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Abstract: The maintenance of cellular homeostasis involves the participation of multiple organelles.
These organelles are associated in space and time, and either cooperate or antagonize each other with
regards to cell function. Crosstalk between organelles has become a significant topic in research over
recent decades. We believe that signal transduction between organelles, especially the endoplasmic
reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for
protein folding and modification, the endoplasmic reticulum can influence a range of physiological
processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular “energy
factory,” are also involved in cell death processes. Some researchers regard the ER as the sensor of
cellular stress and the mitochondria as an important actuator of the stress response. The scientific
community now believe that bidirectional communication between the ER and the mitochondria
can influence cell death. Recent studies revealed that the death signals can shuttle between the
two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex
crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid
synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and
the transduction of death signals between the ER and the mitochondria. Clarifying the structure and
function of MAMs will provide new concepts for studying the pathological mechanisms associated
with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the
structure and function of MAMs and its roles involved in cell death, especially in apoptosis.

Keywords: endoplasmic reticulum; mitochondria; MAMs; Ca2+; apoptosis

1. Introduction

Apoptosis is a programmed form of cell death and can occur via three main pathways.
The first pathway is the intrinsic apoptosis pathway; initiated by a range of factors, includ-
ing the effects of growth factors or hormones, radiation, or cytotoxins [1]. This process
involves the enhancement of pro-apoptotic signals and the weakening of anti-apoptotic
signals. An imbalance in the regulation of apoptosis ultimately leads to changes in the per-
meability of the mitochondrial outer membrane and the release of pro-apoptotic substances
from the mitochondria. These pro-apoptotic substances promote apoptosis by activating
the apoptotic executive protein caspase-9, inhibiting IAPs or via the direct cleavage of
DNA [2–7]. The second pathway is the extrinsic apoptosis pathway in which apoptosis
is activated by the binding of specific ligands such as FasL to transmembrane receptors
which contain “death domain” such as FasR. Activated death receptors then recruit adaptor
proteins in the cytoplasm to assemble an apoptosis-inducing signal complex, which then
activates caspase-8 to initiate apoptosis [8]. Caspase-8 can also cleave Bid to initiate the
intrinsic apoptotic pathway, which plays an important role in the process of apoptotic
signal amplification [9,10]. The third pathway is the perforin/granzyme pathway in which
cytotoxic T cells or NK cells induce target cell apoptosis by secreting granules containing
perforin or granzymes [11].
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Moreover, the Bcl2 family plays a vital role in cell apoptosis. The Bcl2 family consists
of 25 members, and they can be divided into pro-apoptotic proteins (Bax, Bak, etc.) and
anti-apoptotic proteins (Bcl2, Bcl-XL, Mcl-1, etc.) according to their different functions. Fur-
thermore, pro-apoptotic proteins can be divided into pro-apoptotic proteins with multiple
domains and BH3-only proteins, and BH3-only proteins also can be divided into “activator”
(Bim, tBid, etc.) and “sensitizer” (Bad, Bik, etc.) based on their specific mechanism of
action [12]. The activated pro-apoptotic members can assemble on the outer mitochondrial
membrane and change the permeability of the outer mitochondrial membrane, and pro-
mote the release of cytochrome c, AIF, Smac/Diablo and other apoptosis-inducing factors
from the mitochondria [13]. Anti-apoptotic members mainly antagonize the effects of
pro-apoptotic ones through protein–protein interactions to maintain the integrity of the
mitochondrial outer membrane. The “activator” BH3-only members can directly activate
the pro-apoptotic proteins and promote the occurrence of apoptosis, while the “sensitizer”
BH3-only members can interact with the anti-apoptotic in a protein–protein interaction
way to relieve the effect of the pro-apoptotic proteins [14].

As it is mentioned above, the mitochondria play a central role in the cell apoptosis,
and the crosstalk between mitochondria and other organelles may impact the apoptosis
process. Recent studies revealed that the communication between ER and mitochondria
can influence the cell apoptosis, thus affecting the cell fate.

The ER is a key organelle that plays a crucial role in Ca2+ storage, lipid synthesis, pro-
tein folding, and assembly [15–18]. Mitochondria are the “energy factories” of eukaryotic
cells, and provide energy to drive the physiological processes of cells; they also play a
key role in the process of apoptosis [19–21]. The ER and mitochondria are independent
of each other but are also closely associated in structure and function. The first spatial
connection between the ER and the mitochondria was reported in the 1950s following a
study of hepatocytes by transmission electron microscopy [22,23]. In 2006, an electron
tomography study further confirmed the complex relationship between the ER and the
mitochondria [24]. It is now believed that the mitochondrial surface juxtaposed to the
ER in mammalian cells is up to 5–20% due to different cell types [25,26]. Based on this
close structural connection, the ER is able to respond to a variety of stress stimuli and
can transmit these stress signals to the mitochondria [27,28], thereby initiating the mi-
tochondrial stress response. Similarly, the mitochondria can transmit signals to the ER,
thus ensuring the efficient execution of compensatory responses or cell death events. Due
to the special function of these precise structural associations, this biological system is
usually investigated as a relatively independent sub-organelle structure referred to as a
“mitochondrial-related membrane structure.”

2. The Structural Characteristics of MAMs

The structure of MAMs does not remain constant; rather, the structure of MAMs
changes dynamically in response to the cell status. The width of the gap between the ER
and the outer mitochondrial membrane varies from 10 to 100 nm [29,30]; the width of
this gap is usually 10–15 nm at the smooth endoplasmic reticulum and 20–30 nm at the
rough endoplasmic reticulum; these spatial differences may be related to the presence
of ribosomes [7,31]. Different proteomic analysis of the structure of MAMs has revealed
991 [32] and 1212 [33] different proteins in MAMs [34]. Mass spectrometry analysis divided
these constituent proteins into three categories: Proteins that are specifically present in
MAMs; proteins that exist simultaneously in MAMs and other organelle structures; and
proteins that only exist temporarily in MAMs [33]. These proteins are involved in a wide
range of processes, such as structural maintenance, lipid synthesis, the regulation of Ca2+

homeostasis, mitochondrial dynamics, and apoptosis.

3. The Structure Maintenance of MAMs

There are thousands of proteins in MAMs; the roles of these proteins are known to
vary widely. Some of these proteins play a tethering role in the maintenance of MAMs [31].
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According to our understanding, tethering proteins should exhibit certain characteristics.
For example, tethering proteins could be (1) proteins or protein complexes that directly
participate in the physical connection between the ER and the mitochondria, or (2) interfer-
ing proteins or protein complexes that can directly cause changes in the width of gap, the
area of contact, or the number of contact sites between the ER and the mitochondria. These
proteins and protein complexes are introduced below (Figure 1).
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Figure 1. Tethering proteins that participate in the mitochondria-associated membranes (MAMs) structure maintenance.

3.1. The IP3Rs-Grp75-VDACs Complex

IP3Rs are important Ca2+ outflow channels on the surface of the ER and mediate the
release of Ca2+ from the cavity of the ER to the cytoplasm [35,36]. VDACs are ions channel
located on the outer membrane of the mitochondria; these mediate the movement of a
variety of ions and metabolites in and out of mitochondria, and participate in a range
of cellular activities, including apoptosis, metabolism, and the regulation of Ca2+ [37].
IP3Rs and VDACs are connected by Grp75 to maintain the structure of MAMs [38]. The
overexpression of VDACs is known to enhance the connection between the ER and the
mitochondria and thus improve Ca2+ flux from the ER to the mitochondria [39]; while
silencing VDAC1 exhibits a reduction in the connection between Grp75 and IP3R1 indicat-
ing a reduction of ER-mitochondria interactions [40]. Cells overexpressing Grp75 showed
higher number of IP3R1–VDAC1 interaction sites [41]. Silencing IP3R1 or Grp75 can also
reduce the connection between VDAC1 and Grp75 or IP3R1 [42].

3.2. The VAPB-PTPIP51 Complex

VAPB is located in the membrane of the ER and participates to the activation of the
IRE1/XBP1 axis in the ER unfolded protein response [43,44]. VAPB can form a complex
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with the outer mitochondrial membrane protein PTPIP51 and help to maintain the structure
of MAMs. A mutant form of VAPB, VAPBP56S, exhibits a stronger affinity for PTPIP51,
thereby promoting the transfer of Ca2+ from the ER to the mitochondria; knocking out
either of these two genes can reduce the transfer of Ca2+ signals [45]. Other studies have
shown that knocking down either of these two proteins will reduce the level of contacts
between the ER and the mitochondria [46,47].

3.3. The Mfn1/Mfn2 Complex

In addition to being located in the outer mitochondria membrane and participating to
the mitochondrial fusion [48], Mfn2 can also localize on the surface of the ER. Mfn2 partici-
pates in the structural maintenance of MAMs by forming homodimers or heterodimers
with Mfn1/2 on the outer membrane of the mitochondria. The function of the Mfn1/Mfn2
complex with regards to maintaining the structure of the MAMs was first discovered in
2008 [49]; this role has also been confirmed by several other studies [50,51]. However,
some studies have yielded contradictory results [52,53], it is now well established that
Mfn2 plays a role in the endoplasmic reticulum stress (ERS) response; the ERS induced by
knockdown of Mfn2 can tighten the association between the ER and the mitochondria [54].

3.4. The MOSPD2-PTPIP51 Complex

MOSPD2, another member of VAP family, a protein that locates on the surface of
the ER membrane, plays a role in connecting the ER with other membrane structures. It
can also bind with proteins containing a small VAP-interacting motif, named FFAT [two
phenylalanines (FF) in an acidic track (AT)] via an MSP (Major Sperm Protein domain),
such as PTPIP51 on the outer membrane of the mitochondria [55].

3.5. REEP1

REEP1 is a protein that is located in the outer membrane of the ER and the mitochon-
dria. REEP1 helps regulate the morphology of the ER. Studies have shown that REEP1
directly connects the ER and the mitochondria through oligomerization and participates
in forming the structure of MAMs. In addition, through bending ER membranes, REEP1
makes it topologically possible for the ER to wrap around the mitochondria, which helps
to form MAMs [56].

3.6. Other Proteins Involved in MAMs Maintance

In addition to these tethering proteins, there are some proteins that do not directly
participate in the structural maintenance of MAMs. However, these proteins do affect the
structure of MAMs via protein–protein interactions (Table 1). In addition to being present
in the cytoplasm, α-Synuclein can also be incorporated in MAMs [57]. α-Synuclein can
promote the Ca2+ transfer from ER to mitochondria by increasing the ER and mitochondria
contacts; and further study showed that the C-terminal of α-Synuclein is essential to tighten
the contacts [58]. Some studies revealed that the α-Synuclein existing in MAMs results in
the dis-regulation of Ca2+ and lipid metabolism, which promotes substantia nigra pars
compacta neurons to die, leading to the progression of PD [59]. In addition to playing an
anti-apoptotic role in cells and participating in mitochondrial dynamics, DJ-1 can still exist
in the MAMs, thus enhancing the connection between the ER and the mitochondria and
the crosstalk between the two organelles; this effect may be related to P53 to some extent
(an antagonistic relationship) [60]. Existing studies suggest that DJ-1 can bind directly to
the IP3R-Grp75-VDAC complex and affect its stability. The knockout of DJ-1 resulted in
the aggregation of IP3R3 in MAMs and a reduction in the formation of the IP3Rs-Grp75-
VDACs complex; it is possible that this is related to the pathophysiological process of
obesity [61]. Although the precise mechanism remains obscure, it has been ascertained that
DJ-1 can affect the structural stability of MAMs. This also implies that MAMs may play a
role in the pathogenesis of Parkinson’s syndrome. TDP-43 and FUS are proteins that are
related to ALS/FTD and can activate GSK-3b by down-regulating the phosphorylation
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levels of serine 9 by GSK-3b. Once activated, GSK-3b can reduce the connections between
VABP and PTPIP51, thereby detaching the ER from the mitochondria [47,62]. PDK4 can
directly interact with the IP3Rs-Grp75-VDACs complex in MAMs and may promote the
formation of this complex by regulating phosphorylation, thus increasing the area of
contacts between the ER and the mitochondria [42]. In addition to participating in the
post-transcriptional modification of proteins, TG2 can also be incorporated in MAMs
and act directly on Grp75 to increase the number of ER-mitochondrial contacts and thus
participate in the structural maintenance of MAMs [63]. The precise function of TpMs (a
type of keratin binding protein that is partly located in the mitochondria) remains unclear
although data indicates that this protein can negatively regulate the ER-mitochondria
connections in a Mfn2-dependent manner [64]. It is generally believed that CypD, a protein
located in the mitochondrial matrix, can also be incorporated in MAMs, and directly act
with the IP3Rs-Grp75-VDACs complex to regulate the stability of this complex. Inhibiting
the function of CypD can down-regulate the binding of Grp75 with IP3Rs and VDACs,
affecting the transfer of Ca2+ between the two organelles [65]. FUNDC1 is known for
maintaining the stability of IP3R2 in MAMs by direct binding, and it enhances the level
of contacts and the communication of Ca2+ between the ER and the mitochondria [66].
Presenilin-2 can also promote the connection and the transfer of Ca2+ signals between
the ER and the mitochondria in the presence of Mfn-2; these findings were confirmed by
overexpression and knockdown experiments, which suggested that presenilin-2 works
with the Mfn1/Mfn2 complex [67]. FATE1 can reduce the level of contacts between the ER
and the mitochondria and downregulate the transfer of Ca2+ with an impaired sensitivity
to Ca2+-related apoptosis [68]. In addition to participating in the morphological regulation
of ER, NogoB can increase the gap width of MAMs and affect their function [69]. PERK,
which plays an important role in ERS, can increase the level of connectivity between the
ER and the mitochondria by interacting with Mfn2, and thus promote the transduction of
ERS signals to the mitochondria [70,71]. Although these proteins are not considered to be
directly involved in maintaining the structure of MAMs, they still attract research attention
due to their specific regulatory effects on the structure of MAMs and their involvement in
the pathological processes underlying many neurodegenerative diseases.

4. MAMs and Cell Death

MAMs plays a crucial role in cell homeostasis as mentioned above, besides, recent
studies revealed that MAMs can also influence the cell death events. The death signals
in MAMs attend in multiple forms, such as the transfer of Ca2+ from the ER to the mi-
tochondria, regulation of protein–protein interactions, the translocation of molecules or
the control of lipid metabolism. These processes are described in detail in the following
sections (Figure 2).
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Figure 2. Under stress conditions, endoplasmic reticulum (ER) can act as a sensor and respond immediately. Meanwhile, if
the stress intensity exceeds the adaptability of the ER, it will transmit death signals to mitochondria to initiate death events.
The transduction can go through some pathways as follows: 1.ER perfuse Ca2+ into mitochondria and massive Ca2+ in
mitochondria works as a death signal initiating cell death; 2. translocation of PACS1 from ER to mitochondria, which is
along with the activation and translocation bid; 3. ceramide synthesis and accumulation causing the mitochondrial outer
membrane permeabilization (MOMP), which results in the release of cytochrome c or other pro-apoptotic substances in
inter membranes space. Also, as a molecule downstream of mitochondrial apoptosis, Fis1 can transmit apoptosis signal
back to ER by cleaving BAP31. The ER-mitochondria-ER amplification loop of apoptotic signals can help to coordinate the
death events between the two organelles.

4.1. Ca2+-Mediated Signal Transduction and Cell Death

4.1.1. The Physiological Role of Ca2+

Ca2+ is an important vector for crosstalk between the ER and the mitochondria [72].
The ER, as the most important cellular reservoir of Ca2+, maintains proper Ca2+ level by
Ca2+ pumps SERCAs [73]. SERCAs have varied isoforms, among which the ubiquitous
SERCA2b shows the highest affinity to Ca2+ uptake from the cytoplasm [26]. ER releases
Ca2+ into the cytoplasm via RyRs and IP3Rs. The IP3Rs are more ubiquitously expressed
while RyRs mostly expressed in skeletal muscle, heart and brain [74]. IP3Rs have three
isoforms and all of them can be activated by IP3, Ca2+, Ca2+-binding proteins, ATP, thiol
modification and phosphorylation [75]. Although cytoplasmic Ca2+ can almost pass freely
through the VDACs of the outer mitochondrial membrane, the MCU located in the inner
mitochondrial membrane has a weak affinity for Ca2+ (Kd 15–20 µM), meanwhile, the
concentration of Ca2+ in the cytoplasm fluctuates between 50 and 100 nM [16,76]. The
mechanism responsible for the uptake of cytoplasmic Ca2+ by the mitochondria has been
debated by the academic community for many years. Many models, such as Ca2+ mi-
crodomain hypothesis, was proposed to explain the Ca2+ uptake mechanism [25,77,78].
However, with the deepen understand of the MAMs, especially the IP3Rs-Grp75-VDACs
complex, advancement was made with this respect. When the ER calcium channels are
opened, a hotspot of calcium will be produced in microdomain between the ER and the
mitochondria; this makes it possible for the mitochondria to uptake Ca2+ [16]. In this
process, the IP3Rs-Grp75-VDACs complex plays a crucial role, though there exist some
proteins, such as the MiCU family, MCUR1 and SLC25A23, play regulatory role in the
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work of MCU, which may affect the Ca2+ uptake efficiency, and the elegant mechanism can
be seen in the review by Belosludtsev KN et al. [79].

The presence of Ca2+ in the mitochondrial matrix can play a variety of roles. First, it
can promote the efficiency of the tricarboxylic acid cycle and the electron transport chain
(ETC). Ca2+ is known to increase the activities of pyruvate dehydrogenase, ketoglutarate
dehydrogenase, and isocitrate dehydrogenase, in the tricarboxylic acid cycle [30] and can
directly stimulate ETC-related complexes, thus improving the activity of ATP synthase
and promoting the production of ATP [80,81]. It has also been reported that Ca2+ can
affect metabolism by regulating the activity of glucose transporters [82]. Second, long-
term and high-level Ca2+ overload can induce cell death. Ca2+ can induce the opening
of mPTP, which may result in necrosis [83], or the resultant mitochondrial swelling and
outer membrane rupture in limited MPT (the open of mPTP does not involve the entire
mitochondrial network, and it may appear as “flickering” mode in a small portion of
mitochondria) can result in the release of pro-apoptotic substances such as cytochrome
c and AIF [84–86]. An excessive concentration of Ca2+ in the mitochondria can bind
to cardiolipin in the inner membrane of mitochondria to promote the disintegration of
respiratory chain complex II, thus leading to the release of multiple subunits; this also
induces the production of large amounts of ROS, thereby inducing apoptosis [87]. Like a
double-edged sword, Ca2+ can both promote metabolism and induce cell apoptosis. The
flux of Ca2+ determines which cellular events occur, thus highlighting the importance of
MAMs structure to cells.

4.1.2. The Regulatory Effect of MAMs on Ca2+ Transfer

The IP3Rs-Grp75-VDACs complex is the basis for Ca2+ regulation in MAMs; the
importance of this complex is the maintenance of physical contacts between the ER and the
mitochondria, while enables the combination of IP3Rs and VDACs to overcome the MCU’s
low affinity for Ca2+, thus increasing the sensitivity and efficiency of Ca2+ delivery. Also,
another MAMs-presented protein, SERCAs, is fundamental to regulate the Ca2+ level in
ER, whose activity can affect the Ca2+ flux pass through MAMs.

The IP3Rs-Grp75-VDACs Complex

A variety of proteins regulate the transfer of Ca2+ between the ER and the mitochon-
dria by interacting with the IP3Rs-Grp75-VDACs complex. mTORC2 can accumulate
in MAMs under the stimulation of various growth factors; and mTORC2 in MAMs can
phosphorylate Akt and elevate its activity. Moreover, activated Akt can elevate the phos-
phorylation level of IP3Rs, thus reducing the release of Ca2+ in the ER and antagonizing cell
apoptosis [88–92]. Antagonistically, PML can affect the phosphorylation level and activity
of Akt by elevating the activity of phosphatase PP2A to regulate the function of IP3Rs [93].
As an important protein encoded by tumor suppressor genes, PTEN can counteract Akt
and promote Ca2+ transfer from the ER to the mitochondria, thus increasing the sensitivity
of cells to apoptotic stimuli [94].

As an important player that can affect cell fate, the functional role of the Bcl2 family
may depend on the interaction between Bcl2s and MAMs, at least to a certain extent. Bcl2
and Bcl-xl can directly bind to the central regulatory domain of IP3Rs or indirectly affect
the phosphorylation level of IP3Rs to inhibit the function of IP3Rs; they can also interact
with VDAC1 to reduce the uptake of Ca2+ by the mitochondria [13,95,96]. In addition to
directly inhibiting the activity of IP3Rs [97], Mcl-1, which is also a member of Bcl2 family,
can enhance cellular metabolism by interacting with VDACs to promote the transfer of
Ca2+ [98]. Bok, a pro-apoptotic member of the Bcl2 family, can interact with IP3Rs and
change the ratio of IP3R1 and IP3R2 by cleavage; this process is carried out by caspase-3 and
results in an increased Ca2+ transfer and increased cellular sensitivity to apoptosis [99,100].
More elegant details in this field can be seen in the review by Lewis A, et al. [101].

Sig-1R plays a role in the pathogenesis of a variety of neurodegenerative diseases,
including Alzheimer’s disease, Parkinson’s syndrome, and the lateral sclerosis of associated
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with muscular dystrophy [102]. Sig-1R is an important component of MAMs. A previous
study showed that Sig-1R can be separated from Bip and combines with IP3Rs under
conditions of mitochondrial stress, thus reducing the degradation of IP3Rs and promoting
the transfer of Ca2+ to the mitochondria [103]. Caveolin-1 is known for that it helps to
order the lipid bilayers organization [104]; moreover, it can directly interact with IP3Rs
to promote the release of Ca2+ [105], while Ras can affect the subcellular distribution of
Caveolin-1, thereby reducing the transfer of Ca2+ [106]. During the process of apoptosis, the
tumor suppressor BRCA1 can be recruited to the surface of the ER in an IP3Rs-dependent
manner and bind directly to IP3R1 to increase its sensitivity to IP3 and promote the transfer
of Ca2+ to the mitochondria [107]. WFS1, NCS1, and IP3Rs, can form a complex to increase
the connectivity between the ER and the mitochondria by enhancing Ca2+ transfer [108].
Research has shown that the mutation of WFS1 is responsible for a variety of abnormalities
in the neurological and endocrine systems [109]. Tespa1 can be incorporated in MAMs
and participate in the regulation of Ca2+ transfer by way of forming a complex with
IP3Rs and Grp75. The knockdown of Tespa1 can down-regulate the level of Ca2+ in the
mitochondria and cytoplasm [110,111]. ERO1α is also known to increase the activity of
IP3Rs and promote apoptosis [112].

SERCAs

As the only channel responsible for the uptake of Ca2+ in the ER so far, SERCAs can
also aggregate in MAMs. Furthermore, a variety of proteins in MAMs can regulate the
function of SERCAs and affect the transfer of calcium signals. When incorporated in MAMs,
P53 can change the redox state of SERCAs and promote its functional activity, thereby
elevating the level of Ca2+ in the ER; this increases the flux of Ca2+ to the mitochondria,
and promotes the occurrence of apoptosis [113,114]. TMX1 can negatively regulate the
function of SERCA2b, and tumor cells with low expression levels of TMX1 exhibit higher
levels of Ca2+ in the ER [115,116]. The anti-apoptotic protein Bcl-2 can directly bind to
SERCAs to change its conformation, thereby down-regulating its functional activity and
inhibiting the enrichment process of Ca2+ in the ER [117]. SEPN1 and ERO1α antagonize
each other and work by regulating the redox state of SERCA2. SEPN1 can down-regulate
the cysteine oxidation level of SERCA2 to maintain the stability of SERCA2 function [118].

In addition, 25 transcriptional variants of SERCA1 were detected in normal liver cells,
among which 8 clones were found to be characterized by exon 11 splicing, named S1Ts.
Further study revealed that S1Ts are expressed in different human tissues, such as adult
pancreas, liver, kidney, lung, and placenta and fetal kidney, liver, brain, thymus [119]. S1Ts,
which are localized in MAMs, can be induced by ER stress through PERK-eIF2α-ATF4
pathway and whose induction triggers Ca2+ leak from ER by forming homodimers in the
ER membrane, which promotes the transfer of Ca2+ to mitochondria [119,120].

MCU

Although MCU and its regulatory proteins play crucial role in the uptake of Ca2+ by
the mitochondria [79], there is no report showing specific accumulation of MCU at MAMs
structure. However, MAMs can still influence the efficiency of MCU in Ca2+ uptake. Since
the transport of Ca2+ by MCU is highly dependent on the “hot spot” effect of ER Ca2+

release, the MAMs proteins that can influence the spatial connection between the ER and
the mitochondria (as detailed above) may influence the Ca2+ delivery efficiency by MCU
indirectly (Table 1).
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Table 1. Proteins that play roles in MAMs structure and function regulation.

Functions in MAMs Proteins Other Functions

α-Synuclein Unknown
CypD Regulation of MPTP [121]

DJ-1 Antioxidant stress, chaperon activity, transcriptional
regulation, degradation of proteins [122]

FATE1 Tolerance to cellular stress [123]
FUNDC1 Acts as mitophagy receptor [124]

Structure maintenance NogoB Regulation of ER morphology [69]
PERK Participating in ERS [125]

PDK4 Regulation of cellular metabolism and mitochondrial
function [126]

Presenilin-2 Involved in cell adhesion, apoptosis and several
cell-signaling processes [127]

TDP-43 and FUS RNA processing and transportation [128]
TG2 Modification of proteins [63]

TpMs Unknown
Akt Regulation of cell growth and differentiation [129]
Bcl2 Regulation of apoptosis [13]

Bcl-xl Regulation of apoptosis [13]

Bok Regulation of apoptosis and mitochondrial
fusion/fission [130]

BRCA1 A tumor suppressor, repair of DNA damage [107,131]

Caveolin-1

Participating in the regulation of the cell cycle and
cellular senescence, proliferation and invasion, cell

death as well as membrane composition, lipid
homeostasis and metabolism [132]

ERO1α Protein folding [133]
MCL1 Regulation of apoptosis [13]

Regulating function of
IP3Rs mTORC2 Participating in multiple cellular processes such as

proliferation, apoptosis, and differentiation [134]

NCS1 and WFS1

Contributing to the maintenance of intracellular calcium
homeostasis and regulation of calcium-dependent
signaling pathways [135]; regulation of ER stress

signaling [108]

PML Functions as a tumor suppressor and also involved in
multiple cellular activities [136]

PTEN Tumor suppressor and metabolic regulator [137]

Ras Participating in proliferation, differentiation, apoptosis,
senescence, and metabolism [138]

Sig1-R Regulation of ER stress, function of mitochondria, and
oxidative stress, etc., [139]

Tespa1 signaling molecule in thymocyte development [140]
Bcl2 Regulation of apoptosis [13]

CHOP Participating in ER stress and apoptosis regulation [141]

Regulating function of SERCAs ERO1α and SEPN1
Regulation of protein folding and secretion and

inhibiting apoptosis, and regulates tumor progression
[142]; regulation of oxidative stress [143]

P53 Multiple roles in cellular activities [144]
PMX1 Participating in protein folding [116,145]
S1Ts Variants of SERCA1 [119,120]

4.2. PACS2 Participates in the Transduction of Apoptosis Signals from the ER to the Mitochondria

PACS2 is a sorting protein located in the ER membrane which participates in the
regulation of ER homeostasis, lipid synthesis, and the structural connection between the
ER and the mitochondria. In addition, PACS2 mediates the process of apoptotic signal
transduction from the ER to the mitochondria. High levels of ERS can cause translocation
of the full-length Bid-bound PACS2 from the ER to the mitochondria; Bid is then cleaved on
the surface of the mitochondria by caspase-8. Later, Bid interacts with Bax/Bak to promote
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permeability of the outer membrane of the mitochondria and the release of cytochrome c,
thus initiating apoptosis [21].

4.3. The Role of LIPID Metabolism in the Transduction of Apoptosis Signals

MAMs plays a central role in lipid metabolism. A variety of lipids are synthesized
in MAMs; some enzymes involved in the synthesis of triglyceride, ceramide, and sterol
(fatty acid CoA ligase (ACS) 1/4) [146], acyl-coenzyme A: cholesterol acyltransferase-1
(ACAT1/SOAT1) [147] are known to exist only in MAMs [148]. Several lipid metabolites
can affect cell fate. Of these, ceramide is the most typical. Under normal circumstances,
ceramide is synthesized by the ceramide synthase pathway. However, under stress condi-
tions (e.g., heat shock, TNF-α, Fas, chemotherapeutics, toxins, radiation and other factors)
ceramide can be synthesized rapidly from sphingomyelin in the nerve sheath phospho-
lipase [149]. The accumulation of ceramide can not only regulate and interact (directly
or indirectly) with a variety of molecules involved in the transduction of apoptotic sig-
nals transduction, such as protein phosphatase 1A/2A, protein kinase C, and NF-κB,
ras [150–154], a significant accumulation of ceramide can result in the formation of pores
on the outer mitochondrial membrane, induce the release of pro-apoptotic substances, such
as cytochrome c, in the intermembrane space of mitochondria [155,156], and transfer stress
signals from the ER to the mitochondria. Inhibiting the activity of ACS1/4 can reduce the
synthesis of ceramide and reduce the occurrence of apoptosis [157].

4.4. The Fis1-BAP31 Complex Is Involved in the Transduction of Apoptosis Signals
4.4.1. The Relationship between Fis1 and Apoptosis

As the receptor for Drp1 during mitochondrial fission, Fis1 not only plays an impor-
tant role in mitochondrial fission, but also participates in the process of apoptosis. First, the
downregulation of Fis1 can reduce the release of cytochrome c in apoptotic cells and can
inhibit the translocation of pro-apoptotic Bcl2 family members to the mitochondria [158].
Second, the overexpression of Fis1 can induce cell apoptosis via a Bax/Bak-independent
process [159,160]. Although many studies have found that mitochondrial fission is often
accompanied by the release of mitochondrial apoptosis-related substances, it is currently
believed that when considering the relationship between mitochondrial fission and apopto-
sis, mitochondrial fission is the result of cell apoptosis rather than the cause. The results of
multiple time-lapse microscopy experiments have confirmed that the release of cytochrome
c from mitochondria when stimulated with apoptosis-inducing drugs occurs earlier than
mitochondrial fission, and that the release of cytochrome c can also occur in both reticulated
and tubular mitochondria [161,162]. Therefore, Fis1 is involved in the process of apoptosis
and plays a specific role that occurs downstream of mitochondrial apoptosis.

4.4.2. Fis1-BAP31 Participates in Apoptosis Signal Transduction from the Mitochondria to
the ER

As a participant in the process of apoptosis, Fis1 can connect with BAP31 in MAMs
to transmit mitochondrial apoptotic signals to the ER. BAP31 is an important chaperone
protein on the ER membrane and is involved in the degradation of misfolded proteins
and apoptosis within the ERS pathway. When Fis1 binds to BAP31, it can cleave BAP31 to
produce p20 BAP31; as a pro-apoptotic protein, p20 BAP31 can convert procaspase-8 into
an functional form that can truncate Bid and initiate apoptosis [21,163]. The activation of
p20 BAP31 can also promote the transfer of Ca2+ from the ER to the mitochondria, thus
showing that apoptosis signals can return back to the mitochondria [164,165], thus forming
an amplification loop of apoptotic signals between the ER and the mitochondria that can
help to coordinate the functions of these two organelles.
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5. Methods of Detection
5.1. Fluorescence Microscopy

Fluorescence microscopy provides a preliminary solution for studying the structure
of MAMs. Some researchers have used the co-localization of markers for the ER and
mitochondria to study the connectivity between these two organelles [49,53]. However, in
confocal fluorescence microscopy, the resolution of the z-axis is only 700 nm. Even though
the most advanced microscopes can reach 300–400 nm [166], this is still not sufficient to
measure the spatial gaps in MAMs (usually less than 100 nm). This means that results ob-
tained via fluorescence microscopy may be questionable, although fluorescence microscopy
still has certain advantages. First, fluorescence microscopy can observe living cells, making
it possible to study the dynamic structure of MAMs [167]; second, with the application of a
variety of fluorescent labels and proteins, the study of MAMs can be more targeted and
efficient [38]. Consequently, fluorescence microscopy remains an indispensable method to
study MAMs.

5.2. Transmission Electron Microscopy

Transmission electron microscopy is an irreplaceable tool for studying the structure
of MAMs. The high-resolution imaging of transmission electron microscopy makes it
possible to quantify the structure of MAMs [168]. At the same time, three-dimensional
reconstruction technology after electron tomography can rebuild the structure of MAMs
between the ER and mitochondria, making it possible to study the spatial morphology of
MAMs [169–171]. This can provide a new perspective in the study of MAMs besides gap
measurement and contact point quantification [144,172]. In addition, the combination of
fluorescence microscopy and electron microscopy technology can be highly complementary
and allow the study of both structure and function [159].

5.3. Gradient Centrifugation

Gradient centrifugation is a classic method for studying MAMs [173]. In combination
with methods such as immunoblotting, immunofluorescence, mass spectrometry, and
proteomics, the molecular composition of MAMs can be analyzed qualitatively and quanti-
tatively [33]. In this process, gradient centrifugation is an important means to separate the
structure of MAMs. However, there are also reports describing the use of biotin to separate
and purify the structure and composition of MAMs and thus allow the qualitative and
quantitative investigation of the composition of MAMs [174,175].

5.4. The Functional Evaluation of MAMs

The functional evaluation of MAMs can indirectly reflect the changes in the level of
contact between the ER and the mitochondria. The synthesis of phospholipids and their
transportation between the ER and the mitochondria, or the flux of Ca2+ transfer from the
ER to the mitochondria, are usually used as indicators to reflect changes in the level of
connectivity between the ER and the mitochondria [176,177].

6. Conclusions

As the most direct communicating medium between the ER and the mitochondria,
MAMs play an important role in coordinating the multiple array of functions carried out
by these two organelles, particularly the integration of apoptotic signals. The ER is the
main site for intracellular protein modification, Ca2+ storage, and lipid synthesis. It is also
evident that the ER is more susceptible to various stresses, and therefore plays a key role as
a stress sensor and provides an initial response to stress. Mitochondria play an irreplaceable
role in important cellular processes such as energy metabolism and apoptosis; consequently,
it is logical that the mitochondria work downstream of the stress response. MAMs are
located directly between these two organelles and are tightly involved in the transduction
of stress signals from the ER to the mitochondria; in some cases, they transmit apoptotic
signals back to the ER. This not only ensures the complementarity of the functions between
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the two organelles, but also amplifies apoptotic signals between the two organelles, thus
promoting coordinated functional responses. Clarifying this process will provide a new
perspective for the study of pathological mechanisms, such as tumors, neurodegenerative
diseases, and aging.

Although some progress has been made in the study of MAMs over recent years, there
are still some uncertainties that need to be addressed. First, in terms of structure, some
proteins are directly involved in the maintenance of MAMs structure, while others work as
regulators for structural maintenance. However, little is known about such proteins or how
they can be delineated between the two organelles with respect to functionality. Second, in
terms of function, especially in the regulation of Ca2+ transfer, the width of the gap between
the ER and the mitochondria plays an important role. However, interfering SERCAs or
IP3Rs can also affects the transfer of Ca2+. It is still not clear whether the proteins that can
affect Ca2+ transfer in MAMs work by changing the tightness of the gap within MAMs or
by disturbing the function of SERCA/IP3Rs. These unresolved issues will be an important
direction for future research.
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Abbreviations

ACAT1/SOAT1 Acyl-Coenzyme A: Cholesterol Acyltransferase-1
ACS Fatty acid CoA ligase
AD Alzheimer’s disease
AIF Apoptosis inducing factor
Akt Serine/threonine-protein kinases
ALS Amyotrophic lateral sclerosis
ATAD3A ATPase family AAA domain-containing protein 3A
ATF4 Activating Transcription Factor 4
BAP31 B-cell receptor associated protein 31
Bip Immunoglobulin heavy chain binding protein
BRCA1 Breast cancer susceptibility gene
CypD Cyclophilin D
IRE1 Inositol-requiring enzyme 1
eIF2α eukaryotic Initiation Factor 2α
ER Endoplasmic reticulum
ERO1α Endoplasmic reticulum oxidoreductase 1-α
ERS Endoplasmic reticulum stress
ETC Electron transport chain
FADD Fas-associating protein with a novel death domain
FasL Fas ligand
FATE1 Fetal and adult testis expressed 1
Fis1 Mitochondrial fission 1
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FTD Frontotemporal dementia
FUNDC1 FUN14 domain containing 1
FUS Fused in sarcoma
Grp75 75 KDa Glucose-regulated protein
GSK-3b Glycogen synthase kinase 3 beta
IP3Rs Inositol1,4,5-trisphosphatereceptors
MAMs Mitochondria associated membranes
MCU Mitochondrial Ca(2+) uniporter
Mfn1/2 Mitofusins 1/2
MOSPD2 Motile sperm domain-containing protein 2
mPTP Mitochondrial permeability transition pore
mTORC2 Mammalian target of rapamycin complex2
NCS1 Nucleobase cation symporter-1
NF-κB Nuclear factor kappa B
PACS2 Phosphoacidic cluster sorting protein 2
PD Parkinson’s disease
PDK4 Pyruvate dehydrogenase kinase 4
PERK Protein kinase R (PKR)-like endoplasmic reticulum kinase
PTPIP51 Protein tyrosine phosphatase interacting protein 51
REEP1 Receptor expression-enhancing protein 1
ROS Reactive oxygen species
RyRs Ryanodine receptors
SEPN1 Selenoprotein N
SERCAs Sarco(endo)plasmic reticulum calcium-ATPases
Sig-R ECF sigma factor sigma(R)
S1Ts Exon 4 and/or exon 11 spliced SERCA1 splice variants
TDP-43 TAR DNA binding protein 43
TG2 Transglutaminase 2
TMX1 Transmembrane thioredoxin-related protein 1
TNFR1 Tumor necrosis factor receptor 1
TpMs Trichoplein keratin filament binding protein
TRADD TNF receptor-associated death domain
VABP Vitamin A binding protein
VDAC Voltage-dependent anion channel
WASF3 Wiskott-Aldridge syndrome family 3
WFS1 Wolfram syndrome type 1
XBP1 X-box binding protein 1
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