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Two-dimensional type-II Dirac fermions in layered
oxides
M. Horio 1, C.E. Matt 1,2,3, K. Kramer1, D. Sutter 1, A.M. Cook1, Y. Sassa4, K. Hauser1, M. Månsson 5,

N.C. Plumb 2, M. Shi2, O.J. Lipscombe6, S.M. Hayden6, T. Neupert 1 & J. Chang 1

Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but

appear also as low-energy quasi-particle excitations in electronic band structures. In condensed

matter systems, their massless nature can be protected by crystal symmetries. Classification of

such symmetry-protected relativistic band degeneracies has been fruitful, although many of the

predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-

resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions

in the high-temperature superconductor La1.77Sr0.23CuO4. The Dirac point, constituting the

crossing of dx2�y2 and dz2 bands, is found approximately one electronvolt below the Fermi level

(EF) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point

degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain

nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can

be realised near EF.
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D irac fermions are classified into type-I and type-II
according to the degree of Lorentz-invariance
breaking1,2. Type-I Dirac fermions are degeneracy points

between an electron-like and a hole-like band that are energeti-
cally located above and below the energy of the touching point,
respectively. In contrast, type-II Dirac fermions manifest them-
selves as strongly tilted Dirac cones, where an electron and a hole-
like Fermi sheet touch at the energy of the Dirac point. Assuming
that the Dirac point is in the vicinity of the Fermi level (EF), type-I
and type-II Dirac fermions display distinct physical properties.
Many of them originate from the fact that the density of states at
the Dirac node is vanishing and finite for type-I and type-II Dirac
fermions, respectively. In the past decade, two-dimensional and
three-dimensional type-I Dirac fermions near EF have been
identified in a variety of different systems, e.g., graphene3, topo-
logical insulators4, and semimetals such as Na3Bi5, Cd3As26,7, and
black phosphorus8. The concept of topologically protected Dirac
fermions has also been applied to the band structure found in
high-temperature iron-based superconductors9,10. Type-II Dirac
fermions seem to be much less common. Their existence has been
predicted theoretically in transition-metal icosagenides11, dichal-
cogenide semimetals12, and photonic crystals13. Only recently,
three-dimensional type-II Dirac fermions have been identified
experimentally in PtTe214,15 and PdTe216. In these materials, the
Dirac cone is tilted along the direction perpendicular to the
cleavage plane making it observable only through photon energy-
dependent angle-resolved photoemission spectroscopy (ARPES)
measurements. Even more recently, it has been reported that this
type-II cone can be tuned to EF by chemical substitution of
Ir1−xPtxTe217.

Here we report two-dimensional type-II Dirac fermions in the
high-temperature cuprate superconductor La1.77Sr0.23CuO4. The
cone is found approximately 1 eV below EF. There are three
important characteristics. First, the type-II Dirac cone reported
here is quasi two-dimensional in nature, and can be viewed as a
nodal line, if the band structure is considered three-dimensional.
Second, the tilt is along the nodal in-plane direction. Third, just as
in graphene, the Dirac node degeneracy is lifted when spin-orbit
coupling (SOC) is considered, while the Dirac electrons in
PtTe214,15 are robust against SOC. We show theoretically that this
degeneracy lifting endows the bands with a topological character,
namely, a non-vanishing spin-Chern number. As known from
graphene, SOC is, however, negligibly small for light elements
such as copper and oxygen. Guided by band structure calcula-
tions, we suggest that the position of the Dirac cone can be tuned
through chemical substitution. In Eu0.9Sr1.1NiO4, the cone is
expected above EF. It is thus demonstrated how oxides are a
promising platform for creation of two-dimensional type-II Dirac
fermions near EF, where their topological properties become
relevant for linear response and interacting instabilities.

Results
Density functional theory (DFT) predictions. Single-layer
transition metal oxides often crystallise in the body-centred tet-
ragonal structure. These systems can be doped by chemical
substitution on the rare-earth site. Strontium substitution, for
example, drives the Mott insulator La2CuO4 into a super-
conducting ground state18. DFT calculations (see Methods sec-
tion) of the La2−xSrxCuO4 (LSCO) and Eu2−xSrxNiO4 (ESNO,
x= 1.1) band structure are displayed in Fig. 1. The shared crystal
structure and partially filled eg bands lead to a similar band
structure19. In particular, both systems display a type-II Dirac
cone that is protected by mirror symmetry preventing hybridi-
sation between the dz2 and dx2�y2 bands along the Γ–M direction
in the Brillouin zone20,21. For LSCO the cone is found well below

EF20,22,23, whereas for ESNO it is found above. In the case of
ESNO, the Dirac cone is thus inaccessible to ARPES
experiments24,25.

Enormous efforts have been made to explore the electronic
structure of cuprate superconductors26. As the quasi-particles
responsible for superconductivity are strongly correlated, DFT
has widely been considered too simplistic27. It has, for example,
been argued using more sophisticated methods that DFT places
the dz2 band too close to EF28. Only very recently, the dz2 band
was directly observed by ARPES21. Although DFT indeed
underestimates the overall dz2 band position, it captures the
observed band structure in essence, in particular as far as
qualitative features protected by symmetry or topology go. To
account for differences between the DFT calculation and the
experiment, we use a two-band tight-binding model (see Methods
section) to parametrically describe the observed band structure.

ARPES evidence of type-II Dirac fermions. The low-energy
quasi-particle structure of LSCO with x= 0.23 is well
documented29,30. Its electron-like Fermi surface is shown in
Fig. 2a. Figures 2–4 focus on the crossing of the dz2 and dx2�y2

bands that constitutes the type-II Dirac cone. The band dispersion
along the nodal (kx= ky, 0) direction carries the most direct
experimental signature of the Dirac cone. Along this direction, the
two bands with dx2�y2 and dz2 orbital character are not hybridising
and cross at a binding energy of approximately 1.4 eV (Fig. 2b).
The light polarisation dependence presented in Figs. 2e, f indicates
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Fig. 1 Type-II Dirac points. Density functional theory calculated band
structure of La2−xSrxCuO4 (a) and Eu2−xSrxNiO4 (b) along high symmetry
directions as indicated in the top-right inset. Both compounds share a high-
temperature body-centred tetragonal crystal structure as shown in the top-
left inset. The band dispersions are being given a colour code corresponding
to their orbital character. Along the zone diagonal (nodal) direction, the
bands are symmetry protected against hybridisation by the mirror
symmetry Mxy that sends ðx; yÞ 7! ðy; xÞ. Their opposite mirror eigenvalues
± along the Γ−M line are indicated. In this fashion, the crossing of the
bands constitutes the Dirac point of a type-II Dirac cone as illustrated
schematically by the bottom middle inset
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the opposite mirror symmetry of the two bands and hence that the
crossing is indeed protected by the crystal symmetry. A perpen-
dicular cut through this Dirac point is shown in Fig. 2c. Along
both cuts, significant self-energy effects are visible. Most noticeable
is the waterfall feature, indicated by the energy scales E1 and E2 in
Fig. 2f. We stress that this self-energy structure is consistent with
previous reports on cuprates31–34 and other oxides35,36.

As previously reported in ref. 21 and shown in Fig. 3, the dz2
band has a weak but clearly detectable kz dispersion near the in-
plane zone centre. This effect translates into a weak kz dispersion of
the Dirac point from 1.4 eV near Γ to 1.2 eV around Z. As
La1.77Sr0.23CuO4 has body-centred tetragonal structure, the Γ and Z
points can be probed simultaneously in constant-energy maps that
cover first and second in-plane zones (Fig. 4j). The dz2 dominated
band enters for binding energies of approximately 1 eV (Fig. 4d) as
an elongated pocket centred around the zone corner. This “cigar”
contour stems from the fact that the dz2 band disperses faster
towards Γ= (0, 0, 0) than to Z= (0, 0, 2π/c) (see Fig. 4k). As the
binding energy increases, this pocket grows and eventually crosses
the dx2�y2 dominated band on the nodal line (i.e., the line of Dirac
points extended in kz-direction in momentum space). This
happens first at 1.2 eV in the second zone near Z (Fig. 4f) and
next in the first zone in vicinity to Γ at 1.4 eV (Fig. 4g). The type-II

Dirac cone thus forms a weakly dispersing line along the kz
direction. Note that the bands appearing below 1.5 eV around the
M point (Figs. 2–4) are of dxz/yz origin21 and irrelevant in this
discussion.

Discussion
Dirac fermions are classified by their dimensionality and the
degree to which they break Lorentz invariance (see Table 1).
Type-I Dirac fermions break Lorentz invariance such that it is
still possible for EF to intersect the bands forming the Dirac point
at only the Dirac point when considering sufficiently small
regions of momentum space about the point. For type-II Dirac
fermions, this is not possible.

Three-dimensional Dirac points are characterised by linearly
dispersing bands (around the Dirac point) along all reciprocal
directions (kx, ky, kz). For type-I, such Dirac points have been
identified in Na3Bi5 and Cd3As26,7. Two-dimensional Dirac fer-
mions, by contrast, have linear dispersion in two reciprocal
directions. Graphene, being a monolayer of graphite, has a perfect
two-dimensional band structure. The Dirac cones found in gra-
phene are therefore purely two-dimensional. A three-dimensional
version of type-II cones has recently been uncovered in PtTe214.
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Fig. 2 Nodal type-II Dirac cone in La1.77Sr0.23CuO4. a Symmetrised Fermi surface map recorded using circularly polarised 160 eV photons. Solid black
curves are a tight binding parametrisation of the electron-like Fermi surface. The arrows indicate nodal and orthogonal to nodal cuts. b Nodal band
dispersion [cut #1 in a] recorded with circular polarisation symmetrised around Γ and compared to a two-band (dx2�y2 and dz2 ) tight-binding model. The
crossing of the two bands defines the type-II Dirac cone. c Spectra going through the Dirac point in the orthogonal-to-nodal direction [cut #2 in a] and
symmetrised around the nodal line. As indicated by the tight-binding model, the repulsive interaction leads to orbital hybridisation. d Energy distribution
curves along the cuts D and E in c. e, f Same spectra as in b, but acquired with linear p and s polarisation, respectively. Solid and dashed lines indicates the
tight-binding model. The on/off switching demonstrates the even and odd mirror symmetries of the two bands constituting the Dirac cone. These
symmetry protected properties are not influenced by correlation induced self-energy effects. The waterfall feature indicated by the energy scales E1 and E2
is discussed briefly in the text. Background subtraction has been applied to panels b, c, e, and f (see Supplementary Figs. 1, 2, and Supplementary Note 1).
g, h Intensity distributions along the cuts A–C indicated in b and c, respectively. Black bars mark the peak positions
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There, the Dirac cone is defined around a single point in (kx, ky,
kz) space. The type-II Dirac cone in LSCO is different since it is
found along a line (kx= ky ≈ 0.25, kz) running along the kz
direction. The topological characteristics of the nodal line and a
strictly two-dimensional Dirac cone are very similar, for instance,
both carry a Berry phase of π with respect to any path enclosing
them. The observations reported here are, to the best of our
knowledge, thus the first demonstration of two-dimensional type-
II Dirac fermions. We stress that possible topological boundary
modes of the type-II Dirac fermions are obscured by the pro-
jections of the bulk bands in the boundary Brillouin zone (see
Supplementary Fig. 3).

Given the quasi-two-dimensionality, it is imperative to com-
pare our results with graphene. Although SOC is generally small
in graphene and the cuprates, it is of conceptual importance to
understand the fate of the Dirac electrons if SOC is considered.
The seminal work of Kane and Mele37 demonstrated that gra-
phene, in the presence of SOC, is turned into a topological
insulator with spin-Hall conductivity σsxy ¼ e=2π. We stress that
this conclusion is independent of the microscopic details. If
graphene’s crystal symmetries and time-reversal symmetry are to
be preserved by SOC, the only perturbative way to open a gap
leads to a topological band structure. The reason for this is a pre-
formed band inversion at the M points in the band structure of
graphene, away from the nodal Dirac points. Turning to the Dirac
cones discussed in this work, a very similar analysis can be made.
Already without SOC, the dx2�y2 and dz2 bands change their order
from the Γ to the M point (this is a precise statement since mirror
symmetry Mxy, mapping ðx; yÞ 7! ðy; xÞ, implies a well-defined
orbital character of the bands along the lines kx= ky). This is a
band inversion of C4 rotation eigenvalues of the lower band
between Γ and M, being −1 at Γ and +1 at M (for the spinless
case). It has previously been shown that the Chern number C of a
band can be determined from the rotation eigenvalues of a C4-
symmetric system (mod 4) by the formula iC= ξ(Γ)ξ(M)ζ(X)38,
where ξ and ζ are the C4 and C2 eigenvalues of the band in

question, respectively, at the indicated high-symmetry points. In
the presence of Mxy and inversion symmetry, the z-component of
spin is conserved and we can generalise this formula to the spin
Chern number Cs

39 of our time-reversal symmetric system. The
band inversion then implies that Cs= 2 (mod 4) if the degeneracy
of the Dirac points is lifted by SOC. (The C2 eigenvalue ζ(X) is
irrelevant for this discussion, as it is +1 for both of the orbitals
involved.)

In order for this non-vanishing spin Chern number (see also
Supplementary Fig. 4 and Supplementary Note 2) to have mea-
surable consequences, the type-II Dirac point should be tuned to
EF. The type-II Dirac node reported here resides ~1.3 eV below
EF. This is similar to the Dirac point found in PtTe214 and
PdTe216. In the case of PtTe2, chemical substitution of Ir for Pt
has been used to position the Dirac point near EF17. In a similar
fashion, we envision different experimental routes to control the
Dirac point position. The position of the dz2 band is controlled by
the distance between apical oxygen and the CuO2 plane22,23. A
smaller c-axis lattice parameter is thus pushing the dz2 band, and
hence the Dirac point, closer to EF. Uniaxial pressure along the c-
axis on bulk crystals or substrate-induced tensile strain on films
are hence useful external tuning parameters. Chemical pressure is
yet another possibility. Partial substitution of Eu for La reduces
the c-axis lattice parameter. This effect is a simple consequence of
the fact that the atomic volume of Eu is smaller than La. As
shown in the Supplementary Information of ref. 21, a 20% sub-
stitution pushes the dz2 band about 200 meV closer to EF.

Our DFT calculations (Fig. 1) suggest that the sister compound
ESNO provides an even better starting point. ESNO is iso-
structural to LSCO, and undergoes a metal-insulator transition at
x ~ 1.024. The d8 configuration of Ni2+ in combination with
considerable Sr doping leads to the filling of eg orbitals less than
1/4 in ESNO (x > 1.0), shifting both dx2�y2 and dz2 bands toward
EF. A soft X-ray ARPES study conducted on ESNO (x= 1.1)25

has reported an almost unoccupied dz2 band and partially filled
dx2�y2 band. Although the crossing between dx2�y2 and dz2 bands
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was not observed in the previous ARPES study, our DFT band
calculation displayed in Fig. 1 predicts their crossing slightly
above EF. To bring the Dirac line node down to EF, chemical
substitution of La for Eu is a possibility. Adjusting chemical and
external pressure is thus a promising path for realisation of type-
II Dirac fermions at EF. Most likely, the electron correlations
found in the nickelate and cuprate systems will be preserved
irrespective of the pressure tuning. It might thus be possible to
create a strongly correlated topologically protected state. In
addition, replacing the transition metal (Ni or Cu) with a 5d
element can be a way to include SOC in the system. Oxides and
related compounds are thus promising candidates for type-II
Dirac fermions at EF. The present work demonstrates how oxides,

through material design, can be used to realise novel topological
protected states.

Methods
Experimental specifications. High-quality single crystals of LSCO (x= 0.23) were
grown by the floating-zone method. The samples with superconducting transition
temperature Tc= 24 K have previously been used for transport40, neutron41,42, and
ARPES21,30,43 experiments. ARPES experiments were carried out at the Surface/
Interface Spectroscopy (SIS) beamline at the Swiss Light Source44. Samples were
cleaved in situ at ~20 K under ultra high vacuum (≤5 × 10−11 Torr) by employing a
top-post technique or by using a cleaving device45. Ultraviolet ARPES spectra were
recorded using a SCIENTA R4000 electron analyser with horizontal slit setting. All
the data were recorded at the cleaving temperature ~20 K. For better visualisation
of energy distribution maps, a background defined by the minimum MDC intensity
at each binding energy was subtracted (see Supplementary Figs. 1, 2, and Sup-
plementary Note 1).

DFT calculations. DFT calculations were performed for LSCO (x= 0) and ESNO
(x= 0) in the tetragonal space group I4/mmm using the WIEN2k package. Crystal
lattice parameters and atomic positions of LSCO (x= 0.225)46 and ESNO (x= 1.0)47

were used for the calculation. In order to avoid the generation of unphysically high
density of states of 4f electrons near EF, on-site Coulomb repulsion U= 14 eV
was introduced to Eu 4f orbitals. Calculated band dispersions of ESNO were
shifted upwards by 350meV to reproduce the experimental band structure of
ESNO (x= 1.1) previously reported in an ARPES study25.
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Table 1 Classification of Dirac fermions

Type-I Type-II

2D Graphene3 LSCO (this work)
3D Cd3As26, 7,

Na3Bi5
PtTe214
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Tight-binding model. We utilise a two-orbital tight-binding model Hamiltonian
with symmetry-allowed hopping terms constructed in ref. 21. The momentum-
space tight-binding Hamiltonian, Hσ(k), at a particular momentum k= (kx, ky, kz)
and for electrons with spin σ= ↑/↓ is given by:

Hσ kð Þ ¼ Mx2�y2 kð Þ Ψ kð Þ
Ψ kð Þ Mz2 kð Þ

" #
ð1Þ

in the basis cσ;k;x2�y2 ; cσ;k;z2
� �T

, where the operator cσ,k,α annihilates an electron
with momentum k and spin σ in an eg-orbital dα, with α ∈ {x2− y2, z2}. The right-
hand side of (1) being independent of σ indicates that we have neglected SOC
initially.

For compactness of the Hamiltonian matrix entries, the following vectors are
defined:

Qκ ¼ ða; κb; 0ÞT; ð2Þ

Rκ1 ;κ2 ¼ κ1a; κ1κ2b; cð ÞT=2; ð3Þ

Tκ1 ;κ2
1 ¼ 3κ1a; κ1κ2b; cð ÞT=2; ð4Þ

Tκ1 ;κ2
2 ¼ κ1a; 3κ1κ2b; cð ÞT=2; ð5Þ

where κ, κ1, and κ2 take values ±1 as defined by sums in the Hamiltonian and T
denotes vector transposition. In terms of these, we can write

Mx2�y2 kð Þ ¼ 2tα cos kxað Þ þ cos kyb
� �h i

þ μ

þ P
κ¼± 1

2t′αcos Qκ � kð Þ; ð6Þ

and

Mz2 ðkÞ ¼ 2tβ cos kxað Þ þ cos kyb
� �h i

� μ

þ P
κ¼± 1

2t′βcos Qκ � kð Þ

þ P
κ1;2¼± 1

2tβzcos Rκ1 ;κ2 � kð Þ
h

þ P
i¼1;2

2t′βzcos Tκ1 ;κ2
i � k� �#

;

ð7Þ

which describe the intra-orbital hopping for dx2�y2 and dz2 orbitals, respectively.
The inter-orbital nearest-neighbour hopping term is given by:

Ψ kð Þ ¼ 2tαβ cos kxað Þ � cos kyb
� �h i

: ð8Þ

In the above, μ represents the chemical potential. The hopping parameters tα
and tα′ characterise nearest-neighbour (NN) and next nearest-neighbour (NNN)
intra-orbital in-plane hopping between dx2�y2 orbitals. tβ and tβ′ characterise NN
and NNN intra-orbital in-plane hopping between dz2 orbitals, while tβz and t′βz
characterise NN and NNN intra-orbital out-of-plane hopping between dz2 orbitals,
respectively. Finally, the hopping parameter tαβ characterises NN inter-orbital in-
plane hopping.

In closing, we discuss the inclusion of SOC in the tight-binding model. The
lowest-order SOC term (in terms of in-plane hopping processes) that preserves
inversion symmetry, Mxy mirror symmetry, Cz

4 rotation symmetry, and time-
reversal symmetry is given by:

HSOC ¼ iλ
X
k

X
σ¼± 1

gσsinðkxÞsinðkyÞcyσ;k;x2�y2 cσ;k;z2 þ h:c: ð9Þ

with g↑=+1, g↓=−1 and the parameter λ representing the strength of SOC. Such
SOC gaps out the Dirac points and equips the two pairs of spin-degenerate bands
with a non-vanishing spin Chern number as discussed in the main text.

The parameters of the tight-binding model, except for the SOC, were
determined from fitting to the experimental band structure and are given by μ=
−0.97, t′α ¼ �0:31, tαβ=−0.175, tβ= 0.057, t′β ¼ 0:010, tβz= 0.014, t′βz ¼ �0:005,
all expressed in units of tα=−1.13 eV.

Data availability. All experimental data are available upon request to the corre-
sponding authors.
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