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Abstract: At frequencies below 1 GHz, conventional microwave absorbers are limited by their large
thickness or narrow absorption bandwidth; therefore, new techniques for efficient absorption for the
lower microwave band are highly demanded. Here, we propose and fabricate an ultrathin tunable
metamaterial absorber combining magnetic nanomaterials and metamaterial resonant structures for
use in the lower microwave band (P band). The proposed absorber utilizes electrically controlled
varactors to enable frequency tunability and magnetic nanomaterials as dielectric slabs for thickness
reduction and bandwidth expansion at low frequencies. By adjusting the bias voltages of varactors,
the resonant behavior of the absorbing structure can be dynamically tuned that covers a continuously
tunable absorbing band from 0.41 to 1.02 GHz (85.3% in fractional bandwidth) with at least 10 dB
reflection reduction. The total thickness of this absorber is 5 mm, which is only about 1/146 the
wavelength of the lowest frequency. The agreement between the simulated and measured results
validates the proposed design, and the structure has good angular stability that may be used as
complex targets for low-RCS applications.

Keywords: metamaterial absorber; ultrathin; tunable absorption; magnetic nanomaterial

1. Introduction

Microwave-absorbing materials are continuously attracting researchers’ interest due to
their potential applications in communication and defense fields. During the past few decades,
various types of absorbing materials have been proposed, such as carbon-based absorbing
materials [1], magnetic absorbers [2,3], perfect absorbers based on metamaterials [4,5], Salis-
bury absorbers [6,7], Jaumann absorbers [8], and circuit analog absorbers [9]. However,
the effective working frequencies of these absorbers are typically above 1 GHz, because
the absorption of long electromagnetic (EM) waves (e.g., below 1 GHz) requires a large
material size or thickness. Currently, with the development of microwave communication
and detection technology, P band microwaves, ranging from 300 to 1000 MHz, have been
widely used in wireless communication and defense radar systems because of their po-
tentials for wide coverage and strong wave penetration. As the Internet of Things (IoT)
applications gradually emerge, sub-GHz frequency wireless communication occupies a
dominant position. Hence, the EM interference or EM compatibility issues and radiation
protections for the P band microwaves are of great importance. On the other hand, for
defense applications, radars working in the P band have become a research focus, because
the P band microwaves have an anti-stealth advantage [10], resulting in an urgent demand
for high-efficiency EM absorbers working in the P band.

Due to the increased wavelength, a large size or thickness accompanied with heavy
weight is required for conventional absorption materials to achieve EM energy absorption
in the P band, which limits their practical applications. Metamaterial absorbers (MMAs)
composed of subwavelength resonant unit cells have attracted extensive attention due to
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their thin thickness, controllable and scalable working frequencies, as well as excellent
absorption performance [11–16]. For examples, Yoo et al. [17] proposed a flexible and
elastic MMA supporting an absorption peak at 400 MHz in the P band. Khuyen et al. [18]
presented an ultra-subwavelength thickness MMA achieving three different absorption
peaks at very low frequencies. However, the narrow absorption band for the designed
absorbers will prevent their wide practical applications.

Rozanov analyzed the relationship between the thickness of the metal-backed absorber
and its absorption bandwidth [19], and he pointed out that magnetic substrates can provide
a broadband absorber with a smaller thickness than dielectric substrates. Thus, in some
studies, absorbers have been designed based on the combination of magnetic materials
and metallic resonant structures (e.g., the frequency selective surface (FSS), an artificially
designed structure working in a certain band) to reduce the overall thickness while main-
taining broadband absorption performance [20–22]. However, they still could not operate
for the lower microwave frequency band, especially for the P band. By introducing tunable
components, such as varactors [23–26] and PIN diodes [27,28], into the metamaterial ab-
sorbers design, they can exhibit tunable absorption bandwidth upon external stimulants of
bias voltages. As the bias voltages change, the absorber impedance matches the free space
at different frequencies, leading to high-efficiency absorption covering an effective broad
working bandwidth that may be used for lower microwave applications. For example,
Zhang et al. [29] proposed an ultrabroadband double-side and dual-tuned absorber for
ultrahigh-frequency (UHF) bands with a total thickness of about 25 mm. However, it
remains still challenging to further reduce the absorber thickness and practically realize
high-performance absorption in much lower frequencies.

Here, we propose an ultrathin tunable metamaterial absorber based on the co-design
of magnetic nanomaterials, metallic structure resonances, and active components (i.e.,
varactors with tunable capacitances), which could be potentially developed as self-adaptive
or intelligent absorbers with smart high-speed tunability when it is integrated with the
detection system. The utilization of magnetic nanomaterials can significantly reduce the
overall thickness of the absorber, which is combined with the varactors to enable an active
control of the wave absorption. As a result, a continuously adjustable absorption above
90% can be achieved from 0.41 to 1.02 GHz within a total thickness of only 5 mm, or
1/146 of the lowest operating wavelength. Both equivalent circuit method (ECM) and
full-wave simulations are performed to analyze the working mechanism. Experiments are
carried out to verify the excellent absorption performance of the metamaterial absorber,
and agreements are observed between theoretical, simulated, and measured results. The
proposed general design method could be utilized for the co-design of versatile resonant
structures and other magnetic materials, which may find applications such as scattering
reduction, EMC, etc.

2. Design and Simulation
2.1. EM Properties of Magnetic Nanomaterial

Magnetic materials can effectively extend the absorption bandwidth within a small
thickness, because their increased permeability not only improves the possibility of achiev-
ing ultrawideband impedance matching to free space but also provides extra magnetic
losses compared with dielectric materials. Making full use of high microwave permeability,
high magnetic losses, and an appropriate ratio between the permeability and permittivity,
the magnetic material can achieve good absorption performance [30]. Considering these,
the customized magnetic nanomaterial, a mixture of carbonyl iron powders and resins,
is employed for designing the metamaterial absorber. The relative complex permeability
(µr1 = µ′r1 − jµ′′r1) and permittivity (εr1 = ε′r1 − jε′′r1) of the magnetic nanomaterial are
shown in Figure 1a, which is obtained by using the coaxial-line method and a vector
network analyzer (Agilent N5244). The scanning electron microscopy (SEM) image of
the magnetic nanomaterials is shown in Figure 1b, and it is obvious that carbonyl iron
powders on the nanometer scale are uniformly distributed in the resin, which provides
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homogeneous and stable material properties. Sufficient carbonyl iron powders mixed in the
resin make the magnetic material possess high real and imaginary parts of the permeability,
which will produce large magnetic losses when interacting with the EM wave. As depicted
in Figure 1, the measured results show that the magnetic nanomaterial characterizes the
frequency-dependent high permeability of both real and imaginary parts, indicating its
potential for the high absorption design [31].
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Figure 1. (a) The EM parameters of the magnetic nanomaterial. (b) The SEM image of the magnetic
nanomaterial.

2.2. Element Design

The proposed absorber is a combination of magnetic nanomaterials and tunable reso-
nant structures, which is backed by a metallic plate to totally block the wave transmission.
As Figure 2a plots, the metallic structure shaped into periodic frame structures is embedded
in magnetic materials, and the magnetic material is divided into four cuboids, with the
thickness of h3. The periodic lengths of the unit cell in the x- and y-direction are p1 and p2,
respectively. Figure 2a plots the perspective view of the designed absorber unit cell. The
frame structure with a thickness of h2 is placed on the bottom magnetic material layer with
the thickness of h1, and the dielectric layer (F4B) supporting metallic pattern is chosen with
a dielectric constant of 2.65 and a loss tangent of 0.001. The metallic structures attached to
the substrate are made of copper film with a conductivity of 5.8 × 107 S/m and thickness
of 0.018 mm. Four varactors (SMV2020-079LF) whose capacitance can vary from 3.2 to
0.35 pF under the input bias voltage of 0–20 V are used to connect the split gap of the metal
strips along the x- and y-direction, as shown in Figure 2c. The widths of the substrate
frame and the metal strips are w1 and w2, respectively. The center of the metal strips on
the upper side of the dielectric substrate is connected to the bias line on the other side
of the substrate by a metallic via hole, as illustrated in Figure 2d. Commercial software
of CST Microwave Studio is employed to perform numerical simulations of the unit cell
structure. In the full-wave simulations, Floquet boundary conditions are applied to the x-
and y-direction, while an open (add space) boundary is applied to the z-direction, with
the incidence propagating along the z-direction. The mesh size is set to be automatically
adjusted and iterated with a convergence threshold value of 0.01 (linear), which refers to
the maximum deviation between the last two curves calculated by the solver. Via careful
optimization, the final parameter values of the designed absorber are listed in Table 1.
The total thickness of the absorber is 5 mm: approximately a 1/146 wavelength compared
to the lowest working frequency. In the simulation, the absorbance of the absorber can
be calculated as A(ω) = 1 − T(ω) − R(ω), where the transmittance T(ω) = |S21|2 and re-
flectance R(ω) = |S11|2 are obtained from the frequency-dependent complex S-parameters.
The transmittance T(ω) can be suppressed to zero due to the existence of metallic ground.
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Hence, the absorption can be simplified to A(ω) = 1 − R(ω), which indicates that the
absorption performance is only determined by the reflectivity.
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Figure 2. (a) Perspective view of the designed unit cell with a total thickness of 5 mm. (b) The
construction of the unit cell of the proposed metamaterial absorber. (c) Top view of the upper layer.
(d) Back view of the upper layer.

Table 1. Parameters of the proposed MMA.

Parameters h1 h2 h3 p1 p2

Value (mm) 3 2 2 88 54
Parameters w1 w2 w3 w4 Total thickness
Value (mm) 2 1 42 25 5

The simulated reflectivity of the absorber with various capacitances is compared with
that of the magnetic absorber without metallic structures, and the results are plotted in
Figure 3. Clearly, the absorber composed of bare magnetic materials can only realize an
absorption peak above 1 GHz. After introducing the frame-shaped structure, the resonant
peak shifts toward lower frequencies of the P band. In particular, as the capacitance of
varactors increases, the absorption frequency shows a redshift, but the resonant depth
and bandwidth decrease. Compared with results for y-polarization (solid line) normal
incidence, the absorption bandwidth under x-polarization (dotted line) is slightly reduced,
because the bias lines for inputting external voltages are designed along the x-direction
(Figure 2d) that have an influence on the absorption performance. Despite this, the center
operating frequencies are nearly the same for both polarizations that can be continuously
tuned from 0.41 to 1.02 GHz with −10 dB reflectivity, approximately approaching 85.3%
fractional bandwidth.
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2.3. Analysis of the Working Mechanism

To further investigate the energy dissipation mechanism of the absorber, we take
the case of the structure with the varactor capacitance of 3.2 pF under the y-polarization
incidence as an example to analyze the EM fields and power loss distributions at the two
resonant frequencies. The first column of Figure 4 shows the electric field, magnetic field,
and power loss distributions at 0.413 GHz, which is the first resonance observed from
the reflectivity curve. At this frequency, the metallic strip structures along the y-direction
resonate with the incident wave, and EM fields are concentrated in the place where the
varactors are loaded, as illustrated in Figure 4a,b. Figure 4c shows that the power loss
distributions are concentrated in the magnetic materials around the resonance of the
metallic frame structures. The frame structure is embedded in the magnetic cuboids so
that the excited EM field can be better dissipated through magnetic losses, leading to
a high absorption in P band. Moreover, the absorption frequency is determined by the
varactor capacitance, and then, we can adjust the absorption frequency band to fit different
working requirements by electrically tuning the voltage applied onto the structure. The
second absorption frequency of the reflectivity curve is 1.43 GHz, and the EM fields and
power loss distributions are plotted in the second column of Figure 4. There is no obvious
concentration of EM fields, and the power loss is distributed at the junction between
magnetic material stepped structures along the polarization direction, as shown by the
yellow dotted circle in Figure 4c. The magnetic material layer of the unit cell can be
divided into four stepped structure components, which are marked with a red dotted
rectangle in Figure 4c. The gap between magnetic material elements leads to the coupling
and loss of incident electromagnetic waves, resulting in an absorption at this frequency.
According to the above analysis of the field and power loss distributions, it is obvious that
the active frame-shaped structure and magnetic material components work together to
achieve P band absorption, while the second absorbing frequency is mainly attributed to
the loss in magnetic materials.
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Figure 4. Distributions of (a) electric field, (b) magnetic field, and (c) power loss under the
y-polarization normal incidence at 0.413 GHz and 1.43 GHz. The cross-section is cut along the
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The ECM can be used to provide clear insight into the working mechanism from
a circuit point of view. Different to the above field analysis that focuses the origins of
the structural resonant behaviors, ECM provides analytical predictions of the absorption
performance. Previous ECM analysis is based on bare dielectric substrates without magnetic
materials. For the lossy substrate with complex EM parameters (i.e., the magnetic material
in this study), the equivalent circuit model will be more intricate, and additional loss
induced by magnetic materials should be considered in a dispersive form because the EM
parameters of magnetic materials are frequency-dependent. The general equivalent circuit
model of the proposed absorber is established as shown in Figure 5a, which consists of
transmission lines and RLC components. The bottom magnetic nanomaterial layer and
the second layer composed of the combination of F4B dielectric substrates and magnetic
materials can be treated as fractions of the transmission line with certain characteristic
impedances Z1 and Z2, respectively. The surface metallic strips loaded with varactors are
modeled as a series-connected RLC circuit, as shown in the red dashed box in Figure 5a.
Since a ground metallic plate is used as the bottom layer, the equivalent circuit model is
terminated by a short load.
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According to transmission line theory, when looking from port ‘a’ (2 mm apart from
the short load) toward the bottom ground plane, the input impedance Za can be derived as:

Za = j
√

µr1

εr1
Z0 tan(k1h1), (1)

where Z0 = 377 Ω represents the characteristic impedance of free space and k1 = ω
√

ε0µ0εr1µr1
is the wavenumber in the medium. εr1 and µr1 are the relative permittivity and perme-
ability of the magnetic material, respectively, which vary with the frequency, as shown in
Figure 1. Similarly, we can obtain the effective impedance when looking at port ‘b’ toward
port ‘a’, and the input impedance Zb is:

Zb =

√
µr2

εr2
Z0 ×

Za + j
√

µr2
εr2

Z0 tan(k2h2)√
µr2
εr2

Z0 + jZa tan(k2h2)
, (2)

where εr2 and µr2 are the equivalent permittivity and permeability of the second layer, and
k2 = ω

√
µ0ε0µr2εr2 is the wavenumber in this medium. The equivalent EM parameters are

calculated by the following equations:

εr2 = ε′r2 − jε′′r2, µr2 = µ′r2 − jµ′′r2, (3)

ε′r2 = m1ε′r1 + (1−m1)ε
′
e, ε

′′
r2 = m1ε

′′
r1 + (1−m1)ε

′′
e , (4)

µ′r2 = m1µ′r1 + (1−m1)µe, µ
′′
r2 = m1µ

′′
r1, (5)

where m1 is the volume ratio of the magnetic materials to the total second layer of the
composite substrate. Additionally, ε′e= 2.65, ε

′′
e = 0.001, and µe = 1 are the EM parameters

of the F4B dielectric layer used for supporting the metallic frame structure.
For the surface structures of the top layer, LF1 and RF1 are equivalent circuit parameters

of metal strips, while LF2 and RF2 are equivalent circuit parameters of metal strips with the
split. The split on the metal strips is modeled as CF and RF3 in parallel connection to the
varying capacitance Cv of varactor. The simplified model of the varactor Cv is shown in
Figure 5b, where R = 2.5 Ω, L = 0.7 nH, and C varies from 0.35 to 3.2 pF according to the data
sheet. Different from the traditional equivalent circuit model analysis of metallic structures
with negligible loss, here, additional complex resistors RF1 and RF2 should be added to the
circuit model due to the loss of magnetic substrates. Because the equivalent permittivity
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(εr2) and permeability (µr2) of the composite substrate under the surface structures change
with the frequency and the current excited by the incident wave on the metallic structures
will be coupled and interact with the composite substrate, the equivalent RLC parameters
operate in a frequency-dependent manner that acts as a function of the EM parameters of
the magnetic substrate [32]:

LF1 = A1µ0(µ
′
r2 + 1) nH, RF1 = A2µ0µ

′′
r2 f Ω, (6)

LF2 = A3µ0(µ
′
r2 + 1) nH, RF2 = A4µ0µ

′′
r2 f Ω, (7)

CF = A5ε0
(ε′r2 + 1)2 + ε

′′
r2

2

ε′r2 + 1
pF, RF3 =

A6

ε0

ε
′′
r2

((ε′r2 + 1)2 + ε
′′
r2

2) f
Ω. (8)

The coefficients A1 to A6 are constant values determined by the overall absorber
structure. During the modeling process, they are optimized by fitting the simulated reflec-
tion curves through a genetic algorithm, and the optimized values are: A1 = 4.98 × 106,
A2 = 1.042 × 10−2, A3 = 5.03 × 106, A4 = 1.011 × 10−2, A5 = 1.244 × 109, A6 = 99.91.

Considering the surface structures of the proposed absorber as an effective impedance
ZF, the total input impedance of the absorber Zin can be written as

Zin =
ZFZb

ZF + Zb
. (9)

Then, the reflection coefficient is calculated by

R =

∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣. (10)

The above equations reveal the dependence of the reflection coefficient on the struc-
tural geometric parameters and EM properties of the substrate materials. The equivalent
circuit model validates that the reflectivity curve of the first resonant peak calculated by the
ECM is consistent with the CST simulation, as shown in Figure 5b. The second absorption
peak, however, is mainly attributed to interaction between magnetic nanomaterial elements,
as discussed in the field analysis; thus, ECM cannot precisely calculate its absorption perfor-
mance. This explains why the reflection curves do not agree well at the second absorption
peak around 1.5 GHz.

2.4. Angular Performance

As angular sensitivity is essential for practical applications of microwave absorbers,
we also investigate the reflection performance of the absorber under different oblique
incident angles with various varactor capacitances, as shown in Figure 6. Both transverse
electric (TE) and transverse magnetic (TM) polarized incidences are studied. For the
TE mode incidence, the electric vector is perpendicular to the incident plane, while the
magnetic vector is perpendicular to the incident plane for the TM mode. We can observe
from Figure 6a that for TE polarized incidence, the absorption performance decreases
with the increase in the incident angle, but it can still achieve reflectivity nearly below
−10 dB until the incident angle up to 40◦ for all the tunable frequencies. Meanwhile, for
the TM mode case, the absorbing efficiency is enhanced when increasing the incident
angle. Such a difference between TE and TM polarized incidences is due to that when the
incident angle increases, the electric and magnetic vectors of the TE polarized incidence
change quite differently from those of the TM polarized incidence. For the TE wave, the
magnetic field will gradually rotate out of the xoy plane as the incident angle increases;
thus, the effective magnetic response of the unit cell is reduced, which will decrease the
absorbing performance of the structure because the absorber mainly relies on magnetic
losses. However, the incident magnetic field can remain parallel to the xoy plane and
achieve in-plane interaction with the structure, while the electric field gradually rotates out
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of the plane as the incident angle increases for the TM mode. The effective electric response
of the unit cell is accordingly reduced, which contributes to the enhancement of absorption
for oblique TM waves [33]. The reflectivity curve shows good angular stability in the range
of 0◦ to 40◦ for both TE and TM polarization, indicating the good angular performance of
the metamaterial absorber.
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2.5. Performance Evaluation

The proposed metamaterial absorber can be treated as an effective medium, and its
effective EM parameters can be retrieved from simulated reflection (S11) and transmission
(S21) data via a homogenization algorithm [34,35]. Because the absorber is backed by the
ground metallic plate, to obtain the transmission results, here, four small holes (radius of
1 mm) are opened at the corners of the ground metallic plate to allow small transmission as
a perturbation. Although the transmission is very small, its phase and amplitude responses
are sufficient for the parameter extraction. The retrieval formulas are as follows [36]:

n =
1
kd

cos−1
[

1
2S21

(1− S2
11 + S2

21)

]
, (11)

z =

√√√√ (1 + S21)
2 − S2

21

(1− S21)
2 − S2

21

, (12)

εr = n/z, µr = nz, (13)

where n and z are the effective refraction index and impedance, respectively, and d is the
total thickness of the structure. Then, the retrieved constitutive parameters and effective
wave impedance of the designed absorber under the y-polarized normal incidence with
different loaded capacitors are shown in Figure 7, and the gray region represents the
absorption frequency band (below −10 dB).

Based on the effective medium description, theoretical requirements should be satis-
fied by the effective parameters for an electromagnetic absorber to achieve near-perfect
absorption [37]: {

Re(εr) = Re(µr)

Im(εr) = Im(µr)� 1
kd

. (14)
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capacitors of the absorber.

This indicates that lower-frequency absorption is more difficult when simultaneously
requiring a thicker thickness or larger imaginary parts of the effective parameters, because
the wave vector k is proportional to the frequency. In addition, it should be noted that
Equation (14) cannot be strictly satisfied at all frequencies, owing to the inherent constraints
set by the Kramer–Kronig relation [38], which links the real and imaginary parts of the
effective permittivity and permeability over the whole frequency range. For the proposed
absorber, as shown in Figure 7a, the imaginary parts of the effective EM parameters are
large due to the magnetic nanomaterial, and the real (solid line) and imaginary (dotted
line) parts of εr and µr are equal, respectively, in different frequency bands (gray region)
with different loaded capacitances; thus, the absorption resonances are changed by varying
the varactor capacitance to meet the requirements of near-perfect absorption at different
frequencies. Therefore, compared with nonmagnetic or passive absorbers, the designed
absorber can realize broadband continuous tunable wave absorption at low frequencies
with a much thinner thickness.

For a physically realizable broadband absorber, the Rozanov limit indicates that for any
absorber under the normal incidence, its total thickness d must be larger than a theoretical
limit for the given frequency response of the absorption [19], i.e.,

d ≥ 1
2π2µs

∣∣∣∣∫ ∞

0
ln|ρ(λ)|dλ

∣∣∣∣ > 1
2π2µs

|ln(ρ0)|(λmax − λmin), (15)

where ρ is the reflection coefficient, λ is the free space wavelength, and µs = Re(µr)|λ→∞
is the static permeability of the structure. For a nonmagnetic (µs = 1) and non-tunable
absorber, the theoretical limit is estimated to be 25.5 mm to achieve absorption below
−10 dB from 0.41 to 1.02 GHz.

As the response of the material always lags behind the incident wave (i.e., “cause”
leads to “result”), the absorption performance of the material is limited by the “causality
limit”. The causality-dictated minimum thickness [37] is given by

dmin =
1

2π2µs

∣∣∣∣∫ ∞

0
ln|ρ(λ)|dλ

∣∣∣∣. (16)

Here, the parameter µs is set as 8.9 as observed from Figure 1. By substituting the sim-
ulated reflection spectrum of the structure with different loaded capacitances into Equation
(16), i.e., the results of Cm = 0.35 pF, Cm = 1.03 pF, and Cm = 3.2 pF shown in Figure 8a,
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we can obtain the theoretical minimum thickness of dmin = 4.06 mm, dmin = 4.11 mm and
dmin = 3.93 mm, which is dictated by the causality limit to realize the required reflection
properties of each curve in Figure 8a, respectively. The actual thickness d = 5 mm of our
absorber is slightly larger than the theoretical minimum thickness.
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The proposed metamaterial absorber possesses real-time tunable absorption responses
that are controlled by the bias voltage to enable high-efficiency absorption at different low
frequencies. Hence, it could be used adaptively for different requirements of the absorption
band, and the effective working bandwidth could be evaluated by the achievable absorption
range under different varactor capacitances. The envelope of the reflection curve within
the adjustable range is shown by the dotted red curve in Figure 8a, while the result of
absorption is shown in Figure 8b. The tunable absorber can achieve accessible absorption
performance through dynamic control of the bias voltage. By substituting the envelope
curve of the reflection spectrum into Equation (16), we can obtain the theoretical minimum
thickness dmin = 8.12 mm. Although the metamaterial absorber cannot simultaneously
realize high-efficiency absorption in all frequencies within the achievable range, it can
operate in a time-multiplexing manner that could still be used in many applications.

3. Experiment Results and Discussion

To verify the design principle and the simulation results, we fabricated the absorber
sample and tested it in the customized TEM cell, which is a waveguide structure that
supports the propagation of the quasi-TEM mode along the z direction. Such a mea-
surement set-up offers an efficient way to characterize the EM performances of periodic
structures [39–41] just with a small-sized sample especially at the lower microwave band,
which is an alternative to the free-space measurement in large microwave chamber. In
the experiments, the frequency responses are transformed to the time domain, and a time
gating is employed to reduce the multiple reflection effects for the improvement of mea-
surement accuracy [42]. Figure 9a illustrates a photograph of the measurement setup and
the fabricated prototype. The fabricated sample consists of 1 × 4 unit cells with a size of
54 × 352 mm2, as shown in Figure 9b.
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The measured reflectivity results are shown in Figure 9c. The designed absorber can
achieve continuously tunable absorption from 0.45 to 1.06 GHz under the y-polarization
normal incidence when the input bias voltage is changed from 0 to 20 V. Compared with the
simulated results, there are slight frequency shifts in the measurement, which is probably
caused by the inaccuracy of sample fabrication, imperfection of the measurements, value
variations, and parasitic effects of the lumped elements. The reflection curve slightly above
0 dB at much low frequencies is mainly due to the calibration deviation. Considering
these influences and tolerances, the measured result roughly agrees with the simulated
result, demonstrating the capability of the fabricated sample to efficiently achieve tunable
absorption in the P band. Although the absorber we designed possesses excellent per-
formance for absorbing applications below 1 GHz, some scenarios may need to operate
for frequencies larger than 1 GHz. To circumvent this limitation, we can increase the
number of layers and thickness of magnetic material structures so as to expand the working
bandwidth above 1 GHz. However, the magnetic materials may not be used for very high
frequencies, as the magnetic loss (or the imaginary part of the permeability) decreases as
the frequency increases.

4. Conclusions

We present a reconfigurable absorber combining magnetic nanomaterials, resonant
structures, and active components of varactors, which can realize continuously and electri-
cally tunable absorption in the lower microwave band from 0.41 to 1.02 GHz by adjusting
the input bias voltage. The most advantage of the absorber is its ultrathin thickness and
broadband absorption at lower frequencies. EM field analysis and ECM analysis are ap-
plied to reveal the underlying working mechanism of the metamaterial absorber, and good
angular stability is achieved for the oblique incidence. Experiments are conducted to vali-
date the design principle, and consistencies are observed between simulated and measured
results. The low-frequency microwaves, especially below 1 GHz, have been widely used
in wireless communication and defense radar systems, resulting in an urgent demand
for high-efficiency EM absorbers working at this frequency band for the EMC or stealth
technique. The proposed design method and metamaterial absorber have a thin–thickness
working for low frequencies, which may open up a plethora of interesting applications,
such as anti-radar environment, radio-frequency identification (RFID) systems, sub-GHz
wireless systems and so on.
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