinity binding sites between
cluster representatives

Based on the apparent coincidence between the areas of high

affinity binding predictions and high mutability, the temporal

changes in MHC binding over the entire HA1 molecule were

examined by comparing the transitions between representative

viruses.

Amino acid mutations affecting MHC binding
Figure 8 shows that predicted MHC-II binding affinity changes

and consequently epitope gain or loss occurred when 1 to 8

amino acid changes happened within a 15-mer peptide, however

most changes resulted from 1, 2 or 3 amino acids mutations. For

the MHC-II predictions it appears that the highest probability for

generating a new high affinity binder is either 2 or 3 simultaneous

mutations, whereas a single amino acid change can have

dramatic effects on MHC-I binding. A striking feature is that

simultaneous changes in several amino acids within either a 9-

mer or 15-mer can give rise to effectively quantum changes in

binding affinity. Thus a small number of simultaneous amino acid

mutations triggering a change in MHC-II binding affinity could

give rise to a change in the spectrum of epitopes presented to T-

helper cells. An example of the data set showing the changes is

provided in Table S2.

Cumulative change in MHC binding
We noted that there were regions of the HA1 molecule within

which relatively high (21s) binding of peptides was retained over

the entire period from 1968–2002. Other regions of the molecule

showed very rapid changes in HLA binding characteristics. We

therefore developed a system that enabled the visualization of

temporal changes in binding behavior for all HLAs over the entire

HA1 sequence over time. Figure 9 shows the aggregate change in

MHC binding peptides for all peptides in HA1 at each cluster

transition, as represented by the subset of ten viruses for all MHC-

I and MHC-II alleles (Figure 9a and 9b). Figure 9c shows the

aggregate changes for DRB1*04:01 as one example of the change

in a single allele. Figure S6 provides the corresponding plots for

other DRB alleles, each of which differs in the rate of change.

Using the cluster transition of HK68 to EN72 as an example,

during the ,4 year period the majority of the HLA binding

peptides were unchanged, but a few new high binders appeared

and a few were lost. Comparing the changes across 34 years from

HK68 to FU02 there is an accumulation of new high affinity

binders. Even after this time a few high affinity peptides (,21s)

are still retained, but most have been replaced. The patterns are

similar for each of the successive transitional pairings. While the

overall pattern is obvious, there are some HLAs in which

practically all of the high affinity binders are lost over the 34

year period. On an individual allele basis very few high affinity

MHC binding sites are retained intact through all the cluster

transitions. It should be noted that the signal peptide (16 aa) was

excluded from these plots as it was conserved (and in some cases

inserted for alignment).

Position of changes in MHC binding within HA1
As Figure 9 considers the entire HA1 molecule, it is also of

interest to know where in the sequence the change (or

conservation) is occurring. Therefore we next constructed a

graphic to show the locations within the HA1 proteins of peptides

where binding affinity changes occurred between representative

virus isolates. Figure 10 shows the cumulative gain in predicted

high binding peptides across the nine cluster transitions for each of

14 MHC-II alleles. Figure 11 shows conversely the predicted high

binding affinity lost by each allele over the same transitions.

Figure 12 maps the high MHC binding affinity sites retained. Most

addition and loss of high affinity MHC binding is seen in those

peptides with index positions between amino acids 150–180 and

245–290. This places the highest probability of MHC-II binding

change adjacent to or overlapping with neutralizing B-cell epitopes

[6]. It is interesting that, in many cases, amino acids identified by

Smith as essential to cluster transitional changes (and marked as

red lateral lines in these figures) would be members of these 15-

mer peptide. Once again we note the differences between

individual MHC-II alleles. Figures 10a and 10b only represent

the highest affinity binding peptide losses and gains (categories 22

and +2 in Table 2). Losses and gains of binding sites with less

change in affinity (categories 21 and +1 in Table 2) are provided

in Figures S7a and S7b but follow broadly similar patterns.

Discussion

Our analysis provides the first comprehensive map of predicted

MHC-I and MHC-II binding affinity for a broad array of HLA

Figure 6. Comparison of mean and variation of binding affinity between HLA. Hierarchical clustering was performed as shown in Figure 3
for all cluster representative viruses shown in Table 1. A. shows the grand mean and standard deviation of predicted MHC-I binding affinity over all
peptides in HA1 for the 10 representative viruses by allele. B. shows the same data for MHC-II.
doi:10.1371/journal.pone.0026711.g006
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alleles for a complete influenza protein. We have analyzed binding

for all 9-mer and 15-mer candidate MHC-I and MHC-II binding

peptides in the HA1 protein of 447 H3N2 influenza virus isolates

representing a span of 34 years, during which the changing pattern

of antibody reactivity is known. This approach allows us to

examine how a large group of viruses exhibiting antigenic drift

may interact with an immunogenetically diverse host population.

The correlation of the experimental T-cell epitope definitions in

the validation set with our predicted MHC binding affinity

indicates that the in silico approach we have adopted is a valid

Figure 7. Permuted population plots showing predicted MHC-I and MHC-II binding and B-cell epitope sequences in the HA1 of ten
selected viruses. The MHC-I (red line) and MHC-II (blue line) binding data are the permuted average binding for all combinations of alleles of each
used in this study. Amino acid principal component neural net prediction of B-cell epitope sequences (orange vertical lines) are based on a neural net
trained by BepiPred 1.0 output (not permuted). The horizontal red and blue bands are respectively the top 10th percentile of the permuted MHC- I
and MHC-II predicted binding affinity. The orange bands are the top 25th percentile of B-cell epitope sequence predictions. In each case the line or
band marks the index N terminal position of the 9-mer or 15-mer peptide for which it provides the data.
doi:10.1371/journal.pone.0026711.g007

Patterns of Predicted Epitopes in Influenza H3N2

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e26711



surrogate for in vitro or in vivo experimental assays. uTOPETM

prediction provides a means of large scale analysis of potential host

interface with hundreds of virus isolates. This allows a higher level

view than can be derived from experimental data, which

necessarily address a limited set of circumstances of virus isolate

and HLA. In silico prediction provides a rapid and cost effective

screening tool and guide to planning experimental design. As a

single amino acid displacement can fundamentally change binding

affinity of a peptide, it is essential to examine every candidate 9-

mer or 15-mer peptide to appreciate the distribution of MHC

binding sites across a protein. Many experimental efforts to

determine T-cell epitopes have been undercut by the economics of

peptide synthesis, which have dictated use of insufficient peptides

to examine all possible sequential peptides. Our predictions

suggest this pragmatic approach has likely caused many potential

epitopes to be missed. The arrays used for the visualization and

analysis shown here correspond to over 7 million individual

peptide-MHC interactions, beyond the scope of the laboratory

bench. When viewed on this large scale, pattern recognition is

possible across the whole protein as well as between HLA alleles.

We have shown that the clustering of H3N2 viruses based on

predicted MHC binding patterns within HA1 follows closely that

described by Smith et al from analysis of antibody binding patterns

[9]. Predicted MHC binding at any given peptide differs between

HLA alleles. Single amino acid mutations or displacements can

provoke dramatic differences in MHC binding. Similarly,

Figure 8. Number of amino acid mutations associated with the appearance or loss of high affinity binding peptides. The number of
amino acid substitution events in 9-mer and 15-mer peptides from HA1 of the 447 viruses which result in appearance or loss of predicted high affinity
binding of MHC-I and MHC-II respectively. Criteria for loss or gain are shown in Table 2. MHC-I loss: blue; MHC-I gain: tan; MHC-II loss: red; MHC-II gain:
green.
doi:10.1371/journal.pone.0026711.g008

Figure 9. Predicted high affinity MHC binding peptides gained, lost and conserved in HA1 in transitions between temporal clusters
of H3N2. For cluster representative viruses shown in Table 1, the scoring system shown in Table 2 was used to assign a categorical classification to
predicted high affinity peptides according to whether they were new (22), showed enhanced binding of an existing high binder (21), conserved (0),
showed reduced binding but were still high affinity (+1), or lost their status as predicted high affinity binders (+2). The plots show the aggregate
number of each class of change in the HA1 protein associated with the transitions between clusters (HK68 to EN72, HK68-FU02 etc). Panel A shows
the aggregate for all MHC-I alleles studied; Panel B shows the aggregate for all MHC-II alleles shown; Panel C shows DRB1*04:01 as an example of a
single allele, other MHC-II alleles are shown in Figure S6.
doi:10.1371/journal.pone.0026711.g009
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simultaneous changes in several amino acids within a 15-mer or 9-

mer can give rise to the appearance or loss of potential T-cell

epitopes. We observed most variability in predicted MHC binding

in positions adjacent to neutralizing antibody binding sites.

Several steps occur between the uptake of influenza virus or

protein by an APC and the presentation of peptides by MHC

molecules as potential T-cell epitopes. Variables such as antigen

dose, peptide:MHC affinity, and the cytokine environment can all

have an effect on the process [43–45]. Nevertheless, MHC binding

is an absolute prerequisite and the stability of the peptide MHC

complex plays an important role in determining T-cell clonal

selection [43]. Hence, predictions based on affinity of MHC-

peptide binding are a good starting point in T-cell epitope

identification, whether evaluated in silico or by tetramer binding.

Proteasomal cleavage likely has a uniform and relatively random

effect on all proteins. While each protein will have its own

characteristic unfolding during the degradation process, peptides

with higher affinity binding to MHC simply have a greater

competitive advantage for MHC capture and presentation.

Prediction tools (NetChop at CBS, cbs.dtu.dk/services/NetChop/)

can be used to gain an assessment of the impacts of proteasomal

processing on the presentation of peptides to bind to an MHC-I. The

proteolytic activity of both the immunoproteasome and constitutive

proteasome is quite aggressive. Indeed, several trials using

recommended settings for the NetChop predictors show high

probability of cleavage every 3–5 amino acids. There are no reliable

predictors of MHC-II peptide production in APC.

T-cell responses have been reported to many epitopes in

hemagglutinin in natural and experimental infections [21,24,27,46].

HA peptide epitopes which elicit CD4+ T-cell responses have been

shown to provide partial protection when used to vaccinate mice [47].

T-cell epitopes were shown to be located in the antigen binding sites

of HA and shown to be affected by amino acid changes that occur

during antigenic drift [23]. The most recent comprehensive study of

CD4+ T-cell epitopes in hemagglutinin of H1N1 viruses by Richards

et al [22], using naive DR1 transgenic mice and overlapping peptides,

demonstrated that CD4+ T-cell epitopes are far more widely

distributed in HA1 than previously appreciated.

Figure 10. Position of peptides in which high affinity MHC-II binding is gained in cluster transition. The categorical classification of
peptides according to whether they gained or lost high affinity binder status (Table 2) as a result of the transition between two cluster representative
viruses (Table 1) was plotted across all HA1 amino acid positions for 14 MHC-II’s. Each panel of nine lanes shows the changes in binding for the cluster
transition indicated at the top of the panel (HK68-EN72 etc). Each of the lanes within the panel is the change in predicted binding affinity for a
different MHC-II allele, left to right DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*04:04, DRB1*04:05, DRB1*07:01, DRB1*08:02, DRB1*09:01,
DRB1*11:01, DRB1*13:02, DRB1*15:01, DRB3*01:01, DRB4*01:01, DRB5*01:01. The red lines on each side are amino acid positions identified by Smith
et al [9] as key mutation points for antigenic drift, these are taken from Smith’s Table I and corrected for the presence of signal peptides in our
numbering convention. This Figure shows the positions of predicted new high affinity binding peptides gained in the cluster transition. The color
scale shown in the scale at left is the count of amino acid changes at a given position for all HLAs which result in the category of change mapped.
Figure S7 shows intermediate changes in high affinity binding (21 and +1 categories).
doi:10.1371/journal.pone.0026711.g010
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That MHC binding patterns track antibody-detected antigenic

change is, on one hand, not surprising; both are derivates of

nucleotide sequences and mutation therein. As shown in

Figures 10,11,12, many of the key amino acid positions important

to antibody-detected cluster transitions can also affect MHC binding

affinity of 15-mer peptides in multiple registers. On the other hand,

the close relationship between antibody-detected antigenic drift and

change in predicted MHC binding suggests a more functional

relationship. T-cell responses to high affinity binding peptides which

overlap, or are located close to, B-cell epitopes in the same protein

may determine antibody responses through specific T-cell helper

functions. This is consistent with the experimental finding that a

single amino acid change in HA1 of H3N2 can abrogate both

antibody binding and CD4+ response and that there was frequent

coincidence of B and T-cell epitopes on HA [23,48]. Overlap of

CD8+ epitopes with B-cell epitopes has also been documented in

other influenza A viruses [49]. In the case of vaccinia, Sette et al have

demonstrated a deterministic linkage between a CD4+ epitope

providing specific help to B-cells binding an epitope located in the

same protein [50]. Our own in silico analyses of many organisms

show the close association of B-cell epitopes and predicted high

affinity MHC binding sites in coincident epitope groups [34].

The possible pathways of immune pressure and escape of a

mutating virus are summarized in Figure 13. A mutated virus has

an altered binding interface with an existing antibody (see red

pathway in Figure 13) but through changed T-cell helper functions

(blue pathway), it may also recall a different spectrum of B-

memory, and simultaneously stimulate a different de novo spectrum

of B-cells from those of its un-mutated predecessor. While escape

from pre-existing antibody is essentially the direct random effect of

mutation, the response mediated by CD4+T helper cells is defined

by host HLA and, as we show, may vary between hosts of different

HLA. Mutation also has the capability to change CD8+ mediated

immune pressure (green pathway), although this may be more

important for other influenza proteins.

We should be cautious in extrapolating based on analysis of one

protein. However, the hemagglutinin protein presents a special

case as the primary site of binding of neutralizing antibody and cell

entry receptors. The essential role of B-cells together with CD4+
cells in enabling a T-dependent antibody response and recovery

from influenza infection has been shown [16,51–53]. Influenza

does not infect normal B-cells [32], which implies that their role as

APC differs from that of dendritic cells and macrophages which

are exposed to the full gamut of viral proteins during infection or

phagocytosis [29]. Recognition by B-cell receptors of hemagglu-

tinin, followed by internalization, leads to exposure to and/or

uptake of coincident MHC binding peptides allowing immediate

MHC binding, presentation to T-cells, and recruitment of T-

helper cells [54]. Following re-infection with a virus where one or

more amino acid changes have occurred in a cognate T-cell

Figure 11. Position of peptides in which high affinity MHC-II binding is lost in cluster transition. Axes and lanes as described in Figure 10.
The color scale shown in the scale at left is the count of amino acid changes at a given position for all HLAs which result in the category of change
mapped.
doi:10.1371/journal.pone.0026711.g011
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epitope, the change in MHC-peptide binding affinity may skew

the balance of T-helper clones (see Figure 13 inset). This may

favor selected clonotypes among the original polyclone of B-

memory cells, and lead to either escape or heterosubtypic

immunity. This suggests that host immunogenetics play a more

active and possibly determinant role in antigenic drift of influenza

viruses. In a recent analogous study, Tong et al have described the

role of MHC-I driven evolution of Chikungunya virus [55].

The focus on MHC binding brings to the fore consideration of

the diversity of HLA. Figures 5 and 6 show that each HLA has a

different response to the peptides in any specific virus isolate,

indicating that the outcome of infection is unique to the virus-host

combination. Figures 10,11,12 show how over 34 years the pattern

of change in MHC binding across all alleles is generally in the same

regions of the protein, but that the detail for each HLA allele is

different. A single amino acid change may cause a gain of binding

sites for some HLAs but loss for others. Most hosts are heterozygous

at each locus of the HLA and each allele will have a compensating

effect. Likewise within a mixed population different pressures arise

from each successive heterozygous host causing a different selection

pressure. Indeed the outcome of infection may depend not only on

the conjunction of the strain of virus with the HLA alleles of the

current host, but on the selective pressure applied by the prior host’s

immunogenetics. We can also envision that a less genetically diverse

population may elicit a more directional selection. There are

examples of this for other viruses [56].

While several models of the evolution of H3N2 have been

proposed [9,11,57–60], they rely on analysis of virus genotype

and antigenicity as determined only by antibody binding. These

previous approaches allow modeling of many features of strain

emergence. However, they do not take full account of how

changes in host genotype also exert selective pressure. This has

been examined experimentally for single HLA peptide interac-

tions [27]. A number of studies have identified key amino acid

changes in HA1 associated with antibody escape [9,11,14];

however each amino acid change potentially impacts the

binding of MHC-II molecules in 15 registers, each with the

potential to affect T-cell helper function (Figure 3). Hence our

findings reflect a more complex picture in which potential

T-cell epitopes come and go with amino acid changes, and do

so in a pattern that is unique to each HLA allele. This pattern

is not readily appreciated by experimental single epitope

characterization.

The hierarchies of MHC binding patterns (Figure 6) show that

some HLA have a consistently lower absolute binding affinity to

HA1 than others and some are more variable than others.

Whether this translates to changes in CD4+ response or clinical

outcome is not known. A number of field observations have linked

severity of influenza or vaccine response to HLA [61–64] but

given the number of variables and the small size of some of these

studies, no definitive conclusions could be drawn. Patients with

DRB1*09:01 have been reported to respond less well to

Figure 12. Position of peptides in which high affinity MHC-II binding is conserved in cluster transition. Axes and lanes as described in
Figure 10. The color scale shown in the scale at left is the count of amino acid changes at a given position for all HLAs which result in the category of
change mapped.
doi:10.1371/journal.pone.0026711.g012
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vaccination with H3N2 [65], as have HLA-DR3 and DR4 patients

[66]. We show DRB3*01:01 and DRB1*13:02 to be consistently

lower affinity binders than other HLAs.

We are not aware of any specific studies in which HLA is linked

to duration of influenza viral shedding although the diversity of

HLA-determined T-cell response suggests variation is likely.

Immunocompromised hosts have been observed to shed influenza

A virus longer [67–69]. As a further step, experimental studies in

horses [70] and birds [71] have shown that longer shedding is

associated with the emergence of more new variant viruses. A

small extension of shedding on an individual basis could have a

significant compound effect in a population on the eventual

number of new variants generated over time. This points to the

possibility of immunogenetically based ‘‘incubator’’ individuals or

populations which have a greater propensity to seed new virus

variants for spread into global circulation. Other infections or

diseases which affect B-cell numbers, function or susceptibility to

infection could also be expected to change the selective process

invoked by T-helper responses [32,72].

Understanding the causes and extent of immunogenetically

driven variation in the response to influenza is important to the

development of broadly effective vaccines [65]. Vaccinal epitopes

should be selected to protect all immunogenetic groups and to

provide heterosubtypic immunity. Also, if influenza vaccines

focused primarily on eliciting a T-cell response are to be

developed, whether from HA or other proteins, a prerequisite

will be to have a clearer understanding of how much variation in

T-cell response occurs among individuals. The methods described

here offer a way to examine such variability. Efforts to generate a

universal vaccine for influenza should take into consideration the

possibility that a T-cell epitope closely associated with a

neutralizing B-cell epitope may be needed to ensure memory.

This study presents predicted MHC binding data for only one of

the proteins of influenza A virus; it clearly provokes broader large

scale analysis of the complete array of influenza proteins and other

important serogroups of the virus, as well as application as a cost

effective screening method which can help focus additional

experimental studies.

Acronyms Used
ic50: inhibitory concentration 50.

AROC: Area under the receiver operator characteristic curve

s: one standard deviation.
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