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Summary (275 words) 

 

Background 

As large-scale immunization programs against COVID-19 proceed around the world, safety 
signals will emerge that need rapid evaluation. We report population-based, age- and sex-
specific background incidence rates of potential adverse events of special interest (AESI) in 
eight countries using thirteen databases.  

Methods 

This multi-national network cohort study included eight electronic medical record and five 
administrative claims databases from Australia, France, Germany, Japan, Netherlands, Spain, 
the United Kingdom, and the United States, mapped to a common data model. People 
observed for at least 365 days before 1 January 2017, 2018, or 2019 were included. We based 
study outcomes on lists published by regulators: acute myocardial infarction, anaphylaxis, 
appendicitis, Bell’s palsy, deep vein thrombosis, disseminated intravascular coagulation, 
encephalomyelitis, Guillain-Barre syndrome, hemorrhagic and non-hemorrhagic stroke, 
immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, and 
transverse myelitis. We calculated incidence rates stratified by age, sex, and database. We 
pooled rates across databases using random effects meta-analyses. We classified meta-
analytic estimates into Council of International Organizations of Medical Sciences categories: 
very common, common, uncommon, rare, or very rare.  

Findings 

We analysed 126,661,070 people. Rates varied greatly between databases and by age and sex. 
Some AESI (e.g., myocardial infarction, Guillain-Barre syndrome) increased with age, while 
others (e.g., anaphylaxis, appendicitis) were more common in young people. As a result, AESI 
were classified differently according to age. For example, myocardial infarction was very rare 
in children, rare in women aged 35-54 years, uncommon in men and women aged 55-84 years, 
and common in those aged ≥85 years.  

Interpretation  

We report robust baseline rates of prioritised AESI across 13 databases. Age, sex, and variation 
between databases should be considered if background AESI rates are compared to event 
rates observed with COVID-19 vaccines. 
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MAIN TEXT (2947 words) 

 

Introduction  

On 11 March 2020, the World Health Organization (WHO) declared the outbreak of COVID-19, 
caused by the SARS-CoV-2 virus, a global pandemic. As of March 2021, over 100 million 
confirmed cases and 2·7 million deaths have been reported worldwide.1 Vaccines for COVID-
19 have been developed at unprecedented speed, with phase 3 clinical efficacy trials reporting 
resulted for some vaccines less than a year after the WHO declared the pandemic. Several 
vaccines have been authorised by regulators since December 2020, such as the European 
Medicines Agency (EMA), the Food and Drug Administration (FDA) in the US, and the UK 
Medicines and Healthcare Products Regulatory Agency (MHRA). Large-scale immunization 
programs are ongoing worldwide.  

While this scientific achievement should be celebrated, we must recognize that emergency 
use is accompanied by residual uncertainty about the safety and effectiveness of vaccines in 
all populations of interest. As with all medical products reaching the milestone of regulatory 
authorization, vaccine safety must continue to be monitored to complement what was initially 
learned during clinical development. Spontaneous adverse event reporting has served as a 
foundational component of post-approval pharmacovigilance activities to ensure the safe and 
appropriate use of medical products. Observational healthcare data captured during the 
routine course of clinical care, such as electronic health records and administrative claims, can 
augment pharmacovigilance by providing real-world context about potential adverse events 
and their rates in populations of interest. Background rates of adverse events have historically 
played an important role in monitoring the safety of vaccines by serving as a baseline 
comparator for observed rates among those vaccinated.2,3 Each new vaccine has potential 
adverse events of special interest (AESI) that warrant focused evaluation, based on historical 
precedent set by prior vaccines and knowledge acquired during its development.  

As COVID-19 vaccines have received authorization for emergency use, regulatory agencies 
around the world have been preparing safety surveillance strategies. The US FDA Center for 
Biologics Evaluation and Research published a protocol on “Background Rates of Adverse 
Events of Special Interest for COVID-19 Vaccine Safety Monitoring.”4  The European Medicines 
Agency-funded vACCine covid-19 monitoring readinESS (ACCESS) project also included 
estimation of background AESI rates in their protocol.5   Recognizing the global burden that 
COVID-19 represents and following the WHO Council for International Organizations of 
Medical Sciences (CIOMS) guidance that the most valid data for comparison in a particular 
area are the background rates from the local population,6  the Observational Health Data 
Sciences and Informatics (OHDSI) community collaborated to design and execute an 
international open science study to characterize background rates of COVID-19 AESI. In this 
paper, we provide descriptive epidemiology context for COVID-19 AESIs using observational 
data from Australia, France, Germany, Japan, Netherlands, Spain, the UK, and the US.  

 

Methods  

Study design  

A multinational, multi-database population-based network cohort study. 

Data sources 

We included thirteen databases from eight countries, of which eight were electronic health 
record data sources and five were administrative claims data sources.  
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The electronic health record databases were: 1. IQVIA Australia Electronic Medical Records 
(IQVIA_AUSTRALIA); 2. Integrated Primary Care Information (IPCI_NETHERLANDS), a primary 
care records database from the Netherlands; 3. IQVIA Longitudinal Patient Data France 
(IQVIA_FRANCE); 4. IQVIA Disease Analyser Germany (IQVIA_GERMANY); 5. Information 
System for Research in Primary Care (SIDIAP_H_SPAIN), a primary care records database that 
covers over 80% of the population of Catalonia, Spain; 6. Clinical Practice Research Datalink, 
which consists of data collected from UK primary care for all ages (CPRD_GOLD_UK); 7. 
Columbia University Irving Medical Center (CUMC_US), which covers the New York-
Presbyterian Hospital/Columbia University Irving Medical Center in the US; and 8. Optum® de-
identified Electronic Health Record Dataset (OPTUM_EHR_US), which covers more than 103 
million patients and over 7,000 hospitals and clinics across the US.  

The claims-based databases were the Japan Medical Data Center (JMDC_JAPAN) and four US 
administrative claims databases: IBM MarketScan Commercial Claims and Encounters 
Database (CCAE_US), IBM MarketScan Medicare Supplemental and Coordination of Benefits 
Database (MDCR_US), IBM MarketScan Multi-State Medicaid Database (MDCD_US), 
Optum® De-Identified Clinformatics® Data Mart Database – Socio-Economic Status 
(OPTUM_SES_US).  

A detailed description of the databases can be found in Appendix Table 1.  

All datasets were previously mapped to the Observational Medical Outcomes Partnership 
common data model, which is maintained by the Observational Health Data Sciences and 
Informatics (OHDSI) network. The analysis code could therefore be distributed across all 
contributing centers without sharing patient-level data.7,8      

Population/study participants  

In our primary analysis, we defined the target at-risk population as people who were observed 
on 1 January 2017, 1 January 2018, or 1 January 2019 and were observed for at least 365 days 
before this observation date. We defined 1 January each year as the index date.  

Events of interest  

The events of interest in this study were the AESIs that might need evaluation following 
COVID-19 vaccination. This outcome list was developed primarily based on the “Background 
Rates of Adverse Events of Special Interest for COVID-19 Vaccine Safety Monitoring” protocol 
published by the FDA Center for Biologics Evaluation and Research, the prioritiszd COVID-19 
vaccine AESI list by the Brighton Collaboration, and other previous studies.4,9 Fifteen events 
were included: non-hemorrhagic stroke, hemorrhagic stroke, acute myocardial infarction, 
deep vein thrombosis, pulmonary embolism, anaphylaxis, Bell’s palsy, 
myocarditis/pericarditis, narcolepsy, appendicitis, immune thrombocytopenia, disseminated 
intravascular coagulation, encephalomyelitis (including acute disseminated 
encephalomyelitis), Guillain-Barre syndrome, and transverse myelitis.4 

Events were identified by condition occurrence records (e.g., diagnosis codes from claims or 
diagnosis codes and problem lists from electronic health records). Encephalomyelitis, non-
hemorrhagic stroke, hemorrhagic stroke, and acute myocardial infarction definitions also 
required the record to occur within an inpatient setting (any position), while the Guillain-Barre 
syndrome definition required the condition to be recorded in an inpatient setting in the 
primary position.  

Qualifying events could not be previously observed in a ‘clean window’ period before the 
index date. In keeping with the FDA protocol, we applied a clean window of 365 days for all 
events except anaphylaxis (30 days) and facial nerve palsy and encephalomyelitis (183 days).4 
The full specifications of all phenotype definitions, including source codes and standard 
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concepts, are available in Appendix Tables 2 and 3.  

As the CPRD-GOLD (UK), IQVIA (France, Germany, and Australia), and IPCI (the Netherlands) 
databases only included primary care data, we did not use them for events whose definition 
required an inpatient diagnosis. 

Analysis 

We defined the time-at-risk as a 365-day period following the index date. People contributed 
time-at-risk from 1 January to 31 December for each qualifying year in 2017 to 2019, but time 
was censored during the clean window following an event and at the end of a person's 
observation period. One person could contribute more than one event, with outcome-specific 
pre-specified clean periods of 30 to 365 days used to avoid duplicate counts. 

Incidence rates were estimated as the total number of events divided by the person-time at 
risk per 100,000 person-years. We calculated the age-by-sex specific incidence rates in each 
database and report all rates where the event counts exceeded a minimum cell count of 5. 
Age was calculated as year of index date minus year of birth and was partitioned into eight 
mutually exclusive age groups: 1-5 years old, 6-17, 18-35, 36-55, 56-64, 65-74, 75-84, and 85 
years and older. We then pooled age-sex specific rates of each AESI across all databases using 
random-effects models with the DerSimonian-Laird method to estimate between-database 
variance.10 We estimated 95% predicted intervals (95% confidence intervals) using the R 
package ‘meta’.11 

Meta-analytic age and sex-specific rates were classified using the World Health Organization 
Council for International Organizations of Medical Sciences (CIOMS) thresholds: very common 
(≥1/10), common (<1/10 to ≥1/100), uncommon (<1/100 to ≥1/1,000), rare (<1/1,000 to 
≥1/10,000), and very rare (<1/10,000).12  

All statistical analyses were performed in R software.13 The study protocol and analysis code 
are available at:  https://github.com/ohdsi-
studies/Covid19VaccineAesiIncidenceCharacterization 

Ethical approval 

The protocol for this research was approved by the Independent Scientific Advisory 
Committee (ISAC) for MHRA Database Research (protocol number 20_000211), the IDIAPJGol 
Clinical Research Ethics Committee (project code: 21/007-PCV), the IPCI governance board 
(application number 3/2021), and the Columbia University Institutional Review Board 
(AAAO7805). 

 

 

Results  

From 13 databases, 126,661,070 people contributed 227,043,370 person-years of follow-up. 
Each database captured important different population demographics, as shown in Table 1, 
and collectively represented all age and sex subgroups from eight countries.  

Table 2 summarises the incidence rates of the 15 AESIs, stratified by age and sex, based on 
prediction intervals from a meta-analysis of the database estimates. Each age/sex subgroup 
was also classified using the CIOMS adverse event frequency system (very common, common, 
uncommon, rare, or very rare). The incidence of several outcomes varied substantially by age. 
For example, acute myocardial infarction was very rare (<1/10,000) in women under 35 years, 
rare (1/1,000 to 1/10,000) in women aged 35 to 54 years, uncommon (1/100 to 1/1,000) in 
both men and women aged 55 to 84 years, and common (1/10 to 1/100) in men and women 
aged 85 years and older. For both men and women, deep vein thrombosis was rare in those 
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under 18 years, uncommon in those aged 35 to 84 years, and common in those 85 years and 
older. Women aged 18 to 34 years had a higher rate of deep vein thrombosis than men of the 
same age.  

The AESIs studied spanned the continuum of possible frequencies. Non-hemorrhagic stroke, 
acute myocardial infarction, and deep vein thrombosis were all common in those aged 85 
years and older and uncommon in those aged 55 to 74 years. Anaphylaxis, Bell’s palsy, 
appendicitis, and immune thrombocytopenia were largely rare in all age groups, although 
appendicitis was uncommon in those aged 6 to 34 years. Guillain-Barre syndrome and 
transverse myelitis were very rare in nearly all subgroups.  

The prediction intervals for each age-sex subgroup were notably wide, reflecting the 
substantial population-level heterogeneity observed across sources. Figure 1 shows the 
database-specific incidence rates that were used to calculate the meta-analytic estimates. The 
rates recorded for deep vein thrombosis highlight this variation. For women aged 35 to 54 
years, the incidence rates ranged from 159/100,000 person-years in Spain (SIDIAP) to 
866/100,000 person-years in the US (MDCD). We obtained 13 database estimates for the 
incidence in women aged 65 to 74 years, ranging from 387/100,000 to 1,443/100,000 person-
years. Eight databases gave rates under 650/100,000 person-years (CPRD-GOLD in the UK; 
CUIMC in the US; IPCI in the Netherlands; IQVIA in Australia, France, and Germany; JMDC in 
Japan; and SIDIAP-H in Spain), while three databases gave rates more than twice as high, at 
over 1,300/100,000 person-years (MDCD, MDCR, and OPTUM-SES in the US). Among women 
aged 75 to 84 years, the lowest incidence rate was 585/100,000 person-years (CPRD-GOLD in 
the UK) and the highest was 2,167/100,000 person-years (MDCR in the US). We could not find 
any consistent patterns to explain which databases yielded higher or lower rates across 
outcomes. Appendix Table 4 lists all database-specific incidence rates.  

 

Discussion  

To our knowledge, this is the largest study to date on the descriptive epidemiology of the 
AESIs prioritised for post-marketing surveillance of COVID-19 vaccines. We report background 
rates of deep vein thrombosis, pulmonary embolism, stroke, immune thrombocytopenia, and 
disseminated intravascular coagulation, which are particularly relevance for COVID-19 
vaccines given the observed effects of the SARS-COV-2 virus on coagulopathy.14–17 

Our study provides a comprehensive, detailed assessment of the incidence rates of 15 AESIs 
across 13 databases, eight countries, and four continents. We found considerable 
heterogeneity between geographies and databases, suggesting that caution is needed when 
interpreting the difference between any observed and expected rates. We observed 
considerable variability with age and sex, emphasizing the need for standardization if 
background rates are used for surveillance purposes.  

Many countries and organizations, such as the US and EU, have passive spontaneous adverse 
event reporting systems, such as the Vaccine Adverse Event Reporting System (VAERS). 
However, these systems cannot be used to calculate epidemiological estimates of the burden 
of disease, including incidence rates, because they lack denominators, which are the total 
number of persons or person-times being observed.18,19 Background incidence rates have 
been used to estimate the expected number of events in the general population.3,19  They are 
often obtained from the literature, but methods, case and population definitions, data, and 
calendar time can vary across publications. In contrast, we calculated all of the presented 
estimates using precisely the same setting and common analysis procedures, phenotyping 
algorithms, and data model. However, we still found substantial heterogeneity, suggesting 
that using a single overall estimate inadequately represents the true uncertainty around event 
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incidence and may lead to confusion.  

Population-level heterogeneity across data sources was substantial for all events, even after 
standardizing outcome definitions and stratifying by age and sex. While potentially concerning 
when seen together in one analysis, our findings are consistent with what has been observed 
in the literature. For example, in our study, the meta-analysis estimated incidence rates of 
transverse myelitis ranging from 1 to 4 per 100,000 person-years depend on age-sex strata. 
Previous studies have reported overall incidence rates of transverse myelitis ranging from 0·4 
to 4·6 per 100,000 person-years.19,20 The rates of Bell’s palsy among those over 65 years old 
has ranged from 4·6 per 100,000 person-years in European data to 174 per 100,000 person-
years in US data.21,22 Rates of narcolepsy from 1 to over 30 per 100,000 person-years have 
been reported among those aged 25 to 44 years.21,22 Recently reported data from the ACCESS 
project also showed heterogeneity in background rates.5 This heterogeneity needs to be taken 
into account when comparing rates across populations.  

Most of the studied outcomes also had considerable within-source patient-level 
heterogeneity that followed age and sex patterns. For example, rates of cardiovascular 
diseases such as acute myocardial infarction, hemorrhagic and non- hemorrhagic stroke, deep 
vein thrombosis, and pulmonary embolism increased with age. The incidence of Guillain-Barre 
syndrome and Bell’s palsy also increased with age. Narcolepsy and appendicitis were more 
common in younger populations. The patterns observed in our study were generally 
comparable with previous reports.2,3,21–25 Stratification by age and sex or standardization are 
likely to be useful analytic strategies to reduce confounding when comparing incidence rates 
across populations. However, the magnitude of heterogeneity across sources within age-sex 
subgroups suggest that residual patient-level differences will remain, including the differences 
in the distributions of other risk factors such as comorbidities and medication use.  

Comparing published results can be limited by differing study methodology, including the 
time-at-risk definition, study period, event definitions, population coverage, calendar year, 
and geographic location.26 Different subgroup definitions also make direct comparison 
difficult. For example, previous studies of Guillain-Barre syndrome have used age strata that 
do not fully overlap with each other.2,5,21,25,27,28 In contrast, because we applied the same 
definitions, data model, and analysis to all of the databases within our study, the 
heterogeneity observed cannot be attributed to analysis variability. Instead, it may have been 
due to differences in the underlying populations, healthcare systems, and data capture 
processes. Although some variability may have been due to systematic error, selection bias or 
differential outcome measurement error between databases, some may reflect true 
population differences such as socioeconomic status and comorbidities.  

As we observed notable differences between age, sex, and databases, caution should be 
exercised when using incidence rates as a basis for comparison. Comparisons between 
incidence rates from different sources may be subject to substantial systematic error. We 
observed large variations between electronic health records and claims data sources when 
using the same analysis and outcome definitions. Comparisons with rates derived from 
randomised trials or spontaneous reporting data may have even greater variability. If 
observational databases are to be used to inform safety surveillance activities, within-
database analyses (such as self-controlled case designs or propensity-score adjusted 
comparative cohort designs) may help reduce study bias for any given comparison. 
Demonstrating consistent effects across databases may further strengthen confidence in 
results. If observational data are used to derive historical ‘expected’ rates and compared 
against observed rates of events from another source, then the uncertainty in the background 
rate must be appropriately integrated to avoid misleading conclusions.  

Our large number of participating databases, geographical coverage, and sizable study 
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population allowed us to provide a comprehensive assessment of the background incidence 
rates across different healthcare systems and regions across the globe. Our study took 
advantage of the Observational Medical Outcomes Partnership common data model, which 
allowed us to use the same study design and analytical code and to gather results from 
participating data partners rapidly and without transferring patient-level data. All outcome 
definitions, clinical codes and phenotype algorithms have been made open source and are 
available online for review and to maximise reproducibility and reuse.  

The primary limitation of this study is that all outcomes may have been subject to 
measurement error. As the outcome definitions were based on the presence of specific 
diagnostic codes and were not validated further, they may have had imperfect sensitivity or 
specificity. The analysis relied on data from 2017 to 2019 using a target population of all 
people in each database with >365 days of observation indexed on 1 January, 365 days’ time-
at-risk, and outcome-specific clean windows to allow for recurrent events. The impact of these 
design decisions should be explored further. 

 

Conclusion 

This study comprehensively assessed the descriptive epidemiology of potential AESIs for 
COVID-19 vaccines. It highlighted the wide range of adverse effects being monitored, from 
very rare neurological disorders to more common thromboembolic conditions. We reported 
large variations in the observable rates of AESI by age group and sex, demonstrating the need 
to account for stratification or standardization before using background rates for safety 
surveillance. We also found significant population-level heterogeneity in AESI rates between 
databases, implying that individual study estimates should be interpreted with caution and 
systematic error associated with database choice should be incorporated into any analysis. 
These background rates should provide useful real-world context to inform public health 
efforts aimed at ensuring patient safety while promoting the appropriate use of vaccines 
worldwide.  
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Tables & Figures 

Table 1: Demographics of the included populations, stratified by database

*CCAE_US: IBM MarketScan Commercial Claims and Encounters Database, CPRD_GOLD_UK: Clinical Practice Research Datalink, CUMC_US: Columbia 
University Irving Medical Center, IPCI_NETHERLANDS: Integrated Primary Care Information, IQVIA_AUSTRALIA: IQVIA Australia Electronic Medical Records, 
IQVIA_FRANCE: IQVIA Longitudinal Patient Data France, IQVIA_GERMANY: IQVIA Disease Analyser Germany, JMDC_JAPAN: Japan Medical Data Center, 
MDCD_US: IBM MarketScan Multi-State Medicaid Database, MDCR_US: IBM MarketScan Medicare Supplemental and Coordination of Benefits Database, 
OPTUM_EHR_US: Optum® de-identified Electronic Health Record Dataset, OPTUM_SES_US: Optum® De-Identified Clinformatics® Data Mart Database – 
Socio-Economic Status, SIDIAP_H_SPAIN: Information System for Research in Primary Care – Hospitalization Linked Data 
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Table 2. Pooled estimated age-sex stratified incidence rates per 100,00 person-years (with 95% confidence intervals), calculated from meta-analyses.  

 

*CIOMS: Council of International Organizations of Medical Sciences 

Outcome Sex 1 - 5 6 - 17 18 - 34 35 - 54 55 - 64 65 - 74 75 - 84 85+

Female 4 (2-9) 4 (1-12) 18 (4-86) 83 (11-617) 217 (25-1882) 413 (77-2198) 874 (197-3884) 1523 (320-7239)

Male 6 (2-20) 5 (2-10) 17 (4-75) 119 (21-664) 370 (67-2046) 612 (145-2578) 1063 (242-4662) 1495 (260-8607)

Female <1 (<1-1) <1 (<1-1) 6 (1-49) 54 (7-430) 171 (24-1235) 312 (76-1280) 617 (184-2069) 1144 (313-4184)

Male <1 (<1-1) 1 (1-1) 16 (4-72) 172 (40-740) 467 (135-1611) 653 (214-1994) 934 (290-3013) 1514 (356-6432)

Female 12 (3-50) 18 (8-40) 140 (66-298) 306 (117-797) 428 (150-1224) 683 (257-1820) 975 (360-2642) 1206 (407-3572)

Male 14 (4-55) 14 (6-32) 80 (28-228) 272 (88-836) 499 (194-1289) 695 (250-1931) 831 (254-2720) 1003 (278-3616)

Female 7 (2-28) 5 (2-16) 13 (4-47) 36 (7-175) 77 (15-389) 124 (29-527) 249 (56-1108) 412 (85-1986)

Male 8 (2-43) 8 (3-24) 19 (5-76) 51 (10-268) 115 (23-562) 178 (49-650) 312 (73-1340) 506 (86-2961)

Female 1 (<1-36) 3 (1-13) 38 (11-124) 81 (21-309) 125 (33-470) 217 (77-611) 358 (135-951) 427 (154-1184)

Male 1 (<1-24) 2 (<1-12) 20 (5-80) 80 (20-318) 171 (59-497) 256 (96-683) 349 (119-1030) 398 (124-1277)

Female 32 (12-84) 154 (55-430) 134 (69-260) 85 (42-172) 66 (28-156) 53 (20-143) 40 (13-124) 35 (12-98)

Male 38 (17-85) 194 (101-372) 146 (81-266) 88 (49-159) 65 (32-132) 57 (23-144) 47 (15-152) 45 (14-143)

Female 15 (9-27) 25 (12-51) 44 (23-84) 61 (26-140) 76 (31-184) 86 (29-256) 101 (31-330) 92 (31-274)

Male 15 (10-24) 21 (13-34) 43 (29-64) 68 (37-125) 86 (43-172) 94 (35-252) 92 (29-291) 100 (34-292)

Female 49 (16-150) 50 (16-154) 39 (16-95) 34 (13-91) 35 (14-85) 29 (11-76) 23 (7-73) 12 (4-36)

Male 74 (26-209) 56 (18-175) 29 (14-63) 24 (11-53) 25 (11-53) 24 (9-68) 18 (7-49) 10 (2-50)

Female 12 (8-19) 9 (4-21) 14 (6-36) 15 (5-43) 18 (6-53) 25 (8-82) 30 (8-110) 36 (11-118)

Male 17 (12-23) 8 (3-19) 8 (2-23) 10 (3-35) 19 (6-57) 30 (9-105) 41 (10-170) 56 (15-210)

Female 6 (1-25) 7 (2-21) 16 (8-32) 22 (9-53) 31 (13-72) 35 (12-97) 39 (11-138) 34 (8-143)

Male 7 (1-32) 11 (5-24) 37 (16-88) 37 (16-87) 45 (20-102) 49 (17-139) 54 (15-193) 41 (9-193)

Female 2 (<1-104) 2 (<1-48) 4 (<1-99) 5 (<1-75) 10 (1-89) 14 (2-97) 19 (4-94) 16 (3-82)

Male 3 (<1-137) 2 (<1-44) 4 (<1-31) 5 (1-56) 12 (1-120) 17 (2-154) 23 (4-152) 24 (5-126)

Female 5 (2-15) 5 (2-16) 5 (2-19) 6 (1-44) 9 (1-61) 11 (2-62) 12 (2-77) 14 (2-100)

Male 5 (2-12) 5 (2-14) 5 (2-17) 7 (1-55) 12 (3-58) 16 (3-73) 18 (3-101) 16 (1-180)

Female 1 (<1-5) 7 (3-17) 15 (4-52) 11 (2-55) 9 (2-42) 10 (2-46) 8 (1-49) 9 (2-42)

Male 1 (<1-5) 6 (2-18) 13 (4-40) 10 (2-47) 11 (3-44) 10 (2-50) 10 (2-68) 10 (2-60)

Female 1 (<1-8) 1 (<1-2) 3 (1-5) 3 (1-11) 5 (1-18) 6 (2-19) 6 (3-16) 7 (2-22)

Male 2 (<1-18) 1 (<1-3) 2 (1-4) 4 (2-7) 7 (4-14) 8 (3-25) 11 (3-40) 12 (2-68)

Female 1 (<1-3) 1 (<1-3) 3 (1-8) 4 (1-12) 4 (2-13) 4 (2-13) 4 (1-11) 2 (1-9)

Male 1 (<1-2) 1 (<1-3) 2 (1-6) 3 (1-10) 4 (1-10) 4 (1-11) 4 (1-13) 4 (1-11)

Uncommon:  >1/1,000 AND <1/100

Common: >1/100 AND <1/10

Very common: >1/10

CIOMS Frequency classification

Encephalomyelitis

Narcolepsy

Guillain-Barre syndrome

Transverse myelitis

Very rare: <1/10,000

Rare: >1/10,000 AND <1/1,000

Appendicitis

Bells palsy

Anaphylaxis

Immune thrombocytopenia

Myocarditis pericarditis

Disseminated intravascular 

coagulation

Incidence rate (per 100,000 person-years) by age group

Acute myocardial infarction

Non-hemorrhagic stroke

Hemorrhagic stroke

Deep vein thrombosis

Pulmonary embolism
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Figure 1: Age-sex stratified incidence rates, overall and per database, for 15 adverse events of 
special interest 
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